Depth-First Search in Undirected Graphs Exploring Graphs

Exploring Graphs

Graph Decomposition®

Xiaofeng Gao

Department of Computer Science and Engineering
Shanghai Jiao Tong University, P.R.China

X033533-Algorithm: Analysis and Theory

*Special Thanks is given to Prof. Yijia Chen for sharing his teaching materials.

-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

Algorithm 1: EXPLORE(G, V)

Input: G = (V,E) isa graph; v € V
Output: VISITED(u) is set to true for all nodes u reachable from v

VISITED(v) = true;
PREVIST(V);
for each edge (v,u) € E do
if not VISITED(u) then
| EXPLORE(G, u);

[R

6 POSTVISIT(v);

Note: PREVISIT and POSTVISIT procedures are optional. They work
on a vertex when it is first discovered and left for the last time.

Algorithm@SJTU Xia g Ga Graph Decomposition

Depth-First Search in Undirected Graphs Exploring Graphs

Correctness Proof

Depth-First Search in Undirected Graphs Exploring Graphs

Theorem: EXPLORE(G, v) is correct, i.e., it visits exactly all nodes
that are reachable from v.

Proof: Every node which it visits must be reachable from v:
EXPLORE only moves from nodes to their neighbors and can therefore
never jump to a region that is not reachable from v.

Every node which is reachable from v must be visited eventually:

If there is some u that EXPLORE misses, choose any path from v to u,
and look at the last vertex v on that path that the procedure actually
visited. Let w be the node immediately after it on the same path.

So z was visited but w was not. This is a contradiction: while
EXPLORE was at node z, it would have noticed w and moved on to it.

X033533-Algor)S) Xi 2 Graph Decomposition

Depth-First Search

Algorithm 2: DFS(G, v)

Input: G = (V,E) is a graph; v € V
Output: VISITED(v) is set to true for all nodes v € V

p—

VISITED(v) = true;
foreach v € V do
| VISITED(v) = false;

w N

foreach v € V do
if not VISITED(v) then
| EXPLORE(G, v);

QA &

gorithm@SJTU Xia g Ga Graph Decomposition

Depth-First Search in Undirected Graphs Exploring Graphs

Running time of DFS

Depth-First Search in Undirected Graphs
Connectivity in Undirected Graphs

Connectivity in undirected graphs

Because of the VISITED array, each vertex is EXPLORE’d just once.

During the exploration of a vertex, there are the following steps:

© Some fixed amount of work — marking the spot as visited, and
the PRE/POSTVISIT.

@ A loop in which adjacent edges are scanned, to see if they lead
somewhere new. This loop takes a different amount of time for
each vertex.

The total work done in step 1 is then O(|V]).

In step 2, over the course of the entire DFS, each edge {x,y} € Eis
examined exactly twice, once during EXPLORE(G, x) and once during
EXPLORE(G, y). The overall time for step 2 is therefore O(|E]|).

Thus the depth-first search has a running time of O(|V| + |E|).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

Definition: An undirected graph is connected, if there is a path
between any pair of vertices.

Definition: A connected component is a subgraph that is internally
connected but has no edges to the remaining vertices.

When EXPLORE is started at a particular vertex, it identifies precisely
the connected component containing that vertex.

Each time the DFS outer loop calls EXPLORE, a new connected
component is picked out.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

Depth-First Search in Undirected Graphs
Connectivity in Undirected Graphs

Depth-First Search in Undirected Graphs

Previsit and Postvisit Orderings

Connectivity in undirected graphs (cont’d)

Thus depth-first search is trivially adapted to check if a graph is
connected.

More generally, to assign each node v an integer CCNUM|v|
identifying the connected component to which it belongs.

All it takes is
PREVISIT(v)

CCNUM[V| = cc

where cc needs to be initialized to zero and to be incremented each
time the DFS procedure calls EXPLORE.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

Previsit and postvisit orderings

For each node, we will note down the times of two important events:
@ the moment of first discovery (corresponding to PREVISIT);
@ and the moment of final departure (POSTVISIT).

PREVISIT(v)

PRE[v] = clock
clock = clock + 1

POSTVISIT(V)

POST[v] = clock
clock = clock + 1

Lemma: For any nodes « and v, the two intervals [PRE(u), POST(u)]
and [PRE(u), POST(u)] are either disjoint or one is contained within
the other.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

Depth-First Search in Undirected Graphs

Previsit and Postvisit Orderings

An executing example

Assume we use alphabetical order to explore G:

|
IO
—=
|=-
—=
e 1 S
|
[y

=

[all}
|Uﬁ

elef=fo] T[]
elz]=]ela] |]

—
—
N
—
w
[
-
—
wn

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

A2

12/29

Types of Edges
Depth-First Search in Directed Graphs

Types of edges

DES yields a search tree/forests.

@ root.
@ descendant and ancestor.

@ parent and child.

o Tree edges are actually part of the DFS forest.

o Forward edges lead from a node to a nonchild descendant in the
DFS tree.

@ Backedges lead to an ancestor in the DFS tree.

@ Cross edges lead to neither descendant nor ancestor; they

therefore lead to a node that has already been completely
explored (that is, already postvisited).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

14/29

Types of Edges
Depth-First Search in Directed Graphs

Types of edges (cont’d)

PRE/POST ordering for (u, v) Edge type
[P A M Tree/forward
b [u lu v Back
L [v Cross

Xiaofeng Gao

Depth-First Search in Directed Graphs Directed Acyclic Graphs

Directed acyclic graphs (DAG)

Definition: A cycle in a directed graph is a circular path

Vo —> V1 —> V2 — - Vi — V.

Lemma: A directed graph has a cycle if and only if its depth-first
search reveals a back edge.

Proof: “<" One direction is quite easy: if (u,v) is a back edge, then
there is a cycle consisting of this edge together with the path from v to
u in the search tree.

“=" Conversely, if the graph has a cycle
Vo — V] — Vo — -V — Vp, look at the first node v; on this cycle to
be discovered (the node with the lowest PRE number).

All the other v; on the cycle are reachable from it and will therefore be
its descendants in the search tree.
In particular, the edge v;—; — v; (or vy — vg if i = 0) is a back edge.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

X033533-Algorithm@SJTU

Graph Decomposition

Depth-First Search in Directed Graphs Directed Acyclic Graphs

Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST
number.
Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink — no outgoing edges. Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.
The guaranteed existence of a source suggests an alternative approach

to linearization:
@ Find a source, output it, and delete it from the graph.

© Repeat until the graph is empty.
X033533-Algorithm@SJTU

Xiaofeng Gao Graph Decomposition

18/29

Depth-First Search in Directed Graphs
Strongly Connected Components

Defining connectivity for directed graphs

Definition: Two nodes u and v of a directed graph are connected if
there is a path from u to v and a path from v to u.

This relation partitions V into disjoint sets that we call strongly
connected components.

Lemma: Every directed graph is a dag of its strongly connected
components.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

20/29

Depth-First Search in Directed Graphs
Strongly Connected Components

An efficient algorithm

Lemma: If the EXPLORE subroutine is started at node u, then it will
terminate precisely when all nodes reachable from u have been
visited.

Therefore, if we call explore on a node that lies somewhere in a sink
strongly connected component (a strongly connected component that
is a sink in the meta-graph), then we will retrieve exactly that
component.

We have two problems:

(A) How do we find a node that we know for sure lies in a sink
strongly connected component?

(B) How do we continue once this first component has been
discovered?

Xiaofeng Gao

Depth-First Search in Directed Graphs
Strongly Connected Components

An efficient algorithm (cont’d)

Lemma: The node that receives the highest POST number in a
depth-first search must lie in a source strongly connected component.

Lemma: If C and C’ are strongly connected components, and there is
an edge from a node in C to a node in C’, then the highest POST
number in C is bigger than the highest POST number in C’.

Hence the strongly connected components can be linearized by
arranging them in decreasing order of their highest POST numbers.

X033533-Algorithm@SJTU Graph Decomposition

X033533-Algorithm@SJTU

Xiaofeng Gao Graph Decomposition

Depth-First Search in Directed Graphs
Strongly Connected Components

Solving problem A

Consider the reverse graph G~ the same as G but with all edges
reversed.

G® has exactly the same strongly connected components as G.

So, if we do a depth-first search of GR, the node with the highest POST
number will come from a source strongly connected component in
GR, which is to say a sink strongly connected component in G.

gorithm@SJTU aofeng Gao Graph Decomposition

23/29

Depth-First Search in Directed Graphs
Strongly Connected Components

Solving problem B

Once we have found the first strongly connected component and
deleted it from the graph, the node with the highest post number
among those remaining will belong to a sink strongly connected
component of whatever remains of G.

Therefore we can keep using the post numbering from our initial
depth-first search on G to successively output the second strongly
connected component, the third strongly connected component, and
so on.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition

24/29

Depth-First Search in Directed Graphs
Strongly Connected Components

The linear-time algorithm

@ Run depth-first search on GR.

© Run the undirected connected components algorithm on G, and
during the depth-first search, process the vertices in decreasing
order of their POST numbers from step 1.

X033533-Algorithm@SJTU Xiaofeng Gao

Graph Decomposition

Correctness and Efficiency
Breadth-First Search

The algorithm

Algorithm 3: BFS(G, s)

Input: Graph G = (V, E), directed or undirected; vertex s € V
Output: For all vertices u reachable from s, DIST(u) is set to the
distance from s to u

1 foreach u € V do
| DIST(u) = o0;

[\%]

DIST(s) = 0; Q = [s] (queue containing just s);
while Q is not empty do
u = EJECT(Q);
foreach edge (u,v) € E do
if DIST(v) = oo then
| INJECT(Q, v); DIST(v) = DIST(u) + 1;

®X N N Ut AW

thm@SJTU Xiaofeng Gao Graph Decomposition

Correctness and Efficiency Correctness and Efficiency
Breadth-First Search Breadth-First Search

Correctness and efficiency An executing example

Q

Assume we use alphabetical order to explore

t
2ia]
Lemma: Foreachd =0, 1,2, ..., there is a moment at which (1) all 3y
nodes at distance < d from s have their distances correctly set; (2) all SOOI T T
other nodes have their‘ distances set to co; and (3) the queue contains i lij:} BOREEE
exactly the nodes at distance d. o
Lemma: BFS has a running time of O(|V| + |E|). 71
81d]
ol
0]
nig [TTTTT]

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 28/29 X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 29/29

