Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 17

Prof. Erik Demaine

Paths in graphs

Consider a digraph G = (V, E) with edge-weight
function w : £ — R. The weight of pathp =v, —
v, — -+ — v, 1s defined to be

k-1
w(p) = Z w(V;, Vi)
i=1

Example:

Q 4 2 @ 5 1 @
W(p)_z

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.2

Shortest paths

A shortest path from u to v is a path of
minimum weight from u to v. The shortest-
path weight from u to v is defined as

O(u, v) = min{w(p) : p is a path from u to v}.

Note: 6(u, v) = o if no path from u to v exists.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 LI17.3

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. Cut and paste:

~ -
S~ —m e _——-—T

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L174

Triangle inequality

Theorem. For all u, v, x € V, we have
O(u, v) < o(u, x) + o(x, v).

Proof.

[]

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.5

Well-definedness of shortest
paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

Example:

O—0O— TV

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.6

Single-source shortest paths

Problem. From a given source vertex s € /, find
the shortest-path weights o(s, v) forall v € V.

If all edge weights w(u, v) are nonnegative, all
shortest-path weights must exist.

IpEA: Greedy.

1. Maintain a set S of vertices whose shortest-
path distances from s are known.

2. At each step add to S the vertex v e /- S
whose distance estimate from s is minimal.

3. Update the distance estimates of vertices
adjacent to v.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 LI17.7

Dijkstra’s algorithm

dls] < 0
for cachv € IV— {s}

do d[v] <« «©
SO
Q«V > () is a priority queue maintaining ' — S
while O =

do © <— EXTRACT-MIN(O)

S« S {u}

for each v € Adj|u])
do if d[v] > d[u] + w(u, v) relaxation
then d[v] < d[u] + w(u, v) step

Implicit DECREASE-KEY

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.8

Example of Dijkstra’s
algorithm

Graph with
nonnegative
edge weights:

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.9

Example of Dijkstra’s
algorithm

Initialize:

S 4}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.10

Example of Dijkstra’s
algorithm

“A” <~ EXTRACT-MIN(Q):

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.11

Example of Dijkstra’s
algorithm

Relax all edges leaving A:

S {4}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.12

Example of Dijkstra’s
algorithm

“C” < EXTRACT-MIN(Q):

0
O: 1 B C D E
0 o o o o© 3 0
10 3 - -
S: {4 C)

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.13

Example of Dijkstra’s
algorithm

Relax all edges leaving C:

0 o o o o© 3 5
10 3 - -
7 11
S: {4, C}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.14

Example of Dijkstra’s
algorithm
“E” « EXTRACT-MIN(Q):

0
O: 4 B C D
0 » o 3 5
10 3 - -
7 11
S:{A4 CE}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.15

Example of Dijkstra’s
algorithm

Relax all edges leaving E:

0
O- 4 B C D
0 o o o o 3 5
100 3 o o
7 11 5
7 11 S {A, C, E}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 Ll17.16

Example of Dijkstra’s
algorithm

“B” <~ EXTRACT-MIN(Q):

0
0: D
0 o o o o© 3 5
10 '3 o o
7 11 |5
7 11 S:{A C E B}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.17

Example of Dijkstra’s
algorithm

Relax all edges leaving B:

0
0: D
0 o o o o 3 5
10 3 o o
7 IT 5
7 11 S: {4, CEB}
9
© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.18

Example of Dijkstra’s
algorithm

“D” «— EXTRACT-MIN(Q):

0
Q:
0 oo o o © 3 5
10 3 o o
7 11 |5
7 11 S: {4, CE B D}
9

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.19

Correctness — Part 1

Lemma. Initializing d[s] <— 0 and d[v] <— o for all
v e V— {s} establishes d[v] = o(s, v) forall v € V,
and this invariant is maintained over any sequence
of relaxation steps.
Proof. Suppose not. Let v be the first vertex for
which d[v] < 6(s, v), and let u be the vertex that
caused d|v] to change: d[v] = d[u] + w(u, v). Then,
d[v] <0(s, v) supposition

<0(s, u) +0o(u, v) triangle inequality

< 0(s,u) +w(u, v) sh. path < specific path

<dlu]+w(u,v) vis first violation
Contradiction. [

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.20

Correctness — Part 11

Theorem. Dijkstra’s algorithm terminates with
d[v]=0(s,v) forallv e V.

Proof. It suffices to show that d[v] = d(s, v) for every
v € V'when v is added to S. Suppose u 1s the first
vertex added to S for which d[u] # 6(s, u). Let y be the
first vertex in /' — § along a shortest path from s to u,
and let x be its predecessor:

S, just before
adding u.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.21

Correctness — Part 11
(continued)

S

Since u is the first vertex violating the claimed invariant,
we have d[x]| = (s, x). Since subpaths of shortest paths
are shortest paths, it follows that d[y] was set to d(s, x) +
w(x, y) = d(s,) when (x, y) was relaxed just after x was
added to S. Consequently, we have d[y] = d(s, y) < 6(s, u)
<d[u]. But, d[u] <d[y] by our choice of u, and hence d[y]
= 3(s, y) = 0(s, u) = d[u]. Contradiction. []

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.22

Analysis of Dijkstra

e while O =
do u <~ EXTRACT-MIN(O)
14 S« Su {u}
) for each v € Adj[u]
t
imes degree(u) do if d[v] > d[u] + w(u, v)
times then d[v] < d[u] + w(u, v)

\

Handshaking Lemma = ®O(£) implicit DECREASE-KEY’s.
Time = O(V) Tpxrracr-Miv T OE) Tppcrpase-Key

Note: Same formula as in the analysis of Prim’s
minimum spanning tree algorithm.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.23

Analysis of Dijkstra
(continued)

Time = O(V) Tgxrracr-Miv T OE) T ppcrease-Key

O Tgxtract-MiN IDecreaseKey — 1otal

array O(V) o(1) O(1?)
ey olgh) Ogh) OFlg))
Fibonacci O(lg V) O(1) OE+Vigh)

heap amortized amortized worst case

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.24

Unweighted graphs

Suppose w(u, v) = 1 for all («, v) € E. Can the
code for Dijkstra be improved?
* Use a simple FIFO queue instead of a priority
queue.
* Breadth-first search
while O =
do u <~ DEQUEUE(Q)
for ecach v € Adj|u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(Q, V)
Analysis: Time = O(V + E).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.25

Example of breadth-first
search

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.26

Example of breadth-first
search

Q: a

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.27

Example of breadth-first
search

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 29 L17.28

Example of breadth-first Example of breadth-first
search search

Example of breadth-first Example of breadth-first
search search

Example of breadth-first Example of breadth-first
search search

Example of breadth-first Example of breadth-first
search search

Example of breadth-first
search

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.37

Correctness of BFS

while O =
do 1 <— DEQUEUE(Q)
for each v € Adj|u]
do if d[v] =
then d[v] < d[u] + 1
ENQUEUE(O, Vv)

Key idea:
The FIFO O 1in breadth-first search mimics
the priority queue O in Dijkstra.

* Invariant: v comes after # in O implies that
d[v] =d[u] or d[v] = d[u] + 1.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day29 L17.38

