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Basic Concepts

Motivation: given a sequence of operations, majority of them are
cheap, but some rare might be expensive; thus a standard worst-case
analysis might be overly pessimistic.

Basic idea: when expensive operations are particularly rare, their
costs can be “spread out” (amortized) to all operations. If the artificial
amortized costs are still cheap, we will have a tighter bound of the
whole sequence of operations.

Amortized Analysis: A strategy to give a tighter bound evenly for a
sequence of operations under worst case scenario.

Example: serving coffee in a bar

Amortized Analysis versus Average-Case Analysis

Amortized analysis differs from average-case analysis in:

Average-case analysis: average over all input, e.g., INSERTIONSORT
algorithm performs well on “average” over all possible input even if it
performs very badly on certain input.

Amortized analysis: average over operations, e.g.,
TABLEINSERTION algorithm performs well on “average” over all
operations even if some operations use a lot of time.

@ Probability is not involved;

@ Guarantees the average performance of each operation in the
worst case.
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Types of Amortized Analyses

There are three common amortization arguments:

Aggregate Analysis: determine an upper bound 7'(n) on the total cost
of a sequence of n operations, and the average cost per operation is
then 7'(n)/n.

Accounting Method: determine an amortized cost of each operation,
different cost for different operations. Store “prepaid credit" for
overcharge at early stage and pay for operations later in the sequence.

Potential Method: determine costs for operations, and maintain
credit as the “potential energy” as a whole instead of associating the
credit within individual objects.
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Examples

Through out this lecture, we will continuously use three examples to
illustrate the amortized methods:

Stack Operations: Push and pop elements from an empty stack;
Binary Counter: Count a series of numbers by binary flip flops;

Dynamic Table: A continuous storage array that could change size
dynamically.
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First Method: Aggregate Analysis

In aggregate analysis, we compute the worst time 7'(n) in total for a
sequence of n operations. In the worst case, the average cost, or
amortized cost, per operation is therefore T'(n)/n.

e Cost T(n)/n applies to each operation (There may be several
types of operations)

@ The other two methods may assign different amortized costs to
different types of operation.

Xiaofeng Gao
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Example: Stack with Multipop Operations

There are two fundamental stack operations, each takes O(1) time:

PUSH(S, x): push object x onto stack S.
PoP(S): pop the top of stack S and returns the popped object.

Assign cost for each operation as 1.

Time Complexity: The total cost of a sequence of n PUSH and POP
operations is n, and the actual running time for n operations is O(n).
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A Sequence of Operations

Now we add an additional stack operation MULTIPOP.

MULTIPOP(S, k): pop k top objects of stack S (or pop entire stack if it
contains fewer than k objects).

Algorithm 1 MULTIPOP(S, k)

1: while S is not empty and k > 0 do
2 Por(S);

3 k+k-—1;

4: end while

The total cost of MULTIPOP is min{|S|, k}.
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Consider a sequence of n POP, PUSH, and MULTIPOP operations on
an initially empty stack.

Algorithm 2 Stack with MULTIPOP
Input: An array A[l..n| of n elements and an integer k.

1: fori =1tondo

2 if Ali] > Ali — 1] then
3 PUSH(S, A[i]);

4:  elseif Afi] <A[i — 1] — k then
5: MULTIPOP(S, k);
6 else

7 PoP(S);

8 end if

9: end for
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An Example Scenario

Read: ) 6 6 7 9 3 2 4 8

Array:
9 8
6 7 7 4 3
5 5 5 5 5 2 2 2

OP: Push Push Pop Push Push MuliPop Push Push Push
C: 1 1 1 1 1 3 1 1 1

Cursory analysis: MULTIPOP(S, k) may take O(n) time; thus,
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Cursory Analysis versus Tighter Analysis

In a sequence of operations, some operations may be cheap, but some
operations may be expensive, say MULTIPOP(S, k).

However, the worst operation does not occur often. Therefore, the
traditional worst-case individual operation analysis can give overly
pessimistic bound.

Objective: For each operation we hope to assign an amortized cost 61'
to bound the actual total cost.

For any sequence of n operations, we have

n n

i=1 i=1

Here, C; denotes the actual cost of step i.
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Tighter Analysis: Aggregate Technique Another Example: Incrementing a Binary Counter

. . 1 =~
Basic idea: all operations have the same amortized cost — ! ; C; . L
n Consider a k-bit binary counter that counts upward from O.

Key observation: #Pop < #Push,; Thus, we have: )
Use array A0, - - - , k — 1] of bits to record the count number.

n
T(n) = Z C; A binary number x stored in the counter has its lowest-order bit in
i—1 A[0] and highest-order bit in A[k — 1], and
= #Push + #Pop -
< 2 x #Push x= Al]-2.
< 2n i=0
Conclusion: on average, the MULTIPOP(S, k) step takes only O(1) Initially, x = 0, A[i] =0 fori =0,--- ,k— 1.

time rather than O(k) time.
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An Example Scenario Pseudo Code for Binary Counter
Counter Total
Valus. A[7] Al6] A[S] A[4] A[3] A[2] A[1] A[0] Cost oo | k |
0 0 0 0 0 0 0 0 0 0 0 lilrocedure INCREMENT is used to add 1 (modulo 2¥) to the value in
1 o 0 0 0 0 0 o0 1 1 1 the counter.
2 0 0 0 0 0 0 1 0 2 3
Algorith INC A
3 0 0 0 0 0 o0 1 1 1 4 lg",m (')“3 NCREMENT(4)
1< U
4 0 0 0 0 0 1 0 0 3 7 ’
2: while i < k—1 Alil =1
5 0 0 0 0 0 1 o0 1 1 8 while i< k—1andA[i] =1 do
{ i 5 1 32 Al < 0;
6 0 0 0 0 0 0 0 b i it
7 0 0 0 0 0 1 1 1 1 11 s- end while
8 0 0 0 0O 1 0 0 0 4 15 6: ifi < k— 1 then
9 o 0 o 0 1 0 0 1 1 16 Al 1;
10 o o o o0 1 0 1 0 2 18 s end if
11 0 0 0 0 1 0 1 1 1 19
0 0 0 0 1 1 0 0 3 22
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Objective

Consider a sequence of n operations that counts upward from O:

Algorithm 4 BINARYCOUNTER

1: fori = 1tondo
2:  INCREMENT(A);
3: end for

Question: T'(n) <?

Cursory analysis: T(n) < kn since an increment step might change
all k bits.
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Tighter Analysis: Aggregate Technique

Basic operations: £1ip (1—0), f1ip (0—1)
During a sequence of n INCREMENT operations:

A[0] flips each time INCREMENT is called <— n times;
A[1] flips every other time <— |n/2 | times;

Ali] flips [n/2"] times.
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Tighter Analysis: Aggregate Technique (Cont.)

Thus,
n
T(n)=> C
i=1
= 14+2+14+3+14+2+14+44--- (add by row)

— #lip(A[0]) + #iip(A[1]) + - - + #lip(A[K]) (add by column)
n n

n+ 5 + 1 + .-

< 2n

Amortized cost of each operation: O(n)/n = O(1).

gregate Analysis
Three Methods counting Method
Potential Function Method

Accounting Method

Basic idea: for each operation OP with actual cost Cpp, an amortized
cost Cop is assigned such that for any sequence of n operations,

n n
i=1 i=1

Intuition: If 50\17 > C,), the overcharge will be stored as prepaid
credit; the credit will be used later for the operations with C,, < C,,.

n no__
The requirement that Y C; < Y C; is essentially credit never goes

i=1 i=1
negative.

Xiaofeng Gao Amortized Analysis
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Example 1: Stack with MULTIPOP Operation

Example: For stack with MULTIPOP, assign amortized cost as:

Operation  Real Cost C,, Amortized Cost C,,

PUSH 1 2
Popr 1 0
MuLTiPOP  min{|S|, k} 0

Credit: the number of items in the stack.

Starting from an empty stack, any sequence of n1 PuUsH, nz Popr, and
n3 MULTIPOP operations takes at most 7'(n) = Z C; < Z C; = 2n,.
Here n = n; + ny + ns. = =

Note: when there are more than one type of operations, each type of
operation might be assigned with different amortized cost.
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Accounting Method: “Banker’s View”

Suppose you are renting a ''coin-operation'' machine, and are
charged according to the number of operations.

Two payment strategies:

@ Pay actual cost for each operation:
say pay $1 for PusH, $1 for Pop, and $k for MULTIPOP.

@ Open an account, and pay “average” cost for each operation:
say pay $2 for PusH, $0 for Pop, and $0 for MULTIPOP.

If “average” cost > actual cost: the extra will be deposited as credit.

If “average” cost < actual cost: credit will be used to pay actual cost.

Constraint: ) ;! , C; <> " | C; for arbitrary n operations, i.e. you
have enough credit in your account.
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An Example Scenario

Read: 5
Array:
5
OP: Push
Ci 1
(A',: 2
Credit: 1
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An Example Scenario

Read: 5 6

Array:
6
5 5
OP: Push Push
Ci 1 1
(A',: 2 2

Credit: 1 2
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An Example Scenario

Read:
Array:

OP:
(O

(n;,:
Credit:
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) 5

Push Push
1 1
2 2
1 2
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An Example Scenario

Read:
Array:

OP:
(O

(ﬁ’,:
Credit:
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5 5

Pop Push
1 1
0 2
1 2
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Read:
Array:
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6

9

7

7

) 5

5

5

5

Push Push Pop Push Push

1 1
2 2
1 2

1
0
1
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An Example Scenario

Read:
Array:

Three Methods
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6

9

7

7

5

5]

5 5

5

Push Push Pop Push Push MultiPop

1
2

1
2
2

1 1
0 2
1 2

1 3
2 0
3 0

Amortized Analysis
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An Example Scenario An Example Scenario

Read: 5 6 6 7 9 3 2 Read: ) 6 6 7 9 3 2 4
Array: Array:
9 9

6 7 7 6 7 7 4
5 5 5 5 5 2 5 5 5 5 5 2 2

OP: Push Push Pop Push Push MuliPop Push OP: Push Push Pop Push Push MuftiPop Push Push
Cy: 1 1 1 1 1 3 1 Cy: 1 1 1 1 1 3 1 1
C;: 2 2 0 2 2 0 2 C: 2 2 0 2 2 0 2 2
Credit: 1 2 1 2 3 0 1 Credit: 1 2 1 2 3 0 1 2
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An Example Scenario Example 2: Incrementing Binary Counter

Set amortized cost as follows:

Read: 5 6 6 7 9 3 2 4 8 opr Real Cost Cop Amortized Cost Cop
Array: flip (0—1) 1 2
5 5 £flip (1—0) 1 0
6 ’ ’ 4 3 Key observation: #flip(0 — 1) > #flip(1 — 0)
) ] 5 5 5 2 2 2
OP: Push Push Pop Push Push MutiPop Push Push Push T(n) = i C;

Cli: 1 1 1 1 1 3 1 1 1 i=1

¢: 2 2 0 2 2 0 2 2 2 = ##flip(0 — 1) + #/lip(1 — 0)
Credt: 1 2 1 2 3 0 1 2 3 24flip(0 — 1)

<
< 2n
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Potential Technique: “Physicist’s View” (Cont.)

Three Methods

Basic idea: sometimes it is not easy to set C,, for each operation OP
directly.

Define a potential function as a bridge, i.e. we can assign a value to
state rather than operation, and amortized costs are then calculated
based on potential function.

Potential Function: ®(S) : S — R, where S is state collection.

Amortized Cost Setting: 5,- =Ci+ ®(S;) — D(Si—1).
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Then we have

n

SIG = (G o(s) - 0(51))
i=1

i=1

=S a(s,) - a(s)

i=1

n noo_.
Requirement: To guarantee » , C; < > G, it suffices to assure
i=1 i=1

O(S,) > D(So).

X033533-Algorithm@SJTU

Xiaofeng Gao Amortized Analysis 39/100

unting Method
Potential Function Method

Three Methods

gregate Analysis
Three Methods >ounting Method
Potential Function Method

Stack Example: Potential Changes

Potential Function: Let ®(S) denote the number of items in stack.

In fact, we simply use “credit” as potential.

State: Here state S; refers to the STATE of the stack after the i-th
operation.

Correctness: ¢(S;) > 0 = ©(Sy) for any i;

Xiaofeng Gao Amortized Analysis
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An Example Scenario

States of Stack S:

X033533-Algorithm@SJTU
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Potential Function Technique: Amortized Cost Setting Binary Counter

Definition: Set potential function as ®(S) = #1 in counter
Definition: ®(S) denotes the number of items in stack;

Counter A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] Cost Total

Value Cost
PUSH: (E(Si) —®(S;i-1) =1 0 o 0o o0 o o0 o0 0 o 0 o0
_ _ 1 o 0 o o0 o 0 o 1 11
Ci=Ci+ @(8) — ®(Si-1) =2 2 o 0 o o0 o 0 1 o0 2 3
3 o 0 o o0 o 0 1 1 1 4
Pop: (I)(Si) — <I>(Sl-71) =1 4 0 0o o o 0 1 0 O 37
~ 5 o 0 o o o 1 o 1 1 8
Ci=Ci+9(S)—2(8i-1)=0 6 o 0o o o0 o0 1 1 0 2 10
7 o 0o o o o 1 1 1 1 11
MULTIPOP:  &(S;) — ®(S;_1) = —#Pop K e b

~ Polyline of Potential Function ®(.5):
Ci:C,'—i—(I)(Sl‘)—q)(Si_l) =0 y !

il

Thus, starting from an empty stack, any sequence of n; PUSH, n;
PoP, and n3 MULTIPOP operations takes at most

n no <
T(n)=> C; <> C;=2n;. Here n = n; + ny + ns.

i=1 i=1
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Binary Counter (Cont.) A Practical Problem

Definition: Set potential function as ®(S) = #1 in counter;

At step i, the number of flips C; is: .
°p 1, the numbe P8 Ll Suppose you are asked to develop a C++ compiler.

¢ = #ﬂipéil + #ﬂipgio =1+ #ﬂipgio (Why?) vector is one of a C++ class templates to hold a set of objects. It
(S;) = B(Si_i)+1-— #ﬂipgi . supports the following operations:

@ push_back: to add a new object onto the tail;
C: = Ci+®(S)—d(Si_1) Pusi_ Jeet
< 5 @ pop_back: to pop out the last object;

Recall that vector uses a contiguous memory area to store objects.
Thus we have

N
N

~ Question: How to design an efficient memory-allocation strategy for
' vector?

In other words, starting from 00....0, a sequence of n INCREMENT
operations takes at most 2n time.
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DYNAMICTABLE Problem

In many applications, we do not know in advance how many objects
will be stored in a table.

Thus we have to allocate space for a table, only to find out later that it
is not enough.

DYNAMIC EXPANSION: When inserting a new item into a full table,
the table must be reallocated with a larger size, and the objects in the
original table must be copied into the new table.

DyNAMIC CONTRACTION: Similarly, if many objects have been
removed from a table, it is worthwhile to reallocate the table with a
smaller size.

We will show a memory allocation strategy such that the amortized
cost of insertion and deletion is O(1), even if the actual cost of an
operation is large when it triggers an expansion or contraction.
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Dynamic Tables

Table Expansion Operation

TABLE_INSERT(T, i)

10:
11:
12:

3-Algorithm@SJTU

1
2
3
4
5:
6
7
8
9

. if size[T] = O then

allocate a table with 1 slot;
size|[T] = 1;

. end if

if num|[T] = size[T] then

size[T] = 2 x size[T};
free the original table;
end if

insert the new item i into T';
num|T| < num[T]| + 1;

Xiaofeng Gao
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allocate a new table with 2 x size[T] slots; /double size

copy all items into the new table;
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An Example

An Example Dynamic Table 7"

HAHEREEEE

num[T]: #used slots
size[T]: total number of slots
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Example: TABLEINSERT

Consider a sequence of operations starting with an empty table:

bl

: Table T;

:fori=1ton do
TABLE_INSERT(T, i);

end for

Xiaofeng Gao
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TABLEINSERT(1) TABLEINSERT(2)

INSERT(1) 1 Ci=1

INSERT(1) 1 Cs=1
INSERT(2)  overflow

52/100 Amortized 53/100

Description Description
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Dynamic Tables Supporting TABLEINSERT and TABLEDELETF
TABLEINSERT(2) TABLEINSERT(2)

INSERT(1) 1 C=1 INSERT(1) —> 1 C=1
INSERT(2) INSERT(2)

Amortized Al 54/100
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TABLEINSERT(2)

INSERT(1) 1

INSERT(2) 2
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Dynamic Tables

TABLEINSERT(3)

INSERT(1) 1

INSERT(2) 2

INSERT(3)

lgorithm@SJTU
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C1=1
C1=2

overflow
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TABLEINSERT(3)
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INSERT(1) 1

C]_:l

INSERT(2) 2

C1=2

INSERT(3)

Xiaofeng Gao
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INSERT(1) .

A A
[EEY

C]_:l

INSERT(2) .

v
N

C2=2

INSERT(3)
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TABLEINSERT(3) TABLEINSERT(4)

1
2
3
A

INSERT(1) 1 C=1 INSERT
INSERT(2) 2 C=2 INSERT
INSERT(3) 3 Cs=3 INSERT
INSERT

AW |IN]| P
@)

“

w

—" —n — —
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TABLEINSERT(5) TABLEINSERT(S)

1
2
3
4
5

INSERT(1
INSERT(2

(1) Ci=1 INSERT
(2)
INSERT(3)
(4)
()

INSERT
Cs=3 INSERT
4 C=1 INSERT
overflow INSERT

wlN| e
O
v
N

INSERT(4
INSERT(5

Blw N~
@)

“

w
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TABLEINSERT(5S)

INSERT(1)
INSERT(2)
INSERT(3)
INSERT(4)
INSERT(5)
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Dynamic Tables
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TABLEINSERT(S)

INSERT
INSERT
INSERT
INSERT
INSERT

1
2
3
4
5

—" —n — — —
— e e e e
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TABLEINSERT(6)

INSERT(1)
INSERT(2)
INSERT(3)
INSERT(4)
INSERT(5)
INSERT(6)

Dynamic Tables
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TABLEINSERT(7)

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

1
2
3
4
5
6
7
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TABLEINSERT(8)
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Cursory analysis: O(n?)

INSERT(1) 1 Ci=1
INSERT(2) 2 Cy=2
INSERT(3) 3 Cs=3
INSERT(4) 4 Co=1
INSERT(5) 5 Cs=5
INSERT(6) 6 Ce=1
INSERT(7) 7 C=1
INSERT(8) 8 Cg=1
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Consider a sequence of operations starting with an empty table. If we
define the cost in terms of elementary insertions or deletions, what is
the actual cost C; of the ith operation?

i ifi—11is an exact power of 2
Ci = .
1 otherwise

Here C; = i when the table is full, since we need to perform 1
insertion, and copy i — 1 items into the new table.

If n operations are performed, the worst-case cost of an operation will
be O(n).

Thus, the total running time for a total of n operations is O(n?). Not
tight!
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Tighter Analysis 1: Aggregate Method

Key Observation: Table expansions are rare.

The O(n?) bound is not tight since table expansion doesn’t occur
often in the course of n operations.

Specifically, table expansion occurs at the ith operation, where i — 1
is an exact power of 2.
i 1 2 3 4 5 6 7 8 9 10

Size; 1 2 4 4 8 8 8 8 16 16
c; 1 2 B 1 5 1 1 1 9 1

We can decompose C; as follows:

Xiaofeng Gao Amortized Analysis 70/100

Total cost of n operations

The total cost of n operations is:

n
Zc,- = 1424341454141 4+149+1+...
i=1
lgn]
= n+z2f
j=0
< n+2n
= 3n

Thus the amortized cost of an operation is 3.

In other words, the average cost of each TABLEINSERT operation is

O(n)/n = 0(1).
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Tighter Analysis 2: Accounting Technique

Dynamic Tables

For the i-th operation, an amortized cost C ; = $3 is charged.
This fee is consumed to perform subsequent operations.

Any amount not immediately consumed is stored in a "bank" for use
for subsequent operations.

Thus for the i-th insertion, the $3 is used as follows:
e $1 pays for the insertion itself;
@ $2 is stored for later table doubling, including $1 for copying
one of the recent % items, and $1 for copying one of the old %

items.
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Tighter Analysis 2: Accounting Technique

Dynamic Tables

Original:

S0 S0 $0 $0 $2 $2 $2 $2
L1[2[3]4]5]6| 7| 8]

Expansion:

$0 $0 $0 $0 $0 $0 $0 $0
Lal2[3l4[ 5[] 78]

y v Vv y 7
(2l 2[s]a]s[e]7]s] | [ [ [ ]]]
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Tighter Analysis 2: Accounting Technique

Supporting TABLEINSERT and TABLEDELETE

Key observation: the credit never goes negative. In other words, the
sum of amortized cost provides an upper bound of the sum of actual

COStS.
n
T(I’l) == E Ci
i=1
n
< E Ci
i=1
= 3n
i 1 2 3 4 5 6 7 8 9 10
Size; 1 2 4 4 8 8 8 8 16 16
G 1 il 1 1 1 1 1 1 1 1
¢, 3 3 3 3 3 3 3 3 3 3
Credit 2 3 3 5 3 5 7 9 3 5

Xiaofeng Gao Amortized Analysis
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Tighter Analysis 3: Potential Function Technique

Motivation: sometimes it is not easy to find an appropriate amortized
cost directly. An alternative way is to use a potential function as a
bridge.

Basic idea: the bank account can be viewed as potential function of
the dynamic set. More specifically, we prefer a potential function
® : {T} — R with the following properties:

e ®(T) = 0 immediately after an expansion;

o ®(T) = size[T] immediately before an expansion; thus, the next
expansion can be paid for by the potential.

X033533-Algorithm@SJTU Xiaofeng Gao
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A Possible Function
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A possibility: ®(7T) = 2 x num[T] — size[T]

$0 $0 $0 $0 $2 $2
1| 2 3| 4| 5| 6

® = 2num|(T] — size[T] = 4

Amortized A 76/100

O(T) = 2 x num|T| — size|T|: An Example

b

Figure: The effect of a sequence of n TABLEINSERT on size; (red), num;
(green), and ®; (blue).
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Correctness of ®(T) = 2 x num|T| — size|T]

Correctness: Initially &¢ = 0, and it is easy to verify that &; > P
since the table is always at least half full.

The amortized cost a with respect to ® is defined as:

6,' =C;+ (D(Tl) — (D(Ti—l)-

no__ n
Thus > C; = > C; + ®, — Dy is really an upper bound of the actual
i=1 i=1

n
cost y_ C;.

i=1
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Calculate CA’i with respect to ¢

Case 1: the i-th insertion does not trigger an expansion

Then size; = size;—1. Here, num; denotes the number of items after the
i-th operations, size; denotes the table size, T; denotes the potential.

-~

G = G+ 20—y

1 + (2num; — size;) — (2num;_y — size;_1)

= 142

= 3

1. Insert(l) Cl: 1
2. Insert(2) c2: 2
3. Insert(3) c3: 3
4, Insert(4) c4: 1
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Calculate 5,- with respect to ¢
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Conclusion

Case 2: the i-th insertion triggers an expansion
size; = 2 X size;_1.

sizei_1 = numj_1 = num; — 1.

Ci = G+ — o
= num; + (2num; — size;) — (2num;_, — size;_1)
= num; + 2 — (num; — 1)
= 3

1. Insert(1)
2. Insert(2)
3. Insert(3)
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Starting with an empty table, a sequence of n TABLEINSERT
operations cost O(n) time in the worst case.

lgorithm@SJTU Amortized Analysis 81/100

Description
Supporting TABLEINSERT Only

Dynamic Tables Supporting TABLEINSERT and TABLEDELETE

Description
Supporting TABLEINSERT Only
Dynamic Tables Supporting TABLEINSERT and TABLEDELETE

TABLEDELETE Operation

To implement TABLEDELETE operation, it is simple to remove the
specified item from the table, followed by a CONTRACTION operation
when the load factor (denoted as a(T) = ?ZZ[[;]]) is small, so that the
wasted space is not exorbitant.

Specifically, when the number of the items in the table drops too low,
we allocate a new, smaller space, copy the items from the old table to
the new one, and finally free the original table.

We would like the following two properties:
© The load factor is bounded below by a constant;

@ The amortized cost of a table operation is bounded above by a
constant.
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Trial 1: load factor «(7) never drops below 1/2

A natural strategy is:
@ To double the table size when inserting an item into a full table;

o To halve the table size when deletion causes a(T) < 3.

The strategy guarantees that load factor a(7) never drops below 1/2.

However, the amortized cost of an operation might be quite large.
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Dynamic Tables

An Example of Large Amortized Cost

Consider a sequence of n = 16 operations:
@ The first 8 operations: I, I, I,....
@ The second 8 operations: I, b, D, I, I, D, D, I,
I,...
Note:
o After the 8-th I, we have num g = sizejg = 16.
@ The 9-th T leads to a table expansion;
@ The following two D lead to a table contraction;

@ The following two I lead to a table expansion, and so on.
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An Example of Large Amortized Cost

Dynamic Tables

After 8 Insertions

[1[2]s[ 4] s 6] 7] ]

Insert(9) causes an expansion
L[2]slals[e[7]elo] [ | | | [ ]]
Delete(9) and Delete(8) causes a contraction

Lal2[afals[els] [ [ [T ][] ]]

[1]2[3[ 4] s[ 6] 7] 8]

The expansion/contraction takes O(n) time, and there are n of them.

Thus the total cost of n operations are 0(n2), and the amortized cost
of an operation is O(n).

Igorithm@SJTU Amortized Analysis
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Trial 2

Trial 2: load factor a(7) never drops below 1/4
Another strategy is:

@ To double the table size when inserting an item into a full table;

e To halve the table size when deletion causes a(7T) < }r

The strategy guarantees that load factor a(T) never drops below 1/4.
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Amortized Analysis

We start by defining a potential function ®(7) that is 0 immediately
after an expansion or contraction, and builds as «(T) increases to 1 or
decreases to 4—{.

2 x num[T) — size[T] if «o(T) >

21 = if a(T) <

= B —

Lsize[T) — num|[T)

Correctness: the potential is 0 for an empty table, and ®(T') never
goes negative. Thus, the total amortized cost of a sequence of n
operations with respect to ® is an upper bound of the actual cost.

orithm@SJTU
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Amortized Cost of TABLEINSERT
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Amortized Cost of TABLEINSERT

Case 1: o;_; > 3 and no expansion

The amortized cost is:

-~

C = G+ -9
= 1+ (2num; — size;) — (2num;_y — size;_1)

= 1+ 2(numi—; + 1) — size;) — (2num;—; — size;)

= 3
1. Insert(l) Cl: 1
2. Insert(2) c2: 2
3. Insert(3) c3: 3
4. Insert(4) C4: 1
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Case 2: o1 > % and an expansion was triggered

The amortized cost is:

~

Ci = CG+0— i
= num; + (2num; — size;) — (2num;_, — size;_1)
= numi—1 + 1+ 2(num;—y + 1) — 2size;—1) — (2num;—; — size;—1)

= 34 num;—1 — SiZei_1

= 3 o
1. Insert(l) 1 Gl 1
2. Insert(2) B c2¢ 2
3. Insert(3) I C3: 3
4. Insert(4) = C4: 1
5. Insert(5) | 4] c5: 5
5

I

l
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Amortized Cost of TABLEINSERT

Case3: ;| < % and o; < %
The amortized cost is:

-~

Ci = G+ -9

1 1
= 1+ (ESiZei — num;) — (ESilei—l — nui—1)

1 1
= 1+ (Esizei — num;) — (Esizei — (num; — 1))
=0
num =6, size=16, phi=2

(el2fsfals[e] [ [T [TTT1T]]

num =7, size=16, phi=1

al2{ala[sle[z] [ | [T ][]]
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Cased: o1 < %but o > %
The amortized cost is:
Ci = Ci+®—®y
= 1+ (2num; — size;) — (Esizei_l — num;_)

1
= 1+ (2(numi—y + 1) — size;—1) — (Esizei_l — num;_1)

3
= 3num;_| — =sizei_1 +3

2
= 3oy_1Sizei—1 — isizei_l +3
< ize; 3 i i—1+3
2szze,_1 2szzel_1
= 3
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Amortized Cost of TABLEINSERT

Dynamic Tables

EEEEEEEEEENOEE

num =8, size=16, phi=0

[2[2[s]a]s[elz[s] [ [ [ ]]]
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Amortized Cost of TABLEDELETE

Casel: o1 < % and no contraction
The amortized cost is:

G = CG+0—Piy

1 1
= 1+ (isizei — num;) — (Esize,;l — num;_1)

1 1
= 1+ (zsizei—1 — (num;—y — 1)) — (=sizej—1 — num;_y)

2 2
= 2
num=7, size=16, phi=1
[al2fs[afs[e[s] [T [T T]]]
num =6, size=16, phi=2
[1]2[s[a]s[e] [ [ [[ ][] ]]]
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Amortized Cost of TABLEDELETE

Dynamic Tables

Case2: o < % and a contraction was triggered
The amortized cost is:
G = CG+9 -9,

= num; + 1+ (%sizei — num;) — (%sizei_l — num;_)

num;_1 + (%sizel;l — (num;—; — 1)) — (%sizeiq — num;_1)

1+ num;—1 — }‘size,-_l
= 1
num =5, size=16, phi=3

(af2fsfals| [T [TTTTT[T]

num =4, size=8, phi=0

[e[2fs[a] [ []]

Xiaofeng Gao
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Amortized Cost of TABLEDELETE

Dynamic Tables

Case 3: o1 > % and o; > %

The amortized cost is:

~

C = G+ -9,
= 1+ (2num; — size;) — (2num;_; — size;—1)
= 14+ 2(numi—; + 1) — size;—1) — (2num;—; — size;_1)
= 3

EEEEEEEEEEOEENED

num=9, size=16, phi=2

[2[2[s[a[s[e[z[sfe] [ [ [ ] 1]
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Amortized Cost of TABLEDELETE

Cased: o1 > % and o; < %

The amortized cost is:

Ci+ @i — P

= 1+ (%sizei — num;) — (2num;_, — size;_)

= 1+ (%sizei,l — (numi—y — 1)) — 2num;_y — size;—1)
= 2+ %size,-_l — 3num;_
< 2

num=28, size=16, phi=0
(1] 2[s]«[s[elz[s] [ [ [T []]

num=7, size=16, phi=1

lz[slefslefl T TTTTTTT]

Xiaofeng Gao
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Dynamic Tables

An Example Polyline of ®;

32 i H
size; i
16 ; : =
i num;

8 S : y
N/ e D '=-
NV 7 W\

0 8 16 24 32 40 48
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Conclusion

In summary, since the amortized cost of each operation is bounded
above by a constant, the actual cost of any sequence of n
TABLEINSERT and TABLEDELETE operations on a dynamic table is
O(n) if starting with an empty table.
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Summary

Amortized costs can provide a clean abstraction of data-structure
performance.

Any of the analysis methods can be used when an amortized analysis

is called for, but each method has some situations where it is arguably
the simplest.

Different schemes may work for assigning amortized costs in the

accounting method, or potentials in the potential method, sometimes
yielding radically different bounds.
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