Local Search LP Rounding

Approximation Basics (2) Design Techniques

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Spring 2015

Procedure

Local SearchParallel Job Scheduling ProbLP RoundingMaximum Cut Problem

Given:

 An instance x of the problem and a feasible solution y (found using some other algorithm)

Goal:

 Improve the current solution by moving to a better "neighbor" solution

Steps:

- Given a feasible solution y and its neighborhood structure
- Look for a neighbor solution with an improved value of the measure function
- Repeat the steps until no improvement is possible
- The algorithm stops in a "local optimum" solution.

Spring, 2015	Xiaofeng Gao	Approximation Basics (2)	1/31	Spring, 2015	Xiaofeng Gao	Approximation Basics (2)	3/31
	Local Search LP Rounding	Parallel Job Scheduling Problem Maximum Cut Problem			Local Search LP Rounding	Parallel Job Scheduling Problem Maximum Cut Problem	
Comments				Parallel Job	Scheduling Pr	oblem	

Main issues for neighborhood structure involve

- The quality of the solution obtained (how close is the value of the local optimum to the global optimal value);
- The order in which the neighborhood is searched;
- The complexity of verifying that the neighborhood does not contain any better solution;
- The number of solutions generated before a local optimum is found.

The behavior of local search algorithm depends on the following parameters:

- The neighborhood function \mathcal{N} .
- The starting solution s_0 .
- The strategy of selection of new solutions.

4/31

arallel Job Scheduling Pro

Problem

Instance: Given n jobs each with p_j executing time, and m machines, each of which can process at most one job at a time.

Solution: Assign each job to a machine sequentially.

Measure: Complete all jobs as soon as possible. Say, if job j completes at time C_j , then the target is to minimize $C_{\max} = \max_{1 \le j \le n} C_j$ (called makespan).

Theorem: Local Scheduling is a 2-Approximation.

Proof: Let C^*_{\max} be the optimal schedule. Since each job must be processed, $C^*_{\max} \ge \max_{1 \le j \le n} p_j$.

Next $P = \sum_{j=1}^{n} p_j$ is the total time units to accomplish, and only *m*

machines are available, a machine will be assigned $\frac{P}{m}$ average units of works. Consequently, there must exist one machine that is assigned at least that much work.

$$C_{\max}^* \geq \frac{\sum_{j=1}^n p_j}{m}$$

Consider the solution of Local Scheduling. Let ℓ be a job that completes last in the final schedule, then $C_{\ell} = C_g$. Since algorithm terminates at this stage, every other machine must be busy from time 0 till the start of ℓ at $S_{\ell} = C_{\ell} - p_{\ell}$.

Partition the schedule into two disjoint time intervals by S_{ℓ} . Since every job must be processed, the latter interval has length at most C_{max}^* . Local Search Parallel Job Scheduling Problem LP Rounding Maximum Cut Problem

Proof (3)

Now consider the former interval, the total amount of work being processed in this interval is mS_ℓ which is no more than the total work to be done. Thus

$$S_{\ell} \leq \sum_{i=1}^{n} p_j/m.$$

Clearly $S_{\ell} \leq C^*_{max}$. We thereby get a 2-approximation.

Time Complexity

Theorem: The time complexity of Local Scheduling is O(n).

Parallel Job Scheduling Problem

Proof: We prove it by showing that each job can be rescheduled only once. Let C_{min} be the completion time of a machine that completes earliest. Then C_{min} never decreases.

Assume a job *j* can be rescheduled twice, from machine *i* to *i'* then to *i**. When *j* is reassigned to *i'*, it then starts at C_{\min} for the current schedule. Similarly, When *j* is assigned to *i**, it then starts at C'_{\min} .

Spring, 2015 Xiaofeng Gao	Approximation Basics (2)	10/31 Spr	ing, 2015 Xiaofeng Gao	Approximation Basics (2)	11/31
Local Search LP Rounding	Parallel Job Scheduling Problem Maximum Cut Problem	N	Local Search LP Rounding Aaximum Cut Problem	Parallel Job Scheduling Problem Maximum Cut Problem	
No change occurred to the sche these two moves for job <i>j</i> . Hence, C'_{min} must be strictly sma contradicts our claim that C_{min} is iterations of the Local Schedulin Thus, each job should only be c complexity of Local Scheduling	edule on machine i' in betwee aller than C_{min} , which s nondecreasing over the ig. considered once, and the time is $O(n)$.	en D	ProblemInstance: Given $G = (V, E)$.Solution: Partition of V into aMeasure: The cardinality of thewith one endpoint in V1 and o	lisjoint sets V ₁ and V ₂ . he cut, i.e., the number of edge ne endpoint in V ₂ .	s

Local Search LP Rounding Maximum Cut Proble

Local Search Algorithm

Algorithm 2 Local Cut Input: G = (V, E)**Output:** Local optimal cut (V_1, V_2) . 1: $s = s_0 = (\emptyset, V)$. ▷ Initial Feasible Solution 2: $\mathcal{N}(V_1, V_2)$ includes all (V_{1k}, V_{2k}) for $k = 1, \dots, |V|$ s.t. $\left\{ \begin{array}{l} \text{If } v_k \in V_1, \text{ then } V_{1k} = V_1 - \{v_k\}, V_{2k} = V_2 + \{v_k\} \\ \text{If } v_k \in V_2, \text{ then } V_{1k} = V_1 + \{v_k\}, V_{2k} = V_2 - \{v_k\} \end{array} \right.$ 3: repeat Select any $s' \in \mathcal{N}(s)$ not yet considered; 4: if m(s) < m(s') then 5: s = s': 6: end if 7. 8: **until** All solutions in $\mathcal{N}(s)$ have been visited 9: Return s

Local Search LP Rounding

Maximum Cut Probler

Approximation Ratio

Theorem: Given an instance G of Maximum Cut, let (V_1, V_2) be a local optimum w.r.t. neighborhood structure \mathcal{N} and let $m_{\mathcal{N}}(G)$ be its measure. Then

$$\frac{m^*(G)}{m_{\mathcal{N}}(G)} \leq 2.$$

Proof:

- Let *m* be the number of edges of the graph *G*.
- Then we have $m^*(G) < m$.
- It is sufficient to prove that $m_{\mathcal{N}}(G) \geq \frac{m}{2}$.

Spring, 2015	Xiaofeng Gao	Approximation Basics (2)	14/31	Spring, 2015	Xiaofeng Gao	Approximation Basics (2)	
	Local Search LP Rounding	Parallel Job Scheduling Problem Maximum Cut Problem			Local Search LP Rounding	Parallel Job Scheduling Problem Maximum Cut Problem	
Proof (2)				Proof (3)			

We denote by m_1 and m_2 the number of edges connecting vertices inside V_1 and V_2 respectively. Then,

$$m = m_1 + m_2 + m_N(G)$$

Given any vertex v_i , we define

$$m_{1i} = \{ v | v \in V_1 \& (v, v_i) \in E \}, m_{2i} = \{ v | v \in V_2 \& (v, v_i) \in E \}.$$

If (V_1, V_2) is a local optimum, $\forall v_k, m(V_{1k}, V_{2k}) < m_N(G)$. Thus

$$orall v_i \in V_1, |m_{1i}| - |m_{2i}| \le 0;$$

 $orall v_j \in V_2, |m_{2j}| - |m_{1j}| \le 0;$

By summing over all vertices in V_1 and V_2 , we obtain

$$\sum_{v_i \in V_1} (|m_{1i}| - |m_{2i}|) = 2m_1 - m_{\mathcal{N}}(G) \le 0$$

$$\sum_{v_j \in V_2} (|m_{2j}| - |m_{1j}|) = 2m_2 - m_{\mathcal{N}}(G) \le 0$$

Sum two inequalities together, we have

$$m_1+m_2-m_{\mathcal{N}}(G)\leq 0$$

Recall that $m_1 + m_2 = m - m_N(G)$, we have $m - 2m_N(G) \le 0$, thus $m_{\mathcal{N}}(G) \geq \frac{m}{2}$, and

$$\frac{m^*(G)}{m_{\mathcal{N}}(G)} \leq \frac{m}{m_{\mathcal{N}}(G)} \leq 2.$$

15/31

Overview

Local Search Deterministic Rounding LP Rounding Randomized Rounding

An overview of LP relaxation and rounding method is as follows:

- Formulate an optimization problem as an integer program (IP).
- Relax the integral constraints to turn the IP to an LP.
- Solve LP to obtain an optimal solution *x**;
- Construct a feasible solution x¹ to IP by rounding x* to integers.

Rounding can be done deterministically or probabilistically (called **randomized rounding**).

Set Cover Problem

Problem

Instance: Given a universe $U = \{e_1, \dots, e_n\}$ of *n* elements, a collection of subsets $\mathbf{S} = \{S_1, \dots, S_m\}$ of *U*, and a cost function $c : \mathbf{S} \to \mathbb{Q}^+$.

Solution: A subcollection $S' \subseteq S$ that covers all elements of *U*.

Measure: Total cost of the chosen subcollection, $\sum_{S_i \in S'} c(S)$.

Spring, 2015 Xia	aofeng Gao Approximation Basics (2)	19/31	Spring, 2015	Xiaofeng Gao	Approximation Basics (2)	20/31
Integer Program for S	Rounding Deterministic Rounding Randomized Rounding		LP-Relaxati	Local Search LP Rounding On for Set Cove	Deterministic Rounding Randomized Rounding	
minimize $\sum_{S \in \mathbf{S}} c(S) x_S$ subject to $\sum_{S:e \in S} x_S \ge$ $x_S \in \{0, 1\}$ x_S is a variable for eachand it is set to 1 iff set S	1, $e \in U$ set $S \in S$, which is allowed 0/1 values is picked in the set cover.	Jes,	minimize subject to	$\sum\limits_{S\in \mathbf{S}} oldsymbol{c}(S) x_S$ $\sum\limits_{S:e\in S} x_S \geq 1, e \in U$ $x_S \geq 0$ $x_S \leq 1 \leftarrow ext{this constants}$	/ straint is redundant	

LP Rounding R

Deterministic Rounding

Local Search

Input: *U* with *n* item; **S** with *m* subsets; cost function $c(S_i)$. **Output:** Subset $\mathbf{S}' \subseteq \mathbf{S}$ such that $\bigcup_{e_i \in S_k \in \mathbf{S}'} e_i = U$.

Deterministic Rounding

- 1: Find an optimal solution X_S to the LP-relaxation.
- 2: Define *f* as the frequency of the most frequent element.
- 3: for all $x_{S} \in X_{S}$ do
- 4: if $x_S \ge 1/f$ then
- 5: round $x_{S} = 1$;
- 6: **else**
- 7: round $x_{s} = 0;$
- 8: end if
- 9: end for
- 10: Return $S' = \{S \mid x_S = 1\}.$

Spring, 2015	Xiaofeng Gao	Approximation Basics (2)	23/31				
	Local Search LP Rounding	Deterministic Rounding Randomized Rounding					
Random	ized Rounding (St	ep 1)					
Algorit	nm 4 Set Cover via LP-F	Rounding (Randomized	I, Step 1)				
Inpu	ut: U with n item; S with	<i>m</i> subsets; cost function	on $c(S_i)$.				
Out	Output: Subset $\mathbf{S}' \subseteq \mathbf{S}$ such that $\bigcup e_i = U$.						
		$e_i \in S_k \in \mathbf{S'}$					
		<i>i</i> n					
1: Find	an optimal solution Xs	to the LP-relaxation.					
1: Find 2: for a	I an optimal solution X_S all $S \in S$ do	to the LP-relaxation.					
1: Find 2: for a 3: F	I an optimal solution X_S all $S \in S$ do Pick S into S' with proba	to the LP-relaxation. bility $x_{\rm S}$;					
1: Find 2: for a 3: F 4: end	I an optimal solution X_S all $S \in S$ do Pick S into S' with proba for	to the LP-relaxation. bility x_S ;					

Performance Analysis

Theorem: LP-Rounding achieves an approximation factor of *f* for the set cover problem.

Proof:

- Feasible Solution: For e ∈ U, ∑_{S:e∈S} x_S ≥ 1. e is at most in f sets, then there must exist a set S such that e ∈ S and x_S ≥ 1/f. Thus e is covered by this algorithm.
- Approximation Ratio: For S ∈ S', x_S is increased by a factor of at most *f*. Thus,

 $cost(\mathbf{S}') \leq f \cdot OPT_f \leq f \cdot OPT,$

where OPT_f is the optimal solution of LP, and OPT is the optimal solution for the original problem.

If S' is the collection of the sets picked, then the cost expectation of our solution in Step 1 is:

$$E[cost(\mathbf{S}')] = \sum_{S \in \mathbf{S}} Pr[S \text{ is picked}] \cdot c_S$$
$$= \sum_{S \in \mathbf{S}} x_S \cdot c_S$$
$$= OPT_f$$

which means the expected cost of Step 1 is equal to the optimal solution of LP.

Local Search LP Rounding Randomized Rounding

Local Search LP Rounding Randomized Rounding

Uncovered Rate of Step 1

For any element $e_i \in U$, suppose e_i occurs in k sets of **S**, say S_1, S_2, \ldots, S_k .

Since e_i is fractionally covered, then $x_{S_1} + \cdots + x_{S_k} \ge 1$.

$$\begin{aligned} \mathbf{Pr}[e_i \text{ is not covered by } \mathbf{S}'] &= \prod_{i=1}^k (1 - x_{S_i}) \\ &\leq (1 - \frac{1}{k})^k \quad (\text{AM-GM Inequality}) \\ &\leq \frac{1}{e} \quad (e = \sum_{n=0}^\infty \frac{1}{n!}, \text{ Euler's number}) \end{aligned}$$

AM-GM Inequality: $\sqrt[n]{x_1x_2\cdots x_n} \leq \frac{1}{n}(x_1+x_2+\cdots+x_n)$.

Spring, 2015 Xiaofeng Gao Approximation Basics (2) LP Rounding Randomized Rounding Success Rate of Step 2

$$\begin{aligned} & Pr[e_i \text{ is not covered by } \mathbf{C}'] \leq \left(\frac{1}{e}\right)^{c \log n} \leq \frac{1}{4n}; \\ \Rightarrow & Pr[\mathbf{C}' \text{ is not a valid set cover}] \leq 1 - \left(1 - \frac{1}{4n}\right)^n \leq n \cdot \frac{1}{4n} \leq \frac{1}{4}; \\ & \text{Clearly, } E[cost(\mathbf{C}')] \leq OPT_f \cdot c \log n. \end{aligned}$$

 $\Rightarrow Pr[cost(\mathbf{C}') \ge OPT_f \cdot 4c \log n] \le \frac{1}{4} \quad \text{(Markov's Inequality)}$ $\Rightarrow \Pr[\mathbf{C}' \text{ is a valid set cover } \& \operatorname{cost}(\mathbf{C}') \le \operatorname{OPT}_f \cdot 4c \log n] \ge \frac{1}{2}.$

Markov's Inequality: $Pr[X \ge a] \le \frac{E(X)}{a}$.

Randomized Rounding (Step 2)

We need to guarantee a complete set cover. Thus the following algorithm is used to increase the success rate.

Algorithm 5 Set Cover via LP-Rounding (Randomized, Step 2)

- 1: Pick a constant *c* such that $\left(\frac{1}{e}\right)^{c \log n} \leq \frac{1}{4n}$.
- 2: Independently repeat Step 1 for $c \log n$ times to get $c \log n$ subcollections, and compute their union, say C'.

3: Output **C**'.

Note: c can be set as different constant, resulting different success rate.

Local Search Deterministic Rounding Randomized Rounding

Performance Analysis

We can verify in polynomial time whether \mathbf{C}' satisfies both these conditions.

If not, we repeat the entire algorithm. The expected number of repetitions needed is at most 2.

Thus, the randomized rounding algorithm achieves an expected approximation ratio of $O(\log n)$. (Log-APX)

Spring, 2015	Xiaofeng Gao	Approximation Basics (2)	31/31