Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 19

Prof. Erik Demaine

Shortest paths

Single-source shortest paths
* Nonnegative edge weights

* Dijkstra’s algorithm: O(E + V'lg V)
* General

* Bellman-Ford: O(VE)
* DAG

* One pass of Bellman-Ford: O() + E)
All-pairs shortest paths
* Nonnegative edge weights

* Dijkstra’s algorithm |//| times: O(VE + V2> 1g V)
* General

* Three algorithms today.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day32 L19.2

All-pairs shortest paths

Input: Digraph G = (V, E), where | V| = n, with
edge-weight function w : £ — R,

Output: n x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

IDEA #1:

* Run Bellman-Ford once from each vertex.
* Time = O(V?E).

* Dense graph = O(/*) time.

Good first try!

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 LI19.3

Dynamic programming

Consider the 7 x n adjacency matrix 4 = (a,)
of the digraph, and define

d l-j(m) = weight of a shortest path from
i to j that uses at most 7 edges.

Claim: We have
4.00) = {O if =),
i o 1f i #;
and form=1,2,...,n—1,
dl.j(m) = mink{dl.k(m_l) +ay, }

© 2001 by Charles E. Leiserson Introduction to Algorithms Day32 L194

Proof of claim

Relaxation!
for k< 1ton
doifd;>dy +ay
then a’ij —dy + A

<m—1 edges

Note: No negative-weight cycles implies
8(i,j) = dij (n—1) = dij (n) = dij (n+1)— ...

© 2001 by Charles E. Leiserson Introduction to Algorithms Day32 L19.5

Matrix multiplication

Compute C' =4 - B, where C, 4, and B are n x n
matrices: p
c;j =2 aixby
k=1

Time = O(»°) using the standard algorithm.
What if we map “+” — “min” and > — “+7?

Thus, D" = Do) s 4.

0 000000
. . 00 () 0000
Identity matrix =1= | ;. =D = (dl,j(O)).
00 00 00 ()
© 2001 by Charles E. Leiserson Introduction to Algorithms Day32 L19.6

Matrix multiplication
(continued)

The (min, +) multiplication 1s associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.

Consequently, we can compute

DW= pO. 4 = 4!
D@ = D). 4 = 42

pn=1) : Dn=2) . 4 : A1 ,
yielding D"~ = (8(i, /).
Time = O(n'n’) = O(n*). No better than n x B-F.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 LI19.7

Improved matrix
multiplication algorithm

Repeated squaring: 42% = 4% x 4%,
Compute 47, A* el-tl
A A .

_/

v .
O(lg n) squarings
Note: A" 1= g"= A" = ...
Time = O(n’1g n).

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional
time.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day32 L19.8

Floyd-Warshall algorithm

Also dynamic programming, but faster!
Define cl-j(k) = weight of a shortest path from /

to j with intermediate vertices
belonging to the set {1, 2, ..., k}.

Thus, 6(7,) = cl.j(”). Also, cl-j(o) =a

© 2001 by Charles E. Leiserson

Floyd-Warshall recurrence

Cl'j(k) = mlnk {Cl'j(kil)’ Cl'k(kil) =+ Ck]-(kil)}

intermediate vertices in {1, 2, ..., k}

Introduction to Algorithms Day 32 L19.9 © 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.10
Pseudocode for Floyd- Transitive closure of a
Warshall directed graph

for k<« 1ton
dofori<« 1 ton
do forj < 1 ton
doifc,>c; +c;
ij ik kj .
then c; < c; + ij} relaxation

Notes:

* Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in O(7?) time.

 Simple to code.

» Efficient in practice.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 LI19.11

1 if there exists a path from i to j,

Compute ly= 0 otherwise.

InpEA: Use Floyd-Warshall, but with (v, A) instead
of (min, +):
tl.j(k) — tl'j(kfl) V. (tik(kfl) A tkj(kil))'

Time = O(n?).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.12

Graph reweighting

Theorem. Given a label /(v) for each v € V, reweight
each edge (1, v) € E by

w(u, v) =w(u, v) + h(u) — h(v).
Then, all paths between the same two vertices are
reweighted by the same amount.

Proof. Letp =v, = v, — --- = v, be a path in the graph.
k=1

Then, we have Ww(p) = 2 W(V;,Vig)

=~ o~
.l
RINUN

I
M

. 1(W(ViaVi+1)+h(Vi)—h(Vi+1))

1
= 2. wW(ivi) + h(vy) = h(v,)

=~ o~
.l

i=1

= w(p) +h(v) - h(v,). O

© 2001 by Charles E. Leiserson Introduction to Algorithms Day32 L19.13

Johnson’s algorithm

1. Find a vertex labeling /2 such that vw(u, v) > 0 for all
(u, v) € E by using Bellman-Ford to solve the
difference constraints

h(v) — h(u) <w(u, v),
or determine that a negative-weight cycle exists.
* Time = O(VE).
2. Run Dijkstra’s algorithm from each vertex using w.
* Time=O(VE+ V21g V).

3. Reweight each shortest-path length v (p) to produce
the shortest-path lengths w(p) of the original graph.
« Time = O(V?).
Total time = O(VE + V2 1g V).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day32 L19.14

