*Introduction to Algorithms***6.046J/18.401J/SMA5503**

Lecture 17

Prof. Erik Demaine

Shortest paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortestpath weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from *u* to *v* exists.

Paths in graphs

Consider a digraph $G = (V, E)$ with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to$ $v_2 \rightarrow \cdots \rightarrow v_k$ is defined to be

$$
w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).
$$

Example:

© 2001 by Charles E. Leiserson

Introduction to Algorithms Day 29 L17.2

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v).$

Proof.

© 2001 by Charles E. Leiserson

Introduction to Algorithms Day 29 L17.5

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest path weights $S(s, y)$ for all $y \in V$ the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights *w*(*^u*, *^v*) are *nonnegative*, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortestpath distances from *s* are known.
- 2. At each step add to *S* the vertex $v \in V S$
whose distance estimate from *s* is minima whose distance estimate from *s* is minimal.
- 3. Update the distance estimates of vertices adjacent to *^v*.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Dijkstra's algorithm

Correctness — Part II

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when *v* is added to *S*. Suppose *u* is the first vertex added to *S* for which $d[u] \neq \delta(s, u)$. Let *y* be the first vertex in $V - S$ along a shortest path from s to u, and let *x* be its predecessor:

Analysis of Dijkstra

Correctness — Part II (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. Since subpaths of shortest paths are shortest paths, it follows that $d[y]$ was set to $\delta(s, x)$ + $w(x, y) = \delta(s, y)$ when (x, y) was relaxed just after *x* was added to *S*. Consequently, we have $d[y] = \delta(s, y) \leq \delta(s, u)$ $\leq d[u]$. But, $d[u] \leq d[y]$ by our choice of u, and hence $d[y]$ $= \delta(s, y) = \delta(s, u) = d[u]$. Contradiction.

© 2001 by Charles E. Leiserson

Introduction to Algorithms Day 29 L17.22

Analysis of Dijkstra (continued)

 $\text{Time} = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$ *^Q ^T*EXTRACT-MIN*^T*DECREASE-KEY Total array*O*(*V*)*O*(1) $O(V^2)$ binary heap*O*(lg*V*)*O*(lg*V*) $O(E \lg V)$ Fibonacci heap*O*(lg*V*) amortized*O*(1) amortized $O(E + V \lg V)$ worst case

© 2001 by Charles E. Leiserson

Unweighted graphs

Suppose $w(u, v) = 1$ for all $(u, v) \in E$. Can the code for Dijkstra be improved?

 • Use a simple FIFO queue instead of a priority queue.

© 2001 by Charles E. Leiserson

Introduction to Algorithms Day 29 L17.25

Example of breadth-first search

Example of breadth-first

search

Example of breadth-first search

Example of breadth-first search

Q: a b ^d ^c ^e ^g i f ^h

© 2001 by Charles E. Leiserson

Example of breadth-first search

Q: a b ^d ^c ^e ^g i f ^h

Correctness of BFS

while $Q \neq \emptyset$ $\mathsf{do} \; u \leftarrow \mathsf{Dequeue}(Q)$ fo **for** each $v \in Adj[u]$ **do** if $d[v] = \infty$
than $d\Gamma$ **then** $d[v] \leftarrow d[u] + 1$ ENQUEUE(*Q*, *^v*)

Key idea:

The FIFO *Q* in breadth-first search mimics the priority queue *Q* in Dijkstra.

• **Invariant:** *v* comes after *u* in *Q* implies that $d[v] = d[u]$ or $d[v] = d[u] + 1$.

