Introduction to Algorithms 6.046J/18.401J/SMA5503

Lecture 17

Prof. Erik Demaine

Shortest paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest-path weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from *u* to *v* exists.

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The **weight** of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.2

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 29 L17.3 © 2001 by Charles E. Leiserson Introduction to Algorithms Day 29 L17.4

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Proof.

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.5

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.6

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set S of vertices whose shortestpath distances from s are known.
- 2. At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal.
- 3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(O)
        S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                           relaxation
            do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                                                                step
                    Implicit Decrease-Key
```

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.9

Example of Dijkstra's algorithm

S: {}

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.10

Example of Dijkstra's algorithm

S: { A }

Example of Dijkstra's algorithm

S: { A }

Example of Dijkstra's algorithm

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.13

Example of Dijkstra's algorithm

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.14

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.15

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Example of Dijkstra's algorithm

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.17

Example of Dijkstra's algorithm

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.18

Example of Dijkstra's algorithm

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

satisfied
$$a[v]$$
 to change. $a[v] = a[u] + w(u, v)$. Then $d[v] < \delta(s, v)$ supposition $\leq \delta(s, u) + \delta(u, v)$ triangle inequality $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path $\leq d[u] + w(u, v)$ v is first violation

Contradiction

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Correctness — **Part II**

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] \neq \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let *x* be its predecessor:

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.21

Correctness — Part II (continued)

Since *u* is the first vertex violating the claimed invariant. we have $d[x] = \delta(s, x)$. Since subpaths of shortest paths are shortest paths, it follows that d[v] was set to $\delta(s, x)$ + $w(x, y) = \delta(s, y)$ when (x, y) was relaxed just after x was added to S. Consequently, we have $d[y] = \delta(s, y) \le \delta(s, u)$ $\leq d[u]$. But, $d[u] \leq d[v]$ by our choice of u, and hence d[v] $=\delta(s,v)=\delta(s,u)=d[u]$. Contradiction.

© 2001 by Charles E. Leiserson

 $T_{ins} = O(I) T$

Introduction to Algorithms

 $\perp O(E) T$

Day 29 L17.22

Day 29 L17.24

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

Analysis of Dijkstra (continued)

$Iime = \Theta(V) \cdot I_{\text{EXTRACT-MIN}} + \Theta(E) \cdot I_{\text{DECREASE-Key}}$			
Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Y Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacc heap	i $O(\lg V)$ amortized	O(1) amortized	$O(E + V \lg V)$ worst case

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 29 L17.23

© 2001 by Charles E. Leiserson Introduction to Algorithms

Unweighted graphs

Suppose w(u, v) = 1 for all $(u, v) \in E$. Can the code for Dijkstra be improved?

- Use a simple FIFO queue instead of a priority queue.
- Breadth-first search

```
while Q \neq \emptyset
    do u \leftarrow \text{Dequeue}(O)
        for each v \in Adj[u]
             do if d[v] = \infty
                     then d[v] \leftarrow d[u] + 1
                            ENQUEUE(O, v)
```

Analysis: Time = O(V + E).

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.25

Example of breadth-first search

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.26

Example of breadth-first search

Example of breadth-first search

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Example of breadth-first search

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.29

Example of breadth-first search

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.30

Example of breadth-first search

Example of breadth-first search

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.32

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Example of breadth-first search

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.33

Example of breadth-first search

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.34

Example of breadth-first search

Example of breadth-first search

Q: abdcegifh

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Example of breadth-first search

Q: abdcegifh

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 29 L17.37

Correctness of BFS

```
while Q \neq \emptyset
    do u \leftarrow \text{Dequeue}(Q)
        for each v \in Adj[u]
             do if d[v] = \infty
                     then d[v] \leftarrow d[u] + 1
                            ENQUEUE(Q, v)
```

Key idea:

The FIFO *Q* in breadth-first search mimics the priority queue *Q* in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1.

© 2001 by Charles E. Leiserson

Introduction to Algorithms