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Basic Concepts
Set Operations

Definition

@ A setis an unordered collection of elements. No duplications.
o Examples and notations:

{a,b,c}

{x| xis an even integér— {0,2,4,6,---}

¢: empty set

N ={0,1,2,...}: natural numbers (nonnegative integers)
Z=A{...,-2,-10172 ...} integers

R: real numbers

E: even numbers

O: odd numbers

¢

¢ ¢ ¢ ¢ ¢ ¢ ¢
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Basic Concepts
Set Operations

Definition (2)

e Cardinalityof a set:|S| — number of distinct elements
o SetEqualityS=T —->xe Siff xe T

@ SubsetA setSis a subset of, SC T, if every element oBis
an element ofl

@ Proper subsefa subset of is a subset other than the empty Bet
or T itself (Use of word proper, proper subsequence or proper
substring)

@ Strict SubsetSis a strict subse$ C T, if not equal toT
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Set Operations
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Basic Concepts
Set Operations

@ Union: SUT — the set of elements that are eitheSor in T.
o SUT ={gse SorseT}
o {a,b,ctu{c,d,e} ={ab,cd,e}
° |SUT| LIS+ |T|
@ IntersectionSNT
e SNT={s|seSandse T}
o {a,b,c}n{cd,e} = {c}
o Difference S— T — set of all elements iSnotinT
o S—T={s|seSbhutnotinT} =SNT
e {1,2,3} — {1,4,5} = {2,3}
o Complement

o Need universal sdt
o S={s|se U butnotinS}
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Basic Concepts
Set Operations

o Cartesian Product
o SxT={(st)|seSteT}
e InagraphG = (V, E), the edge se is the subset of Cartesian
product of vertex se¢. EC V x V.
@ Power Set
o 2Sset of all subsets @8
o Note: notatior{25 = 29, meaning £ is a good representation
for power set.
e S={a,b,c}, then
2°={0,{a}, {b}, {c}, {a b}, {a c}, {b,c} {ab,c}}

o Indicator Vector: We can use a zero/one vector to reprebent t

elements in power set. | a b c
0 0 0 O

{a} 1 00

{b} 0 1 0

{a,bc} |1 1 1
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Basic Concepts
Set Operations

Ordered Pair

@ (x,y): ordered pair of elementsandy; (x,y) # (Y, X).

® (X1, ,%y): orderedn-tuple — boldfacedx.

O Ap X Ap X X An={(X1, - ,Xn) | X1 € A1, -+ , % € An}.
@ AXAX---xA=A"

o A=A
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Functions of Natural Numbers

Outline

© Function
@ Basic Concepts
@ Functions of Natural Numbers

X033533-Algorithm@SJTU Xiaofeng Gao = Slide01-Prologue



Function Basic Concepts
Functions of Natural Numbers

Definition

o f is a set of ordered pairs s.t.(i,y) € f and(x, z) € f, then
y =z andf(x) =y.

o Dom(f): Domain off, {x | f(x) is defined.

o f(x) is undefined ifx ¢ Dom(f).

o Ran(f): Range off, {f(x) | x € Dom(f)}.

e f is a function fromA to B: Dom(f) C AandRan(f) C B.

o f : A— B: f is afunction fromA to B with Dom(f) = A.
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Function Basic Concepts
Functions of Natural Numbers

Mapping and Operation

@ Injective (one-to-one)if x,y € Dom(f), X # y, thenf (x) # f(y).

@ Inversef —*: the unique functiory s.t. Dom(g) = Ran(f), and
g(f(x)) = x.

@ Surjective (onta)if Ran(f) = B.

@ Bijective: both injective and surjective.

@ Composition f o g, domain{x | x € Dom(g) A g(x) € Dom(f)},
valuef (g(x)).
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Function Basic Concepts
Functions of Natural Numbers
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Function Basic Concepts
Functions of Natural Numbers

Polynomial

A polynomialp is an expression of finite length constructed from
variables and constants, using only the operations ofiaddit
subtraction, multiplication, and non-negative integguanents.
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Function Basic Concepts
Functions of Natural Numbers

Polynomial

A polynomialp is an expression of finite length constructed from
variables and constants, using only the operations ofiaddit
subtraction, multiplication, and non-negative integguanents.

@ 4x%y + 3x — 5 is a polynomial.
e —6y® — {xis a polynomial.

o 14+ xa is not a polynomial.

@ 3xy 2 is not a polynomial.
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Basic Concepts
Relations Logical Notation

Relation

If Ais a set, a propertil(xy, - - - ,X,) that holds for some-tuple
from A" and does not hold for all othertuples fromA" is called an
n-ary relation or predicate oA.
@ Propertyx <y. 2<5,6 < 4.
o f from N" to N gives rise to predicathl (X, y) by:
M(xg, - Xn, y) 1ff F(xg, - %) >y
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Basic Concepts
Relations Logical Notation

Equivalence Relation

@ A binary relationR on A is calledequivalence relatioif

reflexivity — vxin A R(x, x)
symmetry  R(X,y) = R(y,X) equivalence
transitivity R(x,y),R(Y, 2) = R(X,2)

@ A binary relationR on A is called apartial orderif

irreflexivity not R(x, X)

transitivity  R(x,y),R(y,2) = R(x,2) } partial order
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Basic Concepts
Relations Logical Notation

Example

\reﬂexive symmetric  transitive
<
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Basic Concepts
Relations Logical Notation

Example

\reﬂexive symmetric  transitive
No No Yes

IN A
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Basic Concepts
Relations Logical Notation

Example

\reﬂexive symmetric  transitive

< No No Yes
< Yes No Yes
Parent of
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Basic Concepts
Relations Logical Notation

Example

\reﬂexive symmetric  transitive

< No No Yes
< Yes No Yes
Parent of No No No
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Relations Logical Notation
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Basic Concepts
Relations Logical Notation

Hand Writing

o Small letters forlementandfunctions

@ a, b, cfor elements,

o f, gfor functions,

@ i, ], kfor integer indices,
e X, Y, zfor variables,

Capital letters fosets A,B,S A= {a1, - ,an}
Bold small letters forectors X, y. v.={vy, -+ ,Vmn}
Bold capital letters forollections A, B. S={S, -+ , S}

Blackboard bold capitals fatfomains(standard symbolsN, R,
Z.

@ German script focollection of functions %, .77, .7 .

¢ © ¢ ¢

o Greek letters foparametersr coefficients «, 3, 7.
@ Double strike handwriting for bold letters.
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Definition
Categories

Peano Axioms
Proof © -

What is proof?

A proofof a statement is essentially a convincing argument that the
statement is true. A typical step in a proof is to derive stegiets from

@ assumptions or hypotheses.

o statements that have already been derived.

@ other generally accepted facts, using general princidiésgacal
reasoning.
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Definition
Categories

Peano Axioms
Proof © -

Types of Proof

]

Proof by Construction
Proof by Contrapositive
o Proof by Contradiction
e Proof by Counterexample
Proof by Cases
Proof by Mathematical Induction

@ The Principle of Mathematical Induction
# Minimal Counterexample Principle
o The Strong Principle of Mathematical Induction

©

¢ ©
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Definition
Categories

Peano Axioms
Proof © -

Proof by Constructionvx, P(x) holds)

Example: For any integers andb, if aandb are odd, themb is odd.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Constructionvx, P(x) holds)

Example: For any integers andb, if aandb are odd, themb is odd.

Proof: Sincea andb are odd, there exist integexsandy such that
a=2x+1,b=2y+ 1.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Constructionvx, P(x) holds)

Example: For any integers andb, if aandb are odd, themb is odd.
Proof: Sincea andb are odd, there exist integexsandy such that

a=2x+1,b=2y+ 1. We wish to show that there is an integeso
thatab = 2z + 1. Let us therefore considab.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Constructionvx, P(x) holds)

Example: For any integers andb, if aandb are odd, themb is odd.

Proof: Sincea andb are odd, there exist integexsandy such that
a=2x+1,b=2y+ 1. We wish to show that there is an integeso
thatab = 2z + 1. Let us therefore considab.

ab = (X+1)(2y+1)
= Ay+2xX+2y+1
= 2(xy+x+y)+1
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Definition
Categories

Peano Axioms
Proof © -

Proof by Constructionvx, P(x) holds)

Example: For any integers andb, if aandb are odd, themb is odd.

Proof: Sincea andb are odd, there exist integexsandy such that
a=2x+1,b=2y+ 1. We wish to show that there is an integeso
thatab = 2z + 1. Let us therefore considab.

ab = (X+1)(2y+1)
= Ay+2xX+2y+1
= 2(xy+x+y)+1

Thus if we letz = 2xy + x + Y, thenab = 2z + 1, which implies that
ab is odd. O
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contrapositivep(— q < —q — —p)

Example: Vi,j,n € N, if i x j = n, then eithei < \/norj < ./n.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contrapositivep(— q < —q — —p)

Example: Vi,j,n € N, if i x j = n, then eithei < \/norj < ./n.

Proof: We change this statement by its logically equivalence:
Vi,j,n € N, ifitis not the case that< \/norj < /n, theni x j # n.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contrapositivep(— q < —q — —p)

Example: Vi,j,n € N, if i x j = n, then eithei < \/norj < ./n.

Proof: We change this statement by its logically equivalence:
Vi,j,n € N, ifitis not the case that< \/norj < /n, theni x j # n.

If it is not true thati < /norj < /n, theni > /nandj > /n.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contrapositivep(— q < —q — —p)

Example: Vi,j,n € N, if i x j = n, then eithei < \/norj < ./n.

Proof: We change this statement by its logically equivalence:
Vi,j,n € N, ifitis not the case that< \/norj < /n, theni x j # n.

If it is not true thati < \/norj < ./n, theni > y/nandj > /n.
Sincej > v/n > 0, we have

i>yn=ixj>vnxj>ynxyvn=n.

It follows thati x j # n. The original statement is true. O
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contradictiondis true< —p — falseis true)

Example: For any set#\, B, andC, if AN B = () andC C B, then
ANnC=1.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contradictiondis true< —p — falseis true)

Example: For any set#\, B, andC, if AN B = () andC C B, then
ANnC=1.

Proof: AssumeANB = (), C C B,andANC # .
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contradictiondis true< —p — falseis true)

Example: For any set#\, B, andC, if AN B = () andC C B, then
ANnC=1.

Proof: AssumeANB = (), C C B,andANC # .
Then there existg with x € AN C, so thatx € Aandx € C.
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Definition
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Peano Axioms
Proof © -

Proof by Contradictiondis true< —p — falseis true)

Example: For any set#\, B, andC, if AN B = () andC C B, then
ANnC=1.

Proof: AssumeANB = (), C C B,andANC # .
Then there existg with x € AN C, so thatx € Aandx € C.

SinceC C B andx € C, it follows thatx € B.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contradictiondis true< —p — falseis true)

Example: For any set#\, B, andC, if AN B = () andC C B, then
ANnC=1.

Proof: AssumeANB = (), C C B,andANC # .
Then there existg with x € AN C, so thatx € Aandx € C.

SinceC C B andx € C, it follows thatx € B.

Thereforex € AN B, which contradicts the assumption that
ANB=0. O

X033533-Algorithm@SJTU Xiaofeng Gao = Slide01-Prologue 27/45



Definition
Categories

Peano Axioms
Proof © -

Proof by Contradiction (2)

Example: v/2 is irrational. (A real numbex is rational if there are
two integeramandn so thatx = m/n.)
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Peano Axioms
Proof © -

Proof by Contradiction (2)

Example: v/2 is irrational. (A real numbex is rational if there are
two integeramandn so thatx = m/n.)

Proof: Suppose on the contragy?2 is rational.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contradiction (2)

Example: v/2 is irrational. (A real numbex is rational if there are
two integeramandn so thatx = m/n.)

Proof: Suppose on the contragy?2 is rational.
Then there are integers andr' with v2 = ™.

By dividing bothm' andr/ by all the factors that are common to both,
we obtainy/2 = T, for some integers andn having no common
factors.

Since™ = /2, we can have? = 2n?, thereforen? is even, andnis
also even.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Contradiction (Cont.)

Let m = 2k. Therefore(2k)? = 2r?.

Simplifying this we obtain B = n?, which means is also a even
number.

We have shown thah andn are both even numbers and divisible by
2. This contradicts the previous statemerandn have no common
factors. Thereforey/2 is irrational. O
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Definition
Categories

Peano Axioms
Proof © -

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that ifn € N, then 3%+ n+14iseven.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that ifn € N, then 3%+ n+14iseven.

Proof: Letn € N. We can consider two casasis even and is odd.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that ifn € N, then 3%+ n+14iseven.

Proof: Letn € N. We can consider two casasis even and is odd.

Case 1nis even. Lein = 2k, wherek € N. Then

3’ +n+14 = 3(2k)2+2k+14
12k? + 2k + 14
= 2(6k®+k+7)

Since &% + k + 7 is an integer, 8% + n + 14 is even ifnis even.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Cases (Cont.)

Case 2nis odd. Leth = 2k + 1, wherek € N. Then

3 +n+14 = 3(2k+ 1)+ (2k+1) +14
3(4k% + 4k + 1) + (2k+ 1) + 14
122 + 12k + 34 2k+ 1+ 14
12k? 4 14k + 18

= 2(6k* +7k+9)

Since &% + 7k + 9 is an integer, 8 + n+ 14 is even ifn is odd.
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Definition
Categories

Peano Axioms
Proof © -

Proof by Cases (Cont.)

Case 2nis odd. Leth = 2k + 1, wherek € N. Then

3 +n+14 = 3(2k+ 1)+ (2k+1) +14
3(4k% + 4k + 1) + (2k+ 1) + 14
122 + 12k + 34 2k+ 1+ 14
12k? 4 14k + 18

= 2(6k* +7k+9)

Since &% + 7k + 9 is an integer, 8 + n+ 14 is even ifn is odd.

Since in both cases + n + 14 is even, it follows that ii € N, then
3n2 + n+ 14 is even. O
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Definition
Categories

Peano Axioms
Proof © -

The Principle of Mathematical Induction

SupposeP(n) is a statement involving an integer Then to prove that
P(n) is true for everyn > n, it is sufficient to show these two things:

@ P(np) is true.
e For anyk > ng, if P(k) is true, therP(k + 1) is true.
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Definition
Categories

Peano Axioms
Proof © -

An Example for Mathematical Induction

Example: Let P(n) be the statement;' ,i = n(n+ 1)/2. Prove that
P(n) is true for everyn > 0.
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Peano Axioms
Proof © -

An Example for Mathematical Induction

Example: Let P(n) be the statement;' ,i = n(n+ 1)/2. Prove that
P(n) is true for everyn > 0.

Proof: We proveP(n) is true forn > 0 by induction.
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Definition
Categories

Peano Axioms
Proof © -

An Example for Mathematical Induction

Example: Let P(n) be the statement;' ,i = n(n+ 1)/2. Prove that
P(n) is true for everyn > 0.

Proof: We proveP(n) is true forn > 0 by induction.

Basis stepP(0) is 0= 0(0+ 1)/2, and it is obviously true.

X033533-Algorithm@SJTU Xiaofeng Gao = Slide01-Prologue 33/45



Definition
Categories

Peano Axioms
Proof © -

An Example for Mathematical Induction

Example: Let P(n) be the statement;' ,i = n(n+ 1)/2. Prove that
P(n) is true for everyn > 0.

Proof: We proveP(n) is true forn > 0 by induction.
Basis stepP(0) is 0= 0(0+ 1)/2, and it is obviously true.

Induction HypothesisAssumeP(K) is true for somek > 0. Then
0+1+2+---+k=kk+1)/2
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Peano Axioms
Proof © -

An Example for Mathematical Induction

Example: Let P(n) be the statement;' ,i = n(n+ 1)/2. Prove that
P(n) is true for everyn > 0.

Proof: We proveP(n) is true forn > 0 by induction.
Basis stepP(0) is 0= 0(0+ 1)/2, and it is obviously true.

Induction HypothesisAssumeP(K) is true for somek > 0. Then
0+1+2+---+k=kk+1)/2

Proof of Induction StepNow let us prove thaP(k + 1) is true.
0+1+2+---+k+(k+1) = kk+1)/2+ (k+1)

K+ 1)(k/2 + 1)
k+1)(k+2)/2 0

—~~
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Definition
Categories

Peano Axioms
Proof © -

An Example for Mathematical Induction (2)

Example: For anyx € {0, 1}*, if x begins with 0 and ends with 1
(i.e.,x = Oyl for some string), thenx must contain the substring 01.
(Note that* is theKleene star. {0,1}* means “every possible string
consisted of 0 and 1, including the empty string™.)
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An Example for Mathematical Induction (2)

Example: For anyx € {0, 1}*, if x begins with 0 and ends with 1
(i.e.,x = Oyl for some string), thenx must contain the substring 01.
(Note that* is theKleene star. {0,1}* means “every possible string
consisted of 0 and 1, including the empty string™.)

Proof: Consider the statemeR{n): If |x| = nandx = Oyl for some
stringy € {0, 1}*, thenx contains the substring 01. If we can prove
thatP(n) is true for everyn > 2, it will follow that the original
statement is true. We prove it by induction.
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An Example for Mathematical Induction (2)

Example: For anyx € {0, 1}*, if x begins with 0 and ends with 1
(i.e.,x = Oyl for some string), thenx must contain the substring 01.
(Note that* is theKleene star. {0,1}* means “every possible string
consisted of 0 and 1, including the empty string™.)

Proof: Consider the statemeR(n): If x| = nandx = Oyl for some
stringy € {0, 1}*, thenx contains the substring 01. If we can prove
thatP(n) is true for everyn > 2, it will follow that the original
statement is true. We prove it by induction.

Basisstep. P(2) is true.
Induction hypothesis. P(k) for k > 2.
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Definition
Categories

Peano Axioms
Proof © -

An Example for Mathematical Induction (2)

Proof of induction step. Let’s proveP(k + 1).
Since|x| = k4 1 andx = 0y1, |yl| = k.

If y begins with 1 thex begins with the substring 01. yfbegins with
0, thenyl begins with 0 and ends with 1;

by the induction hypothesig,contains the substring 01, therefore
does else. 0
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The Minimal Counterexample Principle

Example: Provevn € N, 5" — 2" is divisible by 3.
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The Minimal Counterexample Principle

Example: Provevn € N, 5" — 2" is divisible by 3.

Proof: If P(n) = 5" — 2" is not true for everyr > 0, then there are
values ofn for which P(n) is false, and there must be a smallest such
value, sayn = k.

SinceP(0) = 5° — 20 = 0, which is divisible by 3, we havie > 1,

andk —1 > 0.

Sincek is the smallest value for whidA(k) false,P(k — 1) is true.

Thus &1 — 2k-1 s a multiple of 3, say B
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The Minimal Counterexample Principle (Cont.)

However, we have

BK—2¢ = Bx5l_2x 2t
= 5x (5Tl 3x 2kt
= 5x3 +3x21

This expression is divisible by 3. We have derived a conttah,
which allows us to conclude that our original assumptioraisd. O

X033533-Algorithm@SJTU Xiaofeng Gao = Slide01-Prologue 37/45



Definition
Categories

Peano Axioms
Proof © -

An Example for the Weakness of Mathematical Inductio

Example: Prove that’n € N with n > 2, it has prime factorizations.
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An Example for the Weakness of Mathematical Inductio

Example: Prove that’n € N with n > 2, it has prime factorizations.

Proof: DefineP(n) be the statement thah‘is either prime or the
product of two or more primes”. We will try to prove th&tn) is true
for everyn > 2.
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An Example for the Weakness of Mathematical Inductio

Example: Prove that’n € N with n > 2, it has prime factorizations.

Proof: DefineP(n) be the statement thah‘is either prime or the
product of two or more primes”. We will try to prove th&tn) is true
for everyn > 2.

Basis step. P(2) is true, since 2 is a prime!
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An Example for the Weakness of Mathematical Inductio

Example: Prove that’n € N with n > 2, it has prime factorizations.

Proof: DefineP(n) be the statement thah‘is either prime or the
product of two or more primes”. We will try to prove th&tn) is true
for everyn > 2.

Basis step. P(2) is true, since 2 is a prime!

Induction hypothesis. P(k) for k > 2. (as usual process)
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An Example for the Weakness of Mathematical Inductio

Example: Prove that’n € N with n > 2, it has prime factorizations.

Proof: DefineP(n) be the statement thah‘is either prime or the
product of two or more primes”. We will try to prove th&tn) is true
for everyn > 2.

Basis step. P(2) is true, since 2 is a prime!
Induction hypothesis. P(k) for k > 2. (as usual process)
Proof of induction step. Let’s proveP(k + 1).

If P(k+ 1) is prime,v’
If P(k+ 1) is not a prime, then we should prove that 1 =r x s,
wherer ands are positive integers greater than 1 and less kharil.
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An Example for the Weakness of Mathematical Inductio

Example: Prove that’n € N with n > 2, it has prime factorizations.

Proof: DefineP(n) be the statement thah‘is either prime or the
product of two or more primes”. We will try to prove th&tn) is true
for everyn > 2.

Basis step. P(2) is true, since 2 is a prime!
Induction hypothesis. P(k) for k > 2. (as usual process)
Proof of induction step. Let’s proveP(k + 1).

If P(k+ 1) is prime,v’
If P(k+ 1) is not a prime, then we should prove that 1 =r x s,
wherer ands are positive integers greater than 1 and less kharil.

However, fromP(k) we know nothing about ands —; ???
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The Strong Principle of Mathematical Induction

SupposeP(n) is a statement involving an integer Then to prove that
P(n) is true for everyn > n, it is sufficient to show these two things:

@ P(np) is true.

@ For anyk > ng, if P(n) is true for everyn satisfyingnp < n <k,
thenP(k + 1) is true.

Also calledthe principle of complete inductigmr course-of-values
induction
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To Complete the Example

Example: Prove that’n € N with n > 2, it has prime factorizations.
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To Complete the Example

Example: Prove that’n € N with n > 2, it has prime factorizations.

Continuethe Proof:
Induction hypothesis. Fork > 2 and 2< n < k, P(n) is true.(Strong
Principle)
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To Complete the Example

Example: Prove that’n € N with n > 2, it has prime factorizations.

Continuethe Proof:
Induction hypothesis. Fork > 2 and 2< n < k, P(n) is true.(Strong
Principle)

Proof of induction step. Let’s proveP(k + 1).

If P(k+ 1) is prime,v’
If P(k+ 1) is not a prime, by definition of a primé&+1=r x s,
wherer ands are positive integers greater than 1 and less kharil.
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To Complete the Example

Example: Prove that’n € N with n > 2, it has prime factorizations.

Continuethe Proof:

Induction hypothesis. Fork > 2 and 2< n < k, P(n) is true.(Strong
Principle)

Proof of induction step. Let’s proveP(k + 1).

If P(k+ 1) is prime,v’

If P(k+ 1) is not a prime, by definition of a primé&+1=r x s,
wherer ands are positive integers greater than 1 and less kharil.

It follows that 2< r < kand 2< s < k. Thus by induction

hypothesis, botlh ands are either prime or the product of two or more
primes. Then their produét+ 1 is the product of two or more
primes.P(k + 1) is true.
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Giuseppe Peano (1858-1932)

o In 1889, Peano published the first set of axioms.

@ Build a rigorous system of arithmetic, number theory, and
algebra.

@ A simple but solid foundation to construct the edifice of nmode
mathematics.

@ The fifth axiom deserves special comment. It is the first fdrma
statement of what we now call thentiuction axion or “the
principle of mathematical inductidn
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Peano Five Axioms

@ Axiom 1. 0 is a number.
@ Axiom 2. The successor of any number is a number.

@ Axiom 3. If aandb are numbers and if their successors are
equal, thera andb are equal.

@ Axiom 4. 0 is not the successor of any number.

o Axiom 5. If Sis a set of numbers containing 0 and if the
successor of any number 8is also inS, thenS contains all the
numbers.
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Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement abonte N. Suppose

@ S1)istrue, and
Q S(t+ 1) is true wheneve§(t) is true fort > 1.

ThenS(n) is true for alln € N.
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Proof

LetA={ne N | §n)is falsg. It suffices to show thah = (.

If A+ (), Awould contain a smallest positive integer, sgyc N,
s.thp < nneA.

Thus, the statemers(np) is false and because of hypothesis (1),
ng > 1.

Sinceng is the smallest element &, the statemerfs(ny — 1) is true.
Thus, by hypothesis (25no — 1) is true which implies tha$(ng) is
true, a contradiction which implies that= (. O
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