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Procedure

Given:

An instance x of the problem and a feasible solution y

(found using some other algorithm)

Goal:

Improve the current solution by moving to a better

“neighbor” solution

Steps:

Given a feasible solution y and its neighborhood structure

Look for a neighbor solution with an improved value of the

measure function

Repeat the steps until no improvement is possible

The algorithm stops in a “local optimum” solution.

Spring, 2015 Xiaofeng Gao Approximation Basics (2) 3/31

Local Search

LP Rounding

Parallel Job Scheduling Problem

Maximum Cut Problem

Comments

Main issues for neighborhood structure involve

The quality of the solution obtained (how close is the value

of the local optimum to the global optimal value);

The order in which the neighborhood is searched;

The complexity of verifying that the neighborhood does not

contain any better solution;

The number of solutions generated before a local optimum

is found.

The behavior of local search algorithm depends on the

following parameters:

The neighborhood function N .

The starting solution s0.

The strategy of selection of new solutions.
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Parallel Job Scheduling Problem

Problem

Instance: Given n jobs each with pj executing time, and m

machines, each of which can process at most one job at a time.

Solution: Assign each job to a machine sequentially.

Measure: Complete all jobs as soon as possible. Say, if job j

completes at time Cj , then the target is to minimize

Cmax = max
1≤j≤n

Cj (called makespan).
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Local Search Algorithm

Algorithm 1 Local Scheduling

Input: n jobs each with pj , m.

Output: A schedule on m machines.

1: Let S be an arbitrary schedule.

2: repeat

3: Consider the job ℓ that finishes last.

4: if ∃mi whose finishing time is earlier than Cℓ − pℓ then
5: transfer job ℓ to this machine mi .

6: end if

7: until The last job to complete cannot be transferred

8: Return S
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Illustration
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Approximation Ratio

Theorem: Local Scheduling is a 2-Approximation.

Proof: Let C∗
max be the optimal schedule. Since each job must

be processed, C∗
max ≥ max

1≤j≤n
pj .

Next P =
n
∑

j=1

pj is the total time units to accomplish, and only m

machines are available, a machine will be assigned P
m average

units of works. Consequently, there must exist one machine

that is assigned at least that much work.

C∗
max ≥

∑n
j=1 pj

m
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Proof (2)

Consider the solution of Local Scheduling. Let ℓ be a job that

completes last in the final schedule, then Cℓ = Cg. Since
algorithm terminates at this stage, every other machine must

be busy from time 0 till the start of ℓ at Sℓ = Cℓ − pℓ.

Partition the schedule into two disjoint time intervals by Sℓ.

Since every job must be processed, the latter interval has

length at most C∗
max.
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Proof (3)

Now consider the former interval, the total amount of work

being processed in this interval is mSℓ which is no more than

the total work to be done. Thus

Sℓ ≤
n

∑

j=1

pj/m.

Clearly Sℓ ≤ C∗
max. We thereby get a 2-approximation. 2
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Time Complexity

Theorem: The time complexity of Local Scheduling is O(n).

Proof: We prove it by showing that each job can be

rescheduled only once. Let Cmin be the completion time of a

machine that completes earliest. Then Cmin never decreases.

Assume a job j can be rescheduled twice, from machine i to i ′

then to i∗. When j is reassigned to i ′, it then starts at Cmin for

the current schedule. Similarly, When j is assigned to i∗, it then

starts at C′
min.
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Proof (2)

No change occurred to the schedule on machine i ′ in between

these two moves for job j .

Hence, C′
min must be strictly smaller than Cmin, which

contradicts our claim that Cmin is nondecreasing over the

iterations of the Local Scheduling.

Thus, each job should only be considered once, and the time

complexity of Local Scheduling is O(n). 2
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Maximum Cut Problem

Problem

Instance: Given G = (V ,E).

Solution: Partition of V into disjoint sets V1 and V2.

Measure: The cardinality of the cut, i.e., the number of edges

with one endpoint in V1 and one endpoint in V2.
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Local Search Algorithm

Algorithm 2 Local Cut

Input: G = (V ,E)
Output: Local optimal cut (V1,V2).

1: s = s0 = (∅,V ). ⊲ Initial Feasible Solution

2: N (V1,V2) includes all (V1k ,V2k ) for k = 1, · · · , |V | s.t.
{

If vk ∈ V1, then V1k = V1 − {vk},V2k = V2 + {vk}
If vk ∈ V2, then V1k = V1 + {vk},V2k = V2 − {vk}

3: repeat

4: Select any s′ ∈ N (s) not yet considered;
5: if m(s) < m(s′) then
6: s = s′;
7: end if

8: until All solutions in N (s) have been visited

9: Return s
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Theorem: Given an instance G of Maximum Cut, let (V1,V2)
be a local optimum w.r.t. neighborhood structure N and let

mN (G) be its measure. Then

m∗(G)

mN (G)
≤ 2.

Proof:

Let m be the number of edges of the graph G.

Then we have m∗(G) ≤ m.

It is sufficient to prove that mN (G) ≥ m
2
.
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Proof (2)

We denote by m1 and m2 the number of edges connecting

vertices inside V1 and V2 respectively. Then,

m = m1 +m2 +mN (G).

Given any vertex vi , we define

m1i = {v |v ∈ V1 & (v , vi ) ∈ E},m2i = {v |v ∈ V2 & (v , vi ) ∈ E}.

If (V1,V2) is a local optimum, ∀vk , m(V1k ,V2k ) ≤ mN (G). Thus

∀vi ∈ V1, |m1i | − |m2i | ≤ 0;

∀vj ∈ V2, |m2j | − |m1j | ≤ 0;
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Proof (3)

By summing over all vertices in V1 and V2, we obtain
∑

vi∈V1

(|m1i | − |m2i |) = 2m1 −mN (G) ≤ 0

∑

vj∈V2

(|m2j | − |m1j |) = 2m2 −mN (G) ≤ 0

Sum two inequalities together, we have

m1 +m2 −mN (G) ≤ 0

Recall that m1 +m2 = m −mN (G), we have m − 2mN (G) ≤ 0,

thus mN (G) ≥ m
2 , and

m∗(G)

mN (G)
≤ m

mN (G)
≤ 2.

2
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Overview

An overview of LP relaxation and rounding method is as follows:

Formulate an optimization problem as an integer program

(IP).

Relax the integral constraints to turn the IP to an LP.

Solve LP to obtain an optimal solution x∗;

Construct a feasible solution x I to IP by rounding x∗ to

integers.

Rounding can be done deterministically or probabilistically

(called randomized rounding).
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Set Cover Problem

Problem

Instance: Given a universe U = {e1, · · · ,en} of n elements, a
collection of subsets S = {S1, . . . ,Sm} of U, and a cost function
c : S→ Q+.

Solution: A subcollection S′ ⊆ S that covers all elements of U.

Measure: Total cost of the chosen subcollection,
∑

Si∈S
′

c(S).
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Integer Program for Set Cover

minimize
∑

S∈S

c(S)xS

subject to
∑

S:e∈S

xS ≥ 1,e ∈ U

xS ∈ {0,1}

xS is a variable for each set S ∈ S, which is allowed 0/1 values,

and it is set to 1 iff set S is picked in the set cover.
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LP-Relaxation for Set Cover

minimize
∑

S∈S

c(S)xS

subject to
∑

S:e∈S

xS ≥ 1,e ∈ U

xS ≥ 0

xS ≤ 1← this constraint is redundant
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Deterministic Rounding

Algorithm 3 Set Cover via LP-Rounding (Deterministic)

Input: U with n item; S with m subsets; cost function c(Si).
Output: Subset S′ ⊆ S such that

⋃

ei∈Sk∈S
′

ei = U.

1: Find an optimal solution XS to the LP-relaxation.

2: Define f as the frequency of the most frequent element.

3: for all xS ∈ XS do
4: if xS ≥ 1/f then
5: round xS = 1;

6: else

7: round xS = 0;

8: end if

9: end for

10: Return S′ = {S | xS = 1}.
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Performance Analysis

Theorem: LP-Rounding achieves an approximation factor of f

for the set cover problem.

Proof:

Feasible Solution: For e ∈ U, ∑

S:e∈S

xS ≥ 1. e is at most in f

sets, then there must exist a set S such that e ∈ S and

xS ≥ 1/f . Thus e is covered by this algorithm.

Approximation Ratio: For S ∈ S′, xS is increased by a

factor of at most f . Thus,

cost(S′) ≤ f ·OPTf ≤ f ·OPT ,

where OPTf is the optimal solution of LP, and OPT is the

optimal solution for the original problem. 2
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Randomized Rounding (Step 1)

Algorithm 4 Set Cover via LP-Rounding (Randomized, Step 1)

Input: U with n item; S with m subsets; cost function c(Si).
Output: Subset S′ ⊆ S such that

⋃

ei∈Sk∈S
′

ei = U.

1: Find an optimal solution XS to the LP-relaxation.

2: for all S ∈ S do
3: Pick S into S′ with probability xS ;

4: end for

5: Return S′.
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Expected Cost of Step 1

If S′ is the collection of the sets picked, then the cost

expectation of our solution in Step 1 is:

E [cost(S′)] =
∑

S∈S

Pr [S is picked] · cS

=
∑

S∈S

xS · cS

= OPTf

which means the expected cost of Step 1 is equal to the

optimal solution of LP.
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Uncovered Rate of Step 1

For any element ei ∈ U, suppose ei occurs in k sets of S, say

S1,S2, . . . ,Sk .

Since ei is fractionally covered, then xS1
+ · · · + xSk ≥ 1.

Pr[ei is not covered by S′] =
k
∏

i=1

(1− xSi )

≤ (1− 1

k
)k (AM-GM Inequality)

≤ 1

e
(e =

∞
∑

n=0

1

n!
, Euler’s number)

AM-GM Inequality: n
√
x1x2 · · · xn ≤ 1

n (x1 + x2 + · · ·+ xn).
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Randomized Rounding (Step 2)

We need to guarantee a complete set cover. Thus the following

algorithm is used to increase the success rate.

Algorithm 5 Set Cover via LP-Rounding (Randomized, Step 2)

1: Pick a constant c such that

(

1

e

)c log n

≤ 1

4n
.

2: Independently repeat Step 1 for c log n times to get c logn

subcollections, and compute their union, say C′.

3: Output C′.

Note: c can be set as different constant, resulting different

success rate.
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Success Rate of Step 2

Pr [ei is not covered by C′] ≤
(

1

e

)c log n

≤ 1

4n
;

⇒ Pr [C′ is not a valid set cover] ≤ 1−
(

1− 1

4n

)n

≤ n · 1
4n
≤ 1

4
;

Clearly, E [cost(C′)] ≤ OPTf · c logn.

⇒ Pr [cost(C′) ≥ OPTf · 4c logn] ≤
1

4
(Markov’s Inequality)

⇒ Pr [C′ is a valid set cover & cost(C′) ≤ OPTf · 4c log n] ≥
1

2
.

Markov’s Inequality: Pr [X ≥ a] ≤ E(X)
a .
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Algorithm for LP Randomized Rounding

Algorithm 6 Set Cover via LP-Rounding (Randomized)

Input: U with n item; S with m subsets; cost function c(Si).
Output: Subset S′ ⊆ S such that

⋃

ei∈Sk∈S
′

ei = U.

1: Find an optimal solution XS to the LP-relaxation.

2: Pick a constant c such that

(

1

e

)c log n

≤ 1

4n
.

3: for i = 1 to c logn do

4: for all S ∈ S do
5: Pick S into S′

i with probability xS ;

6: end for

7: end for

8: Return C′ =
c log n
⋃

i=1

S′
i.
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Performance Analysis

We can verify in polynomial time whether C′ satisfies both

these conditions.

If not, we repeat the entire algorithm. The expected number of

repetitions needed is at most 2.

Thus, the randomized rounding algorithm achieves an expected

approximation ratio of O(log n). (Log-APX)
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