Lab02-Algorithm Analysis

Exercises for Algorithms by Xiaofeng Gao, 2016 Spring Semester

Name:_____ Student ID:_____ Email: _____

- 1. Consider the sorting algorithm shown in Alg. 1, which is called BUBBLESORT.
 - (a) What is the minimum number of element comparisons? When is this minimum achieved?
 - (b) What is the maximum number of element comparisons? When is this maximum achieved?
 - (c) Express the running time of Alg. 1 in terms of the O and Ω notations.
 - (d) Can the running time of the algorithm be expressed in terms of the Θ notation? Explain.

Algorithm 1: BUBBLESORT

 $i \leftarrow i + 1;$

```
\begin{array}{c|c} \mathbf{input} & : \text{An array } A[1 \dots n] \text{ of } n \text{ elements.} \\ \mathbf{output} : A[1 \dots n] \text{ in nondecreasing order.} \\ \mathbf{i} & \leftarrow 1; \ sorted \leftarrow false; \\ \mathbf{2} \text{ while } i \leq n-1 \ and \ not \ sorted \ do \\ \mathbf{3} & sorted \leftarrow true; \\ \mathbf{4} & \mathbf{for } j \leftarrow n \ downto \ i+1 \ do \\ \mathbf{5} & | \mathbf{if } A[j] < A[j-1] \ \mathbf{then} \\ \mathbf{6} & | \text{ interchange } A[j] \ \text{and } A[j-1]; \\ \mathbf{7} & | \ sorted \leftarrow false; \\ \end{array}
```

- 2. For Alg. 2 and Alg. 3 shown below, answer the following questions respectively.
 - (a) Give the maximum number of times Line 6 is executed in Alg. 2 when n is a power of 3.

8

- (b) Give the maximum number of times Line 5 is executed in Alg. 3 when n is a power of 2.
- (c) What is the time complexity of both algorithms expressed in the O and Θ notation?

1 $count \leftarrow 0;$ 2 for $i \leftarrow 1$ to n do 3 $j \leftarrow \lfloor n/2 \rfloor;$ 4 while $j \ge 1$ do 5 $count \leftarrow count + 1;$ 6 $j \in j \leftarrow j/2;$
:

3. Fill in the blanks with either true or false:

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$			
$50n + \log n$	$10n + \log \log n$			
$50n\log n$	$10n\log\log n$			
$\log n$	$\log^2 n$			
<i>n</i> !	5^n			

4. Use the \prec relation to order the following functions by growth rate:

 $n^{1/100}, \sqrt{n}, \log n^{100}, n \log n, 5, \log \log n, \log^2 n, (\sqrt{n})^n, (1/2)^n, 2^{n^2}, n!$