Soviet Rail Network, 1955

Chapter 7
Network Flow

JON KLEINBERG - EVA TARDOS
Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley
All rights reserved.

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut Minimum Cut Problem
Max flow and min cut. Flow network.
. Two very rich algorithmic problems. . Abstraction for material flowing through the edges.
. Cornerstone problems in combinatorial optimization. « 6= (V, E) = directed graph, no parallel edges.
. Beautiful mathematical duality. « Two distinguished nodes: s = source, t = sink.

. c(e) = capacity of edge e.

Nonftrivial applications / reductions.

. Data mining. - Network reliability. 2 9 (5
« Open-pit mining. . Distributed computing. /CJ\
. Project selection. . Egalitarian stable matching. 10 2 15 15 10
. Airline scheduling. . Security of statistical data. \
. Bipartite matching. « Network intrusion detection. .
o . . source (s 5 (3) 8 (6) 10) sink
« Baseball elimination. . Multi-camera scene reconstruction.
« Image segmentation. « Many many more ... i . s
- Network connectivity. capacity — \ 10
\@ 30 7

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B)is: cap(4,B) = ¥ c(e)

eout of 4

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B)is: cap(4,B) = ¥ c(e)

e out of 4

9
15
6
30

15 10
> 10
15 10

6

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. Ans-t flow is a function that satisfies:
. Foreache e E: 0 < fle) < cle)
. ForeachveV-{s, 1t} Xf(e) = Xf(e)

eintov eoutof v

Def. The value of a flow fis: v(f) = X f(e) .

eoutof s

[capacity]
[conservation]

9 >
10 4 4 15 15 0 10
0 4 4
5 8 10
0 0

capacity — 15 10
e ; Vs
30 o

Flows

Def. An s-t flow is a function that satisfies:
. Foreache e E: 0 < f(e) < c(e)
. ForeachveV-{s, 1t} X f(e) = X f(e)

eintov eout of v

Def. The value of aflow fis: v(f) = X f(e).

eoutof s

[capacity]
[conservation]

9
10 o 6
10 4 4 15 15 0 10
3 8 8
5 8 =2 10 >
1 10
4 0 6 15 0 1

0

capacity — 15
flow — 11 1
30 >

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

O O

10 40 15 15 0 10

9
10
10
1

(S
y
o oo
y

o b
—_
()]
o

40

capacity — 15
flow — 14 14
30 >

10

0

Flows and Cuts
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = Xf(e) = w(f)

eoutof 4 einto A

9 >
10 0 6
24 15 15 0 10
8 8
> 8 10 >
10
40 6 15 0 10

1 1
30

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Xfle) = Xf(e) =)

eout of 4 einto A

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) — Xfle) = vw))

eoutof 4 einto A
6
9
10 0 6
10 44 15 15 0 10
8 8
8 > 10 N
10
15 0 10

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then
2 fle)— 2 fle)= v(/).

eoutof 4 eintoA

Pf. v(f) 2 f(e)

eoutof s

by flow conservation, all terms ~ — > > fle)— X f(e)j

exceptv=sare0 ved \eoutofv eintov

2 fle- X flo).

e out of 4 einto A

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) < cap(A, B).

Pf.
W) = X fle- X fle)
e out of 4 einto A
< X fle)
eout of 4
< >, c(e)

e out of 4

= cap(4,B)

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) =0 for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
. Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

a

20 X
20 10

30 H20

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) =0 for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
. Augment flow along path P.
- Repeat until you get stuck.

N locally optimality #> global optimality

20

Residual Graph

Original edge: e = (u,v) eE.
« Flow f(e), capacity c(e).

Residual edge.

« "Undo" flow sent.

. e=(u,v)andeR = (v, u).
- Residual capacity:

_{c(e)— fle) ifecE
@ =1 1(0) if X e E

Residual graph: 6= (V, E;).
. Residual edges with positive residual capacity.
. Ep={e:f(e)<c(e)} L {eR:f(e)>0}.

21

Ford-Fulkerson Algorithm

it

capaci

G: / P Y
10 8

6

b NLN

22

Ford-Fulkerson Algorithm

> 2 2 flow
/ capacity
G: 0 0 0/
8

Flow value = 0

Ford-Fulkerson Algorithm

9 l
4 2 flow
/ capacity
G: 8 8 R 8
8
O\J\ . \D
9
Flow value = 0
residual capacity
Gf:
2 \J\
@/ 10 é \o

Ford-Fulkerson Algorithm

()
—
o
o B
®® »HO

™

Ford-Fulkerson Algorithm

G: 6
2 R 10 2 2 6 R 0
2 6
0 L 1OX R 6 J\ 28 10
s 10 3) s 10 (€); 9 &) 10 U
Flow value = 8 Flow value = 10
2 4 3 2 4 0
8 Gs
?2 | S\j[i ’ ’ | 8\([)
s 10 ©) 9 NG 2 > @,/ 10— /l\ s —/;\5/ 10\@
O : —
Ford-Fulkerson Algorithm Ford-Fulkerson Algorithm
R 2 2 3
2 4 4 2 4 7
6 10 8 I K 8 G 10 R 7 B9
10 2 7 8 66 10 10 20 8 66 10
l 0
¥ 8 8 10 89 l 89 10
s 10 ©) 9 ® 10 t s 10 ® 9 ® 10 t
Flow value = 16 Flow value = 18
2
2 4 >4 _— 2 2 >(4
10 2 8\(6\ 4 10 2 S\i 2
s 4 ‘Jsz\ 1 _/5/ 10 ¥ >(3) »(5 10 ¥

Ford-Fulkerson Algorithm

@
-
o
o~ bhw

oY o
©—n

o
O O

Ford-Fulkerson Algorithm

Augmenting Path Algorithm

forward edge

reverse edge

23

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cuft.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

24

Proof of Max-Flow Min-Cut Theorem

(i) = (i)
. Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definition of A, s € A.
. By definitionof f, t ¢ A.

v(f)

2 fle)= X fle)

e out of 4 einto A

2 cle)

eout of 4

cap(4,B) =

original network

25

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity ¢ (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations.
Pf. Each augmentation increase value by at least 1.

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.
Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.

26

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n,and log C

A. No. If max capacity is C, then algorithm can take C iterations.

c c c c
1 %1 1 ¥XO0

c c ¢

0 X1 1X X1

28

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
» Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
« Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges.

29

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.
«» Maintain scaling parameter A.
. Let 6¢(A) be the subgraph of the residual graph consisting of only
arcs with capacity at least A.

110 102 110 102
1

122\./ 170 1zv 170
6 6, (100)

30

Capacity Scaling

31

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
« By integrality invariant, when A =1 = G(A) = 6.
. Upon termination of A = 1 phase, there are no augmenting paths. -

32

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +[log, C| times.
Pf. Initially C <A< 2C. A decreases by a factor of 2 each iteration. -

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A. «— proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.
. L2 = v(f*) < v(f) + m (2A).
. Each augmentation in a A-phase increases v(f) by at least A. -

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m? log C) time. -

33

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) < v(f) + m A.

« Choose A to be the set of nodes reachable from s in G¢(A).

. By definitionof A, s € A.

. By definition of f,t ¢ A.

wWhH = 2 fleo- 2 fle)
e out of 4 einto A
2 X (de)-N - X A
e out of 4 einto4
= 2o X A- XA
eout of 4 e out of 4 einto A
> cap(A4,B) - mA "

original network

34

