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Algorithm

An algorithm is a procedure that consists of a finite setstfuctions
which, given arinput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
thatterminates in a finite number of steps.
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Algorithm

An algorithm is a procedure that consists of a finite setstfuctions
which, given arinput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
thatterminates in a finite number of steps.

Theorem proving is in general not algorithmic.

Theorem verification is often algorithmic.
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Quotation from Donald E. Knuth

“Computer Science is the study of
algorithms."
——Donald E. Knuth

What is Computer Science?

Computer Science is the study of problem
solving using computing machines. The
computing machines must be physically

feasible. Donald E. Knuth
(1938 -)
Stanford University
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Remark on Algorithm

The word ‘algorithm’ is derived from the name
of Muhamma ibn M usa al-Khwarizmi
(7807-8507?), a Muslim mathematician whose
works introduced Arabic numerals and algebraic
concepts to Western mathematics.

The word ‘algebra’ stems from the title of his
bookKitab al jahr wa’l-muabala’
(American Heritage Dictionary)
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Algorithm vs. Program

A programis an implementation of an algorithm, or algorithms.

A program does not necessarily terminate.
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What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.
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What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.
o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.
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I. Theory of Computation is to understand the notion of computation
in a formal framework.

o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

lll. Computational Complexity studies how much resource is
necessary in order to solve a problem.
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What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

lll. Computational Complexity studies how much resource is
necessary in order to solve a problem.

IV. Theory of Algorithm studies how problems can be solved.
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Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.
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Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

Algorithm 1.1 LinearSearch
Input: An arrayA[1..n] of n elements and an element
Output: jif x = A[j], 1 <j < n, and 0 otherwise.

l.j«1

2. whilej < nandx # AJj]

3. j«j+1

4. end while

5. if x = A]j] then return j else return 0
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Binary Search

Algorithm 1.2 BinarySearch

Input: An arrayA[1..n] of n elements sorted in nondecreasing order
and an element

Output: jif x=A[j], 1 <j < n, and 0 otherwise.

l.low<« 1;high+n;j« O

2. while low < highandj =0

3. mid < [(low + high)/2|

4. if x=Almid] thenj < mid break

5. elseifx < A[mid] then high <— mid — 1
6. elselow + mid+1

7. end while

8. return j
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Analysis of BinarySearch

Suppose& > 35. A run of BinarySearch oA[1..14] (see below) is

[1]4[5[7]8[9]10[12[15] 22 23] 2732 35]

!
|12[15]22[23]27]32]35]
!

!
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].

In thej-th iteration, the number of elementsAfmid + 1..n] is exactly

[n/271).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm



Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].

In thej-th iteration, the number of elementsAfmid + 1..n] is exactly

[n/271).

The maximum number of iteration is theuch that n/2-1] = 1,
which is equivalent t¢g — 1 < logn < j.
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].

In thej-th iteration, the number of elementsAfmid + 1..n] is exactly
|n/2-1].

The maximum number of iteration is theuch that n/2-1] = 1,
which is equivalent t¢g — 1 < logn < j.

Hencej = [logn| + 1.
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Merging Two Sorted Lists

Algorithm 1.3 Merge

Input: An arrayA[1..m| of elements and three indicesg andr. with
1 < p < g<r <m,such that both the subarr&jp..q] and

A[g + 1..r] are sorted individually in nondecreasing order.
Output: Alp..r] contains the result of merging the two subarrays
Alp..q] andA[q + 1..r].

Comment: B[p..r] is an auxiliary array
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Merging Two Sorted Lists

lL.s—pt—qg+1,k«p
2.whiles<gandt<r
3. if Alg < Alt] then

4 BlK] < Alg
5 s+s+1
6. else
7 B[k] « At]
8 t—t+1
9. endif
10. k+k+1
11. end while

12.if s=q+ 1then Blk..r] < Alt..r]
13. elseBlk..r] < Als..q]

13.end if

13. Alp..r] < B[p..r]
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Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is
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Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

@ at least migm, n};
Eg.[2[3[6]and[7[11]13]45] 57|
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Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

@ at least migm, n};
Eg.[2[3[6]and[7[11]13]45] 57|

@ atmostm+n— 1.
E.g.\2\3\66\and\7\11\ 13\45\57\
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Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

@ at least migm, n};
Eg.[2[3[6]and[7[11]13]45] 57|

@ atmostm+n— 1.
E.g.\2\3\66\and\7\11\ 13\45\57\

If the two array sizes argn/2] and[n/2], the number of
comparisons is betwegm/2| andn — 1.
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Selection Sort

Algorithm 1.4 SelectionSort
Input: An arrayA[l..n| of n elements.
Output: A[l..n| sorted in nondecreasing order.

l.fori< lton—1
2. k<«

3. forj«<i+1lton

4. if A]j] < AKk] thenk < j

5. endfor

6. if k#itheninterchangeA[i] andA[K|
7. end for
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Analysis of SelectionSort

The number of comparisons carried out by Algorithm SeleSiart is
precisely

n(n—1)
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Insertion Sort

Algorithm 1.5 InsertionSort
Input: An arrayA[l..n| of n elements.
Output: A[l..n] sorted in nondecreasing order.

1.fori< 2ton

2. x<+ Al

3. j«i—-1

4. whilej > 0andA[j] > x
5  Aj+1 + A[j]

6 j<j—1

7. endwhile

8. Aj+1 +x

9. end for
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Analysis of InsertionSort

The number of comparisons carried out by Algorithm InseSiort is
at least

and at most
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Bottom-Up Merge Sort

Algorithm 1.6 BottomUpSort
Input: An arrayA[l..n| of n elements.
Output: A[l..n] sorted in nondecreasing order.

1l.t+1

2. whilet <n

3. s« tt«25i+0
4, whilei+t<n

5 Merge(A,i +1,i +s,i +t)

6 i+t

7. endwhile

8. if i+s< nthenMerge(Ai+ 1,i +sn)
9. end while
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An Example
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Analysis of BottomUpSort

Suppose that is a power of 2, sap = 2.

@ The outemwhile loop is executed = logn times.
@ Step 8 is never invoked. _ _
e In thej-th iteration of the outewhile loop, there are'9’ = n/2i

pairs of arrays of sizel 21.
The number of comparisons needed in the merge of two sorted
arrays in thg-th iteration is at least’i2! and at mosti2— 1.

The number of comparisons in BottomUpSort is at least
k

k
n. n nlogn
—_— J_l = —_ =

ICTEED S

j=1

@ The number of comparisons in BottomUpSort is at most
k k
n, . n
VD 1) = )= _
E (Zj)(z 1)_§ (n 2j)_nlogn n+1

j=1 j=1
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Time Complexity

Computational Complexity evolved from 1960’s, flourishadB70’s
and 1980's.

o Time is the most precious resource.
@ Important to human.
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Running Time

Running time of a program is determined by:
@ input size
@ quality of the code
o quality of the computer system
@ time complexity of the algorithm

We are mostly concerned with the behavior of the algorithichenn
investigation on large input instances.

So we may talk about the rate of growth or the order of growttinef
running time
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Running Time vs Input Size

n logn n nlogn n’ n | 2"

8 3nsec | 001pu | 002p | 006p | 051u 0.26 u
16 dnsec | 0.02p 006p | 026u | 410 65.5 1
32 5 nsec 0.03 u 0.16 p 1.02 p 32.7Tp 4.29 sec
64 6 nsec 0.06 0.38 p 410 p 262 p 5.85 cent

128 " | 001 | 013p 090 | 1638 | 0.01 sec 10%° cent
256 0.01 p 0.26 p 2.05 p 65.54 o | 0.02 sec 10°® cent
512 001 | 051pu 461 p | 26214 u | 0.13sec | 10'° cent
2048 | 001 p| 205 2253 u | 0.01 sec | 1.07 sec 10%%® cent
4096 | 001pu | 4.10u 49.15 u | 0.02sec | 8.40sec | 10'*' cent
8192 |[001p| 819p 106.50 iz | 0.07sec | 1.15 min | 10%**7 cent
16384 | 0.01p | 1638 | 22938 x| 0.27sec | 1.22hrs | 10" cent
32768 | 002p | 3277 | 491524 | 1.07sec | 9.77 hrs | 10°°*° cent
65536 | 002 | 6554 | 1048.6 . | 0.07 min | 3.3 days | 10"97% cent
131072 | 002 | 13107 p | 22282 12 | 0.29 min | 26 days | 10%94% cent
262144 | 0024 | 262.14 ;¢ | 47186 41 | 1.15 min | 7 mnths | 10735 cent
524288 | 0.02 p | 524.29 ;2 | 9961.5 1 | 4.58 min | 4.6 years | 10'578% cent
1048576 | 0.02 ¢ | 1048.60 p | 20972 i | 18.3 min | 37 years | 10°'%%%* cent
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Growth of Typical Functions

60
e -

50
o 40
|
= nlogn
g 20
:

20

10 n

log n

input size
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Elementary Operation

Definition: We denote by an “elementary operation” any
computational step whose cost is always upperbounded bystard
amount of time regardless of the input data or the algoritsedu

Example:
@ Arithmetic operations: addition, subtraction, multiglimn and
division
@ Comparisons and logical operations

@ Assignments, including assignments of pointers when, say,
traversing a list or a tree
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Order of Growth

Our main concern is about the order of growth.
@ Our estimates of time are relative rather than absolute.
o Our estimates of time are machine independent.

o Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.
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Order of Growth

Our main concern is about the order of growth.
@ Our estimates of time are relative rather than absolute.
o Our estimates of time are machine independent.

o Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.

So we are measuring tlasymptotic running time of the algorithms.
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The O-Notation

The O-notation provides anpper bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (O-Notation)
Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbef$n) is said to beD(g(n)), written

f(n) = O(g(n)), if

3c.3ne.Vn > ng.f(n) < cg(n)

Intuitively, f grows no faster than some constant tirges
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The2-Notation

TheQ-notation provides éower bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (©2-Notation)

Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbef$n) is said to be2(g(n)), written

f(n) = Q(g(n), if

3c.3np.Vn > ng.f(n) > cg(n)

Clearlyf(n) = O(g(n)) if and only if g(n) = Q(f(n)).
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The ©-Notation

The ©-notation provides an exact picture of the growth rate of the
running time of an algorithm.

Definition (©-Notation)

Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbefgn) is said to bed(g(n)), written

f(n) = ©(g(n)), if both f (n) = O(g(n)) andf(n) = 2(g(n)).

Clearlyf(n) = ©(g(n)) if and only if g(n) = ©(f(n)).
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Example

Example: f(n) = 1002 + 20n.

e Sincevn > 1,f(n) < 30n2, f(n) = O(n?);
@ Sincevn > 1,f(n) > n ( ) = Q(rP);
@ SinceVn > 1,n? < f(n) < 30, f(n) = O(n?);
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Examples

o ank+a_ 1N+ ...+ ain+ ag = O(nK).
@ logn? = O(n).

e logn® = Q(logn).

o nl=O((n+ 1),
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Examples

Consider the serieEj”:l logj. Clearly,

n n n
> “logj <) "logn = nlogn. Thus ) " logj = O(nlogn)
=1 =1 i=1

On the other hand,
n [n/2] n n
> _logj > 3~ log(3) = [n/2] log(3) = [n/2] logn — |n/2)
j=1 j=1
That is
n
) "logj = (nlogn)
j=1
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Examples

o logn! = Zlogj_ O(nlogn).

e2"=0 ( ) (log2" =n)
o nl = 0(2™). (log 2% = n?)
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Theo-Notation

Definition (o-Notation)
Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbefgn) is said to beo(g(n)), written

f(n) = o(g(n)), if

Vc.3ng.Vn > ng.f(n) < cg(n)
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Thew-Notation

Definition (w-Notation)
Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbef$n) is said to bev(g(n)), written

f(n) = w(g(n)), if

Vc.3ng.Vn > ng.f(n) > cg(n)
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Definition in Terms of Limits

Supposen_!imf(n)/g(n) exists

f(n)

o im0 # o0 mpliesf(n) = O(g(n).
o lim % £ 0 impliesf (n) = Q(g(n)).
o lim ;2—:) — cimpliesf(n) = ©(g(n)).
o lim % — 0 impliesf(n) = o(g(n)).
o lim o = oo mpliest (m) = w(g(n).
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A Helpful Analogy

e f(n) = O(g(n)) is similar tof (n) < g(n).
e f(n) = o(g(n)) is similar tof (n) < g(n).
e f(n) = O(g(n)) is similar tof (n) = g(n).
e f(n) = Q(g(n)) is similar tof (n) > g(n).
o f(n) = w(g(n)) is similar tof (n) > g(n).
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Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).
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Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).

A complexity class is an equivalence classf
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Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).

A complexity class is an equivalence classf

The equivalence classes can be ordereé lefined as follows:
f < giff f(n) = o(g(n)).
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Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).

A complexity class is an equivalence classf

The equivalence classes can be ordereé lefined as follows:
f < giff f(n) = o(g(n)).

3
1<loglogn=<logn<,/n<nz<n=<nlogn< n?<2"<nl<2"
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Space Complexity

The space complexity is defined to be the number of cetsk
space)) needed to carry out an algorithexcluding the space
allocated to hold the input.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm



Time Complexity
Computational Complexity Space Complexity

Space Complexity

The space complexity is defined to be the number of cetsk
space)) needed to carry out an algorithexcluding the space
allocated to hold the input.

The exclusion of the input space is to make sense the subkpeae
complexity.
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Space Complexity

It is clear that the work space of an algorithm can not exckeed t
running time of the algorithm. That §n) = O(T(n)).
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Space Complexity

It is clear that the work space of an algorithm can not exckeed t
running time of the algorithm. That §n) = O(T(n)).

Trade-off between time complexity and space complexity.
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Summary

Algorithm Time Complexity| Space Complexity
LINEARSEARCH
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Summary

Time Complexity

Space Complexity

Algorithm

Time Complexity

Space Complexity
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Algorithm Time Complexity| Space Complexity
LINEARSEARCH o(n) 0(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE
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LINEARSEARCH o(n) o(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE O(n), 2(ny) o(n)
SELECTIONSORT o(n?) o(1)
INSERTIONSORT|  O(r?), Q(n) o(1)
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Summary

Algorithm Time Complexity| Space Complexity
LINEARSEARCH o(n) o(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE O(n), 2(ny) o(n)
SELECTIONSORT o(n?) o(1)
INSERTIONSORT|  O(r?), Q(n) o(1)
BOTTOMUPSORT ©(nlogn) o(n)
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Optimal Algorithm

In general, if we can prove that any algorithm to solve problé
must be2(f (n)), then we call any algorithm to solve probldinin
time O(f (n)) anoptimal algorithm for problemII.
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HOW do we estimate time complexity?
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Counting the Iterations

Algorithm 1.7 Countl

Input: n = 2, for some positive integek.

Output: count = number of times Step 4 is executed.
1. count + O;

2.whilen>1

3. forj« 1ton

4 count <— count + 1

5. endfor

6. n<n/2

7. end while

8. return count

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm



Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Algorithm 1.7 Countl

Input: n = 2, for some positive integek.

Output: count = number of times Step 4 is executed.
1. count + O;

2.whilen>1

3. forj« 1ton

4 count < count + 1

5. endfor

6. n<n/2

7. end while

8. return count

while is executed + 1 times;for is executedh,n/2, ..., 1 times

| 1
j= j=
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Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integem.
Output: count = number of times Step 5 is executed.
1. count + O;
2. fori<+ 1ton
3. m<+« [n/i]
forj+«+ ltom
5 count <— count + 1
6. endfor
7. end for
8. return count

B
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Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integem.
Output: count = number of times Step 5 is executed.
1. count <— O;
2. fori<+ 1ton
3. m<+« [n/i]
4. forj«+<1tom
5 count «<— count + 1
6. endfor
7. end for
8. return count
The innerfor is executed1 In/2], Ln/3J , [n/n] times

@(nlogn)—Z——l <Z <zn:i9:®(nlogn)

i=1 i=1
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Counting the Iterations

Algorithm 1.9 Count3
Input: n= 2% kisa positive integer.
Output: count = number of times Step 6 is executed.

1. count < O;

2.fori+ 1ton

3. j« 2

4. whilej <n

5. j«j5

6 count < count + 1
7. endwhile
8. end for

9. return count
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Counting the Iterations

For each value af thewhile loop will be executed when
j=22224 ... 2%

That is, it will be executed whejn= 22°, 22 22 ... 22,

Thus, the number of iterations farhile loop isk + 1 = log logn + 1
for each iteration ofor loop.

The total output isi(loglogn + 1) = ©(nlog logn).
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Counting the Iterations

Algorithm 1.10 PSUM
Input: n= k2, k is a positive integer.

Output: JZ i for each perfect squajebetween 1 and.
i=1
1.k« /n
2.forj« 1tok
3. sum(j] < 0;
4. fori« 1toj?
5. sum[j] + sum[j] +i;
6. endfor
7. end for
8. return sum[1.- - - K]
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Counting the Iterations

Assume that/n can be computed i®(1) time.

The outer and innefor loop are executek = /n andj? times
respectively.

Thus, the number of iterations for innfer loop is

k
1oy Kk 1)6(2k+ D _ 606 — o).

The total output i®(n*>).
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Counting the Frequency of Basic Operations

Definition

An elementary operation in an algorithm is callebaaic operation if
it is of highest frequency to within a constant factor amothgtaer
elementary operations.
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Method of Choice

@ When analyzing searching and sorting algorithms, we may
choose the element comparison operation if it is an elementa
operation.

@ In matrix multiplication algorithms, we select the opevatiof
scalar multiplication.

o In traversing a linked list, we may select the “operation" of
setting or updating a pointer.

@ In graph traversals, we may choose the “action” of visiting a
node, and count the number of nodes visited.
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Master theorem

T(n) = aT([n/b]) + O(n%)

for some constanta > 0,b > 1, andd > 0,
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Master theorem

T(n) = aT([n/b]) + O(n%)
for some constanta > 0,b > 1, andd > 0, then
Oo(n%) if d > log, a

T(n) =< O(ndlogn) if d =log,a
O(n°%3)  if d < log, a.
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Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);
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Analysis for MERGESORT

The recurrence relation:
T(n) = 2T(n/2) + O(n);

By Master Theorem
T(n) = O(nlogn).
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Outline

© Complexity Analysis
o Estimating Time Complexity
@ Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm



Estimating Time Complexity
Algorithm Analysis

Complexity Analysis

Performance of INSERTIONSORT

worst case

average case

running time

best case

input size
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Worst Case Analysis

Consider the following algorithm:

1.if nis oddthenk <« BinarySearctA, x)
2. elsek <« LinearSearcfA, x)

In the worst case, the running time{log(n)) andO(n).
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Average Case Analysis

Take Algorithm InsertionSort for instance. Two assumpion
@ A[l..n] contains the numbers 1 through
o All n! permutations are equally likely.

The number of comparisons for inserting elemafit in its proper
position, say, is on average the following

i—1 mi—j+1 -1 i i1
Tl ;ZQ—T

j=2

NII—‘

Theaverage number of comparisons performed by Algorithm
InsertionSort is
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Amortized Analysis

In amortized analysis, we average out the time taken by theatipn
throughout the execution of the algorithm, and refer to &visrage as
the amortized running time of that operation.
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Amortized Analysis

In amortized analysis, we average out the time taken by theatipn
throughout the execution of the algorithm, and refer to &visrage as
the amortized running time of that operation.

Amortized analysis guarantees the average cost of thetaperand
thus the algorithmin the worst case.
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Amortized Analysis

In amortized analysis, we average out the time taken by theatipn
throughout the execution of the algorithm, and refer to &visrage as
the amortized running time of that operation.

Amortized analysis guarantees the average cost of thetaperand
thus the algorithmin the worst case.

This is to be contrasted with the average time analysis irchvtiie
average is taken over all instances of the same size. Maraovike
the average case analysis, no assumptions about the gitgbabi
distribution of the input are needed.
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Amortized Analysis

Consider the following algorithm:

l.forj<« 1lton

2. x<«+ A]j]

3. Appendx to the list

4. if xis eventhen

5.  while pred(x) is odddo deletepred(x)
6. endif

7. end for
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An Example

(5]7[3]4[9]8][7]3]

(a)—~{1o11 (b)Y () ~[BO-A{SH-{EY
(d)~OR{BI-ERHIEY (e)~{I0{Bh-{EH-{EH{EN
() —(oR={1aV (g)—>{I0 ]

(h)—~{To (AR E={1EN (i) == A=Y
() ~{O0= @B (k)= {E (B0 =B
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EWAIS

Worst Case Analysis If no input numbers are even, or if all even
numbers are at the beginning, then no elements are deleigtheace
each iteration of théor loop takes constant time. However, if the
input hasn — 1 odd integers followed by one even integer, then the
number of deletions is — 1, and the number aofhile loops isn — 1.
The overall running time i©(n?).

Amortized Analysis: The total number of elementary operations of
insertions and deletions is betweeand 2 — 1. So the time
complexity isO(n). It follows that the time used to delete each
element i90(1) amortized time.
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Input Size and Problem Instance

Suppose that the following integer

21024 -1

is a legitimate input of an algorithm. What is tdee of the input?
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Input Size and Problem Instance

Algorithm 1.9 FIRST
Input: A positive integem and an arrayA[1..n] with Afj] = j for
1<j<n
Output: Y1 Afj].
1. sum+< 0O;
2.forj« 1ton
3. sum < sum+ A[j]
4. end for
5. return sum

The input size is1. The time complexity i(n). Itis linear time.
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Input Size and Problem Instance

Algorithm 1.10 SECOND
Input: A positive integem.
Output: >, j.

1. sum <« O;
2.forj« 1ton

3. sUm< sum+j
4. end for

5. return sum

The input size ik = |logn| + 1. The time complexity i©(2X). It is
exponential time.
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Commonly Used Measures

@ In sorting and searching problems, we use the number ofentri
in the array or list as the input size.

o In graph algorithms, the input size usually refers to the neim
of vertices or edges in the graph, or both.

@ In computational geometry, the size of input is usually egped
in terms of the number of points, vertices, edges, line segsne
polygons, etc.

@ In matrix operations, the input size is commonly taken toHee t
dimensions of the input matrices.

@ In number theory algorithms and cryptography, the number of
bits in the input is usually chosen to denote its length. The
number of words used to represent a single number may also be
chosen as well, as each word consists of a fixed number of bits.
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