Prologue and Notation

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

February 25, 2016

- Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- Proof
 - Definition
 - Categories
 - Peano Axioms

- Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- 4 Proof
 - Definition
 - Categories
 - Peano Axioms

Definition

- A set is an unordered collection of elements. \rightarrow No duplications.
- Examples and notations:
 - $\{a, b, c\}$
 - $\{x \mid x \text{ is an even integer}\} \rightarrow \{0, 2, 4, 6, \cdots\}$
 - ϕ : empty set
 - $\mathbb{N} = \{0, 1, 2, \ldots\}$: natural numbers (nonnegative integers)
 - $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$: integers
 - R: real numbers
 - E: even numbers
 - 0: odd numbers

Definition (2)

- Cardinality of a set: $|S| \rightarrow$ number of distinct elements
- Set Equality: $S = T \rightarrow x \in S \text{ iff } x \in T$
- Subset: A set S is a subset of T, $S \subseteq T$, if every element of S is an element of T
- Proper subset: a subset of T is a subset other than the empty set \emptyset or T itself (Use of word proper, proper subsequence or proper substring)
- Strict Subset: S is a strict subset, $S \subset T$, if not equal to T

- Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- 4 Proof
 - Definition
 - Categories
 - Peano Axioms

\cup , \cap , \rightarrow , \overline{S}

- Union: $S \cup T \rightarrow$ the set of elements that are either in S or in T.
 - $S \cup T = \{s | s \in S \text{ or } s \in T\}$
 - $\{a,b,c\} \cup \{c,d,e\} = \{a,b,c,d,e\}$
 - $|S \cup T| \le |S| + |T|$
- Intersection: $S \cap T$
 - $S \cap T = \{s \mid s \in S \text{ and } s \in T\}$
 - $\{a,b,c\} \cap \{c,d,e\} = \{c\}$
- Difference: $S T \rightarrow \text{set of all elements in } S \text{ not in } T$
 - $S T = \{s \mid s \in S \text{ but not in } T\} = S \cap \overline{T}$
 - $\{1,2,3\} \{1,4,5\} = \{2,3\}$
- Complement:
 - Need universal set U
 - $\overline{S} = \{ s \mid s \in U \text{ but not in } S \}$

\times , 2^{S}

Cartesian Product

- $S \times T = \{(s, t) \mid s \in S, t \in T\}$
- In a graph G = (V, E), the edge set E is the subset of Cartesian product of vertex set V. $E \subseteq V \times V$.

Power Set

- 2^S set of all subsets of S
- Note: notation $|2^S| = 2^{|S|}$, meaning 2^S is a good representation for power set.
- $S = \{a, b, c\}$, then $2^S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Indicator Vector: We can use a zero/one vector to represent the elements in power set. $\begin{vmatrix} a & b \end{vmatrix}$

	а	b	c
Ø	0	0	0
{ <i>a</i> }	1	0	0
$\{b\}$	0	1	0
$\{a,b,c\}$	1	1	1
	≣ ►	< ≣ →	- 1

Ordered Pair

- (x, y): ordered pair of elements x and y; $(x, y) \neq (y, x)$.
- (x_1, \dots, x_n) : ordered *n*-tuple \rightarrow boldfaced **x**.
- $\bullet A_1 \times A_2 \times \cdots \times A_n = \{(x_1, \cdots, x_n) \mid x_1 \in A_1, \cdots, x_n \in A_n\}.$
- $\bullet A \times A \times \cdots \times A = A^n.$
- $A^1 = A$.

- 1 Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- 4 Proof
 - Definition
 - Categories
 - Peano Axioms

Definition

- f is a set of ordered pairs s.t. if $(x, y) \in f$ and $(x, z) \in f$, then y = z, and f(x) = y.
- Dom(f): Domain of f, $\{x \mid f(x) \text{ is defined}\}.$
- f(x) is undefined if $x \notin Dom(f)$.
- Ran(f): Range of f, $\{f(x) \mid x \in Dom(f)\}$.
- f is a function from A to B: $Dom(f) \subseteq A$ and $Ran(f) \subseteq B$.
- $f: A \to B$: f is a function from A to B with Dom(f) = A.

Mapping and Operation

- Injective (one-to-one): if $x, y \in Dom(f)$, $x \neq y$, then $f(x) \neq f(y)$.
- Inverse f^{-1} : the unique function g s.t. Dom(g) = Ran(f), and g(f(x)) = x.
- Surjective (onto): if Ran(f) = B.
- Bijective: both injective and surjective.
- Composition: $f \circ g$, domain $\{x \mid x \in Dom(g) \land g(x) \in Dom(f)\}$, value f(g(x)).

- 1 Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- 4 Proof
 - Definition
 - Categories
 - Peano Axioms

13/45

Polynomial

A polynomial p is an expression of finite length constructed from variables and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents.

Polynomial

A polynomial p is an expression of finite length constructed from variables and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents.

- $4x^2y + 3x 5$ is a polynomial.
- $-6y^2 \frac{7}{9}x$ is a polynomial.
- $\frac{1}{x} + x^{\frac{3}{4}}$ is not a polynomial.
- $3xy^{-2}$ is not a polynomial.

- 1 Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- 4 Proof
 - Definition
 - Categories
 - Peano Axioms

Relation

If *A* is a set, a property $M(x_1, \dots, x_n)$ that holds for some *n*-tuple from A^n and does not hold for all other *n*-tuples from A^n is called an *n*-ary relation or predicate on *A*.

- Property x < y. 2 < 5, 6 < 4.
- f from \mathbb{N}^n to \mathbb{N} gives rise to predicate $M(\mathbf{x}, y)$ by: $M(x_1, \dots, x_n, y)$ iff $f(x_1, \dots, x_n) \simeq y$.

Equivalence Relation

• A binary relation R on A is called equivalence relation if

$$\begin{array}{ll} \text{reflexivity} & \forall x \text{ in } A & R(x,x) \\ \text{symmetry} & R(x,y) \Rightarrow R(y,x) \\ \text{transitivity} & R(x,y), R(y,z) \Rightarrow R(x,z) \end{array} \right\} \text{ equivalence}$$

• A binary relation R on A is called a partial order if

$$\begin{array}{ll} \text{irreflexivity} & \text{not } R(x,x) \\ \text{transitivity} & R(x,y), R(y,z) \Rightarrow R(x,z) \end{array} \right\} \text{ partial order}$$

	reflexive	symmetric	transitive
<			

	reflexive	symmetric	transitive
<	No	No	Yes
\leq			

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of			

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of	No	No	No
=			

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of	No	No	No
=	Yes	Yes	Yes

- Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- 4 Proof
 - Definition
 - Categories
 - Peano Axioms

Hand Writing

- Small letters for elements and functions.
 - a, b, c for elements,
 - f, g for functions,
 - i, j, k for integer indices,
 - x, y, z for variables,
- Capital letters for sets. A, B, S. $A = \{a_1, \dots, a_n\}$
- Bold small letters for vectors. $\mathbf{x}, \mathbf{y}, \mathbf{v} = \{v_1, \dots, v_m\}$
- Bold capital letters for collections. **A**, **B**. $S = \{S_1, \dots, S_n\}$
- Blackboard bold capitals for domains (standard symbols). \mathbb{N} , \mathbb{R} , \mathbb{Z} .
- German script for collection of functions. \mathscr{C} , \mathscr{S} , \mathscr{T} .
- Greek letters for parameters or coefficients. α , β , γ .
- Double strike handwriting for bold letters.

20/45

- Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- Proof
 - Definition
 - Categories
 - Peano Axioms

What is proof?

A proof of a statement is essentially a convincing argument that the statement is true. A typical step in a proof is to derive statements from

- assumptions or hypotheses.
- statements that have already been derived.
- other generally accepted facts, using general principles of logical reasoning.

- 1 Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- Proof
 - Definition
 - Categories
 - Peano Axioms

Types of Proof

- Proof by Construction
- Proof by Contrapositive
 - Proof by Contradiction
 - Proof by Counterexample
- Proof by Cases
- Proof by Mathematical Induction
 - The Principle of Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction

Example: For any integers a and b, if a and b are odd, then ab is odd.

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1.

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore consider ab.

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore consider ab.

$$ab = (2x+1)(2y+1)$$

$$= 4xy + 2x + 2y + 1$$

$$= 2(2xy + x + y) + 1$$

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore consider ab.

$$ab = (2x+1)(2y+1)$$

$$= 4xy + 2x + 2y + 1$$

$$= 2(2xy + x + y) + 1$$

Thus if we let z = 2xy + x + y, then ab = 2z + 1, which implies that ab is odd.

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof: We change this statement by its logically equivalence:

 $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.

If it is not true that $i \le \sqrt{n}$ or $j \le \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$.

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$.

Proof: We change this statement by its logically equivalence:

$$\forall i, j, n \in \mathbb{N}$$
, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.

If it is not true that $i \le \sqrt{n}$ or $j \le \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$.

Since $j > \sqrt{n} \ge 0$, we have

$$i > \sqrt{n} \Rightarrow i \times j > \sqrt{n} \times j > \sqrt{n} \times \sqrt{n} = n.$$

It follows that $i \times j \neq n$. The original statement is true.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Example: For any sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Therefore $x \in A \cap B$, which contradicts the assumption that $A \cap B = \emptyset$.

Proof by Contradiction (2)

Example: $\sqrt{2}$ is irrational. (A real number x is *rational* if there are two integers m and n so that x = m/n.)

Proof by Contradiction (2)

Example: $\sqrt{2}$ is irrational. (A real number x is *rational* if there are two integers m and n so that x = m/n.)

Proof: Suppose on the contrary $\sqrt{2}$ is rational.

Proof by Contradiction (2)

Example: $\sqrt{2}$ is irrational. (A real number x is *rational* if there are two integers m and n so that x = m/n.)

Proof: Suppose on the contrary $\sqrt{2}$ is rational.

Then there are integers m' and n' with $\sqrt{2} = \frac{m'}{n'}$.

By dividing both m' and n' by all the factors that are common to both, we obtain $\sqrt{2} = \frac{m}{n}$, for some integers m and n having no common factors.

Since $\frac{m}{n} = \sqrt{2}$, we can have $m^2 = 2n^2$, therefore m^2 is even, and m is also even.

Proof by Contradiction (Cont.)

Let m = 2k. Therefore, $(2k)^2 = 2n^2$.

Simplifying this we obtain $2k^2 = n^2$, which means n is also a even number.

We have shown that m and n are both even numbers and divisible by 2. This contradicts the previous statement m and n have no common factors. Therefore, $\sqrt{2}$ is irrational.

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: n is even and n is odd.

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: n is even and n is odd.

Case 1. *n* is even. Let n = 2k, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k)^{2} + 2k + 14$$

= $12k^{2} + 2k + 14$
= $2(6k^{2} + k + 7)$

Since $6k^2 + k + 7$ is an integer, $3n^2 + n + 14$ is even if *n* is even.

Proof by Cases (Cont.)

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$

$$= 3(4k^{2} + 4k + 1) + (2k + 1) + 14$$

$$= 12k^{2} + 12k + 3 + 2k + 1 + 14$$

$$= 12k^{2} + 14k + 18$$

$$= 2(6k^{2} + 7k + 9)$$

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd.

Proof by Cases (Cont.)

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$

$$= 3(4k^{2} + 4k + 1) + (2k + 1) + 14$$

$$= 12k^{2} + 12k + 3 + 2k + 1 + 14$$

$$= 12k^{2} + 14k + 18$$

$$= 2(6k^{2} + 7k + 9)$$

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd.

Since in both cases $3n^2 + n + 14$ is even, it follows that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

The Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(k) is true, then P(k+1) is true.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \ge 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2$.

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \ge 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2$.

Proof of Induction Step. Now let us prove that P(k + 1) is true.

$$0+1+2+\cdots+k+(k+1) = k(k+1)/2+(k+1)$$
$$= (k+1)(k/2+1)$$
$$= (k+1)(k+2)/2$$

33/45

Example: For any $x \in \{0,1\}^*$, if x begins with 0 and ends with 1 (i.e., x = 0y1 for some string y), then x must contain the substring 01. (Note that * is the *Kleene star*. $\{0,1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)

Example: For any $x \in \{0,1\}^*$, if x begins with 0 and ends with 1 (i.e., x = 0y1 for some string y), then x must contain the substring 01. (Note that * is the *Kleene star*. $\{0,1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)

Proof: Consider the statement P(n): If |x| = n and x = 0y1 for some string $y \in \{0, 1\}^*$, then x contains the substring 01. If we can prove that P(n) is true for every $n \ge 2$, it will follow that the original statement is true. We prove it by induction.

Example: For any $x \in \{0,1\}^*$, if x begins with 0 and ends with 1 (i.e., x = 0y1 for some string y), then x must contain the substring 01. (Note that * is the *Kleene star*. $\{0,1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)

Proof: Consider the statement P(n): If |x| = n and x = 0y1 for some string $y \in \{0, 1\}^*$, then x contains the substring 01. If we can prove that P(n) is true for every $n \ge 2$, it will follow that the original statement is true. We prove it by induction.

Basis step. P(2) is true.

Induction hypothesis. P(k) for $k \ge 2$.

Proof of induction step. Let's prove P(k + 1).

Since
$$|x| = k + 1$$
 and $x = 0y1$, $|y1| = k$.

If y begins with 1 then x begins with the substring 01. If y begins with 0, then y1 begins with 0 and ends with 1;

by the induction hypothesis, y contains the substring 01, therefore x does else.

The Minimal Counterexample Principle

Example: Prove $\forall n \in \mathbb{N}$, $5^n - 2^n$ is divisible by 3.

The Minimal Counterexample Principle

Example: Prove $\forall n \in \mathbb{N}, 5^n - 2^n$ is divisible by 3.

Proof: If $P(n) = 5^n - 2^n$ is not true for every $n \ge 0$, then there are values of n for which P(n) is false, and there must be a smallest such value, say n = k.

Since $P(0) = 5^0 - 2^0 = 0$, which is divisible by 3, we have $k \ge 1$, and $k - 1 \ge 0$.

Since k is the smallest value for which P(k) false, P(k-1) is true. Thus $5^{k-1} - 2^{k-1}$ is a multiple of 3, say 3j.

The Minimal Counterexample Principle (Cont.)

However, we have

$$5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}$$
$$= 5 \times (5^{k-1} - 2^{k-1}) + 3 \times 2^{k-1}$$
$$= 5 \times 3j + 3 \times 2^{k-1}$$

This expression is divisible by 3. We have derived a contradiction, which allows us to conclude that our original assumption is false.

П

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, then we should prove that $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "n is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, then we should prove that $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

However, from P(k) we know nothing about r and $s \longrightarrow ???$

The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(n) is true for every n satisfying $n_0 \le n \le k$, then P(k+1) is true.

Also called the principle of complete induction, or course-of-values induction.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k+1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, by definition of a prime, $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

Example: Prove that $\forall n \in \mathbb{N}$ with $n \geq 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k+1) is not a prime, by definition of a prime, $k+1 = r \times s$, where r and s are positive integers greater than 1 and less than k+1.

It follows that $2 \le r \le k$ and $2 \le s \le k$. Thus by induction hypothesis, both r and s are either prime or the product of two or more primes. Then their product k+1 is the product of two or more primes. P(k+1) is true.

Outline

- Set
 - Basic Concepts
 - Set Operations
- 2 Function
 - Basic Concepts
 - Functions of Natural Numbers
- Relations
 - Basic Concepts
 - Logical Notation
- Proof
 - Definition
 - Categories
 - Peano Axioms

Giuseppe Peano (1858-1932)

- In 1889, Peano published the first set of axioms.
- Build a rigorous system of arithmetic, number theory, and algebra.
- A simple but solid foundation to construct the edifice of modern mathematics.
- The fifth axiom deserves special comment. It is the first formal statement of what we now call the "induction axiom" or "the principle of mathematical induction".

Peano Five Axioms

- Axiom 1. 0 is a number.
- Axiom 2. The successor of any number is a number.
- Axiom 3. If a and b are numbers and if their successors are equal, then a and b are equal.
- Axiom 4. 0 is not the successor of any number.
- Axiom 5. If S is a set of numbers containing 0 and if the successor of any number in S is also in S, then S contains all the numbers.

Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement about $n \in \mathbb{N}$. Suppose

- ② S(t+1) is true whenever S(t) is true for $t \ge 1$.

Then S(n) is true for all $n \in \mathbb{N}$.

Proof

Let $A = \{n \in \mathbb{N} \mid S(n) \text{ is false}\}$. It suffices to show that $A = \emptyset$.

If $A \neq \emptyset$, A would contain a smallest positive integer, say $n_0 \in \mathbb{N}$, s.t. $n_0 \leq n, n \in A$.

Thus, the statement $S(n_0)$ is false and because of hypothesis (1), $n_0 > 1$.

Since n_0 is the smallest element of A, the statement $S(n_0 - 1)$ is true. Thus, by hypothesis (2), $S(n_0 - 1)$ is true which implies that $S(n_0)$ is true, a contradiction which implies that $A = \emptyset$.