
Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Introduction to Algorithm∗

Xiaofeng Gao

Department of Computer Science and Engineering
Shanghai Jiao Tong University, P.R.China

X033533-Algorithm: Analysis and Theory

∗

Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 1/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 2/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 3/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Algorithm

An algorithm is a procedure that consists of a finite set ofinstructions
which, given aninput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
that terminates in a finite number of steps.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 4/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Algorithm

An algorithm is a procedure that consists of a finite set ofinstructions
which, given aninput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
that terminates in a finite number of steps.

Theorem proving is in general not algorithmic.

Theorem verification is often algorithmic.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 4/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Quotation from Donald E. Knuth

“Computer Science is the study of
algorithms."

——Donald E. Knuth

What is Computer Science?

Computer Science is the study of problem
solving using computing machines. The
computing machines must be physically
feasible. Donald E. Knuth

(1938 – )
Stanford University

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 5/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Remark on Algorithm

The word ‘algorithm’ is derived from the name
of Muhamma ibn M ūsā al-Khwārizmī
(780?-850?), a Muslim mathematician whose
works introduced Arabic numerals and algebraic
concepts to Western mathematics.

The word ‘algebra’ stems from the title of his
bookKitab al jahr wa’l-muq̄abala".

(American Heritage Dictionary)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 6/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Algorithm vs. Program

A program is an implementation of an algorithm, or algorithms.

A program does not necessarily terminate.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 7/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 8/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

Some well known models are: the general recursive function
model of Gödel and Church, Church’sλ-calculus, Post system
model, Turing machine model, RAM, etc.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 9/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

Some well known models are: the general recursive function
model of Gödel and Church, Church’sλ-calculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 9/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

Some well known models are: the general recursive function
model of Gödel and Church, Church’sλ-calculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

III. Computational Complexity studies how much resource is
necessary in order to solve a problem.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 9/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

Some well known models are: the general recursive function
model of Gödel and Church, Church’sλ-calculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

III. Computational Complexity studies how much resource is
necessary in order to solve a problem.

IV. Theory of Algorithm studies how problems can be solved.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 9/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 10/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 11/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

Algorithm 1.1 LinearSearch
Input: An arrayA[1..n] of n elements and an elementx.
Output: j if x = A[j], 1≤ j ≤ n, and 0 otherwise.

1. j← 1
2. while j < n and x 6= A[j]
3. j← j + 1
4. end while
5. if x = A[j] then return j else return 0

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 11/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Binary Search

Algorithm 1.2 BinarySearch
Input: An arrayA[1..n] of n elements sorted in nondecreasing order
and an elementx.
Output: j if x = A[j], 1≤ j ≤ n, and 0 otherwise.

1. low← 1; high← n; j← 0
2. while low ≤ high and j = 0
3. mid ← ⌊(low + high)/2⌋
4. if x = A[mid] then j← mid break
5. else ifx < A[mid] then high← mid − 1
6. elselow← mid + 1
7. end while
8. return j

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 12/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

Supposex ≥ 35. A run of BinarySearch onA[1..14] (see below) is

1 4 5 7 8 9 10 12 15 22 23 27 32 35

↓

12 15 22 23 27 32 35

↓

27 32 35

↓

35

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 13/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.
In thej-th iteration, the number of elements inA[mid + 1..n] is exactly
⌊n/2j−1⌋.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.
In thej-th iteration, the number of elements inA[mid + 1..n] is exactly
⌊n/2j−1⌋.
The maximum number of iteration is thej such that⌊n/2j−1⌋ = 1,
which is equivalent toj− 1≤ logn < j.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.
In thej-th iteration, the number of elements inA[mid + 1..n] is exactly
⌊n/2j−1⌋.
The maximum number of iteration is thej such that⌊n/2j−1⌋ = 1,
which is equivalent toj− 1≤ logn < j.

Hencej = ⌊logn⌋+ 1.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Merging Two Sorted Lists

Algorithm 1.3 Merge
Input: An arrayA[1..m] of elements and three indicesp, q andr. with
1≤ p ≤ q < r ≤ m, such that both the subarrayA[p..q] and
A[q + 1..r] are sorted individually in nondecreasing order.
Output: A[p..r] contains the result of merging the two subarrays
A[p..q] andA[q + 1..r].
Comment: B[p..r] is an auxiliary array

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 15/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Merging Two Sorted Lists

1. s← p; t← q + 1; k ← p
2. while s ≤ q and t ≤ r
3. if A[s] ≤ A[t] then
4. B[k]← A[s]
5. s← s + 1
6. else
7. B[k]← A[t]
8. t← t + 1
9. end if

10. k← k + 1
11. end while
12. if s = q + 1 then B[k..r]← A[t..r]
13. elseB[k..r]← A[s..q]
13. end if
13. A[p..r]← B[p..r]

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 16/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 17/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 17/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57

at mostm + n− 1.

E.g. 2 3 66 and 7 11 13 45 57

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 17/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57

at mostm + n− 1.

E.g. 2 3 66 and 7 11 13 45 57

If the two array sizes are⌊n/2⌋ and⌈n/2⌉, the number of
comparisons is between⌊n/2⌋ andn− 1.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 17/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 18/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Selection Sort

Algorithm 1.4 SelectionSort
Input: An arrayA[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1
2. k← i
3. for j← i + 1 to n
4. if A[j] < A[k] then k← j
5. end for
6. if k 6= i then interchangeA[i] andA[k]
7. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 19/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of SelectionSort

The number of comparisons carried out by Algorithm SelectionSort is
precisely

n−1
∑

i=1

(n− i) =
n(n − 1)

2

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 20/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Insertion Sort

Algorithm 1.5 InsertionSort
Input: An arrayA[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n
2. x← A[i]
3. j← i− 1
4. while j > 0 and A[j] > x
5. A[j + 1]← A[j]
6. j← j− 1
7. end while
8. A[j + 1]← x
9. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 21/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of InsertionSort

The number of comparisons carried out by Algorithm InsertionSort is
at least

n− 1

and at most
n

∑

i=2

(i− 1) =
n(n − 1)

2

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 22/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Bottom-Up Merge Sort

Algorithm 1.6 BottomUpSort
Input: An arrayA[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. t← 1
2. while t < n
3. s← t; t← 2s; i← 0
4. while i + t ≤ n
5. Merge(A, i + 1, i + s, i + t)
6. i← i + t
7. end while
8. if i + s < n then Merge(A, i + 1, i + s, n)
9. end while

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 23/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

An Example

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 24/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BottomUpSort

Suppose thatn is a power of 2, sayn = 2k.
The outerwhile loop is executedk = logn times.
Step 8 is never invoked.
In the j-th iteration of the outerwhile loop, there are 2k−j = n/2j

pairs of arrays of size 2j−1.
The number of comparisons needed in the merge of two sorted
arrays in thej-th iteration is at least 2j−1 and at most 2j − 1.
The number of comparisons in BottomUpSort is at least

k
∑

j=1

(
n
2j )2

j−1 =
k

∑

j=1

n
2
=

n logn
2

The number of comparisons in BottomUpSort is at most
k

∑

j=1

(
n
2j )(2

j − 1) =
k

∑

j=1

(n− n
2j ) = n logn− n + 1

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 25/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 26/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Time Complexity

Computational Complexity evolved from 1960’s, flourished in 1970’s
and 1980’s.

Time is the most precious resource.

Important to human.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 27/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Running Time

Running time of a program is determined by:

input size

quality of the code

quality of the computer system

time complexity of the algorithm

We are mostly concerned with the behavior of the algorithm under
investigation on large input instances.

So we may talk about the rate of growth or the order of growth ofthe
running time

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 28/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Running Time vs Input Size

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 29/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Growth of Typical Functions

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 30/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Elementary Operation

Definition: We denote by an “elementary operation" any
computational step whose cost is always upperbounded by a constant
amount of time regardless of the input data or the algorithm used.

Example:

Arithmetic operations: addition, subtraction, multiplication and
division

Comparisons and logical operations

Assignments, including assignments of pointers when, say,
traversing a list or a tree

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 31/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Order of Growth

Our main concern is about the order of growth.

Our estimates of time are relative rather than absolute.

Our estimates of time are machine independent.

Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 32/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Order of Growth

Our main concern is about the order of growth.

Our estimates of time are relative rather than absolute.

Our estimates of time are machine independent.

Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.

So we are measuring theasymptotic running time of the algorithms.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 32/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

TheO-Notation

TheO-notation provides anupper bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (O-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beO(g(n)), written
f (n) = O(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≤ cg(n)

Intuitively, f grows no faster than some constant timesg.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 33/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

TheΩ-Notation

TheΩ-notation provides alower bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (Ω-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beΩ(g(n)), written
f (n) = Ω(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≥ cg(n)

Clearly f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 34/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

TheΘ-Notation

TheΘ-notation provides an exact picture of the growth rate of the
running time of an algorithm.

Definition (Θ-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beΘ(g(n)), written
f (n) = Θ(g(n)), if both f (n) = O(g(n)) andf (n) = Ω(g(n)).

Clearly f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 35/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Example

Example: f (n) = 10n2 + 20n.

Since∀n ≥ 1, f (n) ≤ 30n2, f (n) = O(n2);

Since∀n ≥ 1, f (n) ≥ n2, f (n) = Ω(n2);

Since∀n ≥ 1, n2 ≤ f (n) ≤ 30n2, f (n) = Θ(n2);

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 36/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Examples

aknk + ak−1nk−1 + · · · + a1n + a0 = O(nk).

logn2 = O(n).

lognk = Ω(logn).

n! = O((n + 1)!).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 37/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Examples

Consider the series
∑n

j=1 log j. Clearly,

n
∑

j=1

log j ≤
n

∑

j=1

logn = n logn. Thus
n

∑

j=1

log j = O(n logn)

On the other hand,

n
∑

j=1

log j ≥
⌊n/2⌋
∑

j=1

log(
n
2
) = ⌊n/2⌋ log(

n
2
) = ⌊n/2⌋ log n− ⌊n/2⌋

That is
n

∑

j=1

log j = Ω(n logn)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 38/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Examples

logn! =
n
∑

j=1
log j = Θ(n logn).

2n = O(n!). (log 2n = n)

n! = O(2n2
). (log 2n2

= n2)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 39/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Theo-Notation

Definition (o-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beo(g(n)), written
f (n) = o(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) < cg(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 40/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Theω-Notation

Definition (ω-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beω(g(n)), written
f (n) = ω(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) > cg(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 41/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Definition in Terms of Limits

Suppose lim
n→∞

f (n)/g(n) exists.

lim
n→∞

f (n)
g(n)

6=∞ implies f (n) = O(g(n)).

lim
n→∞

f (n)
g(n)

6= 0 impliesf (n) = Ω(g(n)).

lim
n→∞

f (n)
g(n)

= c implies f (n) = Θ(g(n)).

lim
n→∞

f (n)
g(n)

= 0 impliesf (n) = o(g(n)).

lim
n→∞

f (n)
g(n)

=∞ implies f (n) = ω(g(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 42/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

A Helpful Analogy

f (n) = O(g(n)) is similar tof (n) ≤ g(n).

f (n) = o(g(n)) is similar tof (n) < g(n).

f (n) = Θ(g(n)) is similar tof (n) = g(n).

f (n) = Ω(g(n)) is similar tof (n) ≥ g(n).

f (n) = ω(g(n)) is similar tof (n) > g(n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 43/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Complexity Classes

An equivalence relationR on the set of complexity functions is
defined as follows:fRg if and only if f (n) = Θ(g(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 44/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Complexity Classes

An equivalence relationR on the set of complexity functions is
defined as follows:fRg if and only if f (n) = Θ(g(n)).

A complexity class is an equivalence class ofR.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 44/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Complexity Classes

An equivalence relationR on the set of complexity functions is
defined as follows:fRg if and only if f (n) = Θ(g(n)).

A complexity class is an equivalence class ofR.

The equivalence classes can be ordered by≺ defined as follows:
f ≺ g iff f (n) = o(g(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 44/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Complexity Classes

An equivalence relationR on the set of complexity functions is
defined as follows:fRg if and only if f (n) = Θ(g(n)).

A complexity class is an equivalence class ofR.

The equivalence classes can be ordered by≺ defined as follows:
f ≺ g iff f (n) = o(g(n)).

1≺ log logn≺ logn≺√n≺n
3
4 ≺n≺n logn≺n2≺2n≺n!≺2n2

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 44/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 45/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Space Complexity

The space complexity is defined to be the number of cells (work
space)) needed to carry out an algorithm,excluding the space
allocated to hold the input.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 46/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Space Complexity

The space complexity is defined to be the number of cells (work
space)) needed to carry out an algorithm,excluding the space
allocated to hold the input.

The exclusion of the input space is to make sense the sublinear space
complexity.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 46/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Space Complexity

It is clear that the work space of an algorithm can not exceed the
running time of the algorithm. That isS(n) = O(T(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 47/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Space Complexity

It is clear that the work space of an algorithm can not exceed the
running time of the algorithm. That isS(n) = O(T(n)).

Trade-off between time complexity and space complexity.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 47/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity
LINEARSEARCH

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity
LINEARSEARCH O(n) Θ(1)
BINARYSEARCH

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity
LINEARSEARCH O(n) Θ(1)
BINARYSEARCH O(logn), Ω(1) Θ(1)

MERGE

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity
LINEARSEARCH O(n) Θ(1)
BINARYSEARCH O(logn), Ω(1) Θ(1)

MERGE O(n), Ω(n1) Θ(n)
SELECTIONSORT

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity
LINEARSEARCH O(n) Θ(1)
BINARYSEARCH O(logn), Ω(1) Θ(1)

MERGE O(n), Ω(n1) Θ(n)
SELECTIONSORT Θ(n2) Θ(1)
INSERTIONSORT

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity
LINEARSEARCH O(n) Θ(1)
BINARYSEARCH O(logn), Ω(1) Θ(1)

MERGE O(n), Ω(n1) Θ(n)
SELECTIONSORT Θ(n2) Θ(1)
INSERTIONSORT O(n2), Ω(n) Θ(1)
BOTTOMUPSORT

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Summary

Algorithm Time Complexity Space Complexity
LINEARSEARCH O(n) Θ(1)
BINARYSEARCH O(logn), Ω(1) Θ(1)

MERGE O(n), Ω(n1) Θ(n)
SELECTIONSORT Θ(n2) Θ(1)
INSERTIONSORT O(n2), Ω(n) Θ(1)
BOTTOMUPSORT Θ(n logn) Θ(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 48/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Time Complexity
Space Complexity

Optimal Algorithm

In general, if we can prove that any algorithm to solve problem Π
must beΩ(f (n)), then we call any algorithm to solve problemΠ in
time O(f (n)) anoptimal algorithm for problemΠ.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 49/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 50/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

HOW do we estimate time complexity?

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 51/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.7 Count1
Input: n = 2k, for some positive integerk.
Output: count = number of times Step 4 is executed.

1. count ← 0;
2. while n ≥ 1
3. for j← 1 to n
4. count ← count + 1
5. end for
6. n← n/2
7. end while
8. return count

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 52/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.7 Count1
Input: n = 2k, for some positive integerk.
Output: count = number of times Step 4 is executed.

1. count ← 0;
2. while n ≥ 1
3. for j← 1 to n
4. count ← count + 1
5. end for
6. n← n/2
7. end while
8. return count

while is executedk + 1 times;for is executedn, n/2, . . . ,1 times
k

∑

j=0

n
2j = n

k
∑

j=0

1
2j = n(2− 1

2k ) = 2n− 1 = Θ(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 52/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integern.
Output: count = number of times Step 5 is executed.

1. count ← 0;
2. for i← 1 to n
3. m← ⌊n/i⌋
4. for j← 1 to m
5. count ← count + 1
6. end for
7. end for
8. return count

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 53/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integern.
Output: count = number of times Step 5 is executed.

1. count ← 0;
2. for i← 1 to n
3. m← ⌊n/i⌋
4. for j← 1 to m
5. count ← count + 1
6. end for
7. end for
8. return count

The innerfor is executedn, ⌊n/2⌋, ⌊n/3⌋, . . . , ⌊n/n⌋ times

Θ(n logn) =
n

∑

i=1

(
n
i
− 1) ≤

n
∑

i=1

⌊n
i
⌋ ≤

n
∑

i=1

n
i
= Θ(n logn)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 53/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.9 Count3
Input: n = 22k

, k is a positive integer.
Output: count = number of times Step 6 is executed.

1. count ← 0;
2. for i← 1 to n
3. j← 2;
4. while j ≤ n
5. j← j2;
6. count ← count + 1
7. end while
8. end for
9. return count

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 54/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

For each value ofi, thewhile loop will be executed when
j = 2,22,24, · · · ,22k

.

That is, it will be executed whenj = 220
,221

,222
, · · · ,22k

.

Thus, the number of iterations forwhile loop isk + 1 = log logn + 1
for each iteration offor loop.

The total output isn(log logn + 1) = Θ(n log logn).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 55/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Algorithm 1.10 PSUM
Input: n = k2, k is a positive integer.

Output:
j
∑

i=1
i for each perfect squarej between 1 andn.

1. k← √n;
2. for j← 1 to k
3. sum[j]← 0;
4. for i← 1 to j2

5. sum[j]← sum[j] + i;
6. end for
7. end for
8. return sum[1 · · · k]

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 56/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Iterations

Assume that
√

n can be computed inO(1) time.

The outer and innerfor loop are executedk =
√

n andj2 times
respectively.

Thus, the number of iterations for innerfor loop is

k
∑

j=1

j2
∑

i=1

1 =

k
∑

j=1

j2 =
k(k + 1)(2k + 1)

6
= Θ(k3) = Θ(n1.5).

The total output isΘ(n1.5).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 57/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Counting the Frequency of Basic Operations

Definition

An elementary operation in an algorithm is called abasic operation if
it is of highest frequency to within a constant factor among all other
elementary operations.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 58/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Method of Choice

When analyzing searching and sorting algorithms, we may
choose the element comparison operation if it is an elementary
operation.

In matrix multiplication algorithms, we select the operation of
scalar multiplication.

In traversing a linked list, we may select the “operation" of
setting or updating a pointer.

In graph traversals, we may choose the “action" of visiting a
node, and count the number of nodes visited.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 59/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Master theorem

If
T(n) = aT(⌈n/b⌉) + O(nd)

for some constantsa > 0, b > 1, andd ≥ 0,

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 60/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Master theorem

If
T(n) = aT(⌈n/b⌉) + O(nd)

for some constantsa > 0, b > 1, andd ≥ 0, then

T(n) =











O(nd) if d > logb a

O(nd logn) if d = logb a

O(nlogb a) if d < logb a.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 60/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 61/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);

By Master Theorem
T(n) = O(n logn).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 61/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 62/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Performance of INSERTIONSORT

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 63/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Worst Case Analysis

Consider the following algorithm:

1. if n is oddthen k ← BinarySearch(A, x)
2. elsek ← LinearSearch(A, x)

In the worst case, the running time isΩ(log(n)) andO(n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 64/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Average Case Analysis

Take Algorithm InsertionSort for instance. Two assumptions:

A[1..n] contains the numbers 1 throughn.

All n! permutations are equally likely.

The number of comparisons for inserting elementA[i] in its proper
position, sayj, is on average the following

i− 1
i

+

i
∑

j=2

i− j + 1
i

=
i− 1

i
+

i−1
∑

j=1

j
i
=

i
2
− 1

i
+

1
2

Theaverage number of comparisons performed by Algorithm
InsertionSort is

n
∑

i=2

(
i
2
− 1

i
+

1
2
) =

n2

4
+

3n
4
−

n
∑

i=1

1
i

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 65/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Amortized Analysis

In amortized analysis, we average out the time taken by the operation
throughout the execution of the algorithm, and refer to thisaverage as
theamortized running time of that operation.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 66/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Amortized Analysis

In amortized analysis, we average out the time taken by the operation
throughout the execution of the algorithm, and refer to thisaverage as
theamortized running time of that operation.

Amortized analysis guarantees the average cost of the operation, and
thus the algorithm,in the worst case.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 66/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Amortized Analysis

In amortized analysis, we average out the time taken by the operation
throughout the execution of the algorithm, and refer to thisaverage as
theamortized running time of that operation.

Amortized analysis guarantees the average cost of the operation, and
thus the algorithm,in the worst case.

This is to be contrasted with the average time analysis in which the
average is taken over all instances of the same size. Moreover, unlike
the average case analysis, no assumptions about the probability
distribution of the input are needed.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 66/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Amortized Analysis

Consider the following algorithm:

1. for j← 1 to n
2. x← A[j]
3. Appendx to the list
4. if x is eventhen
5. while pred(x) is odddo deletepred(x)
6. end if
7. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 67/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

An Example

5 7 3 4 9 8 7 3

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 68/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Analysis

Worst Case Analysis: If no input numbers are even, or if all even
numbers are at the beginning, then no elements are deleted, and hence
each iteration of thefor loop takes constant time. However, if the
input hasn− 1 odd integers followed by one even integer, then the
number of deletions isn− 1, and the number ofwhile loops isn− 1.
The overall running time isO(n2).

Amortized Analysis: The total number of elementary operations of
insertions and deletions is betweenn and 2n− 1. So the time
complexity isΘ(n). It follows that the time used to delete each
element isO(1) amortized time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 69/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Input Size and Problem Instance

Suppose that the following integer

21024− 1

is a legitimate input of an algorithm. What is thesize of the input?

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 70/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Input Size and Problem Instance

Algorithm 1.9 FIRST
Input: A positive integern and an arrayA[1..n] with A[j] = j for
1≤ j ≤ n.
Output:

∑n
j=1 A[j].

1. sum← 0;
2. for j← 1 to n
3. sum← sum + A[j]
4. end for
5. return sum

The input size isn. The time complexity isO(n). It is linear time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 71/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Input Size and Problem Instance

Algorithm 1.10 SECOND
Input: A positive integern.
Output:

∑n
j=1 j.

1. sum← 0;
2. for j← 1 to n
3. sum← sum + j
4. end for
5. return sum

The input size isk = ⌊logn⌋+ 1. The time complexity isO(2k). It is
exponential time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 72/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Commonly Used Measures

In sorting and searching problems, we use the number of entries
in the array or list as the input size.

In graph algorithms, the input size usually refers to the number
of vertices or edges in the graph, or both.

In computational geometry, the size of input is usually expressed
in terms of the number of points, vertices, edges, line segments,
polygons, etc.

In matrix operations, the input size is commonly taken to be the
dimensions of the input matrices.

In number theory algorithms and cryptography, the number of
bits in the input is usually chosen to denote its length. The
number of words used to represent a single number may also be
chosen as well, as each word consists of a fixed number of bits.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 73/73


	Basic Concepts in Algorithmic Analysis
	Algorithm
	Theoretical Computer Science

	Search and Ordering
	Search
	Sort

	Computational Complexity
	Time Complexity
	Space Complexity

	Complexity Analysis
	Estimating Time Complexity
	Algorithm Analysis


