Introduction to Algorithmi

Xiaofeng Gao

Department of Computer Science and Engineering
Shanghai Jiao Tong University, P.R.China

X033533-Algorithm: Analysis and Theory

* Special thanks is given to Prof. Yuxi Fu for sharing his téagimaterials.
X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 1/73

Outline

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

Outline

@ Basic Concepts in Algorithmic Analysis
@ Algorithm
@ Theoretical Computer Science

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

Algorithm

An algorithm is a procedure that consists of a finite setstfuctions
which, given arinput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
thatterminates in a finite number of steps.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

Algorithm

An algorithm is a procedure that consists of a finite setstfuctions
which, given arinput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
thatterminates in a finite number of steps.

Theorem proving is in general not algorithmic.

Theorem verification is often algorithmic.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

Quotation from Donald E. Knuth

“Computer Science is the study of
algorithms."
——Donald E. Knuth

What is Computer Science?

Computer Science is the study of problem
solving using computing machines. The
computing machines must be physically

feasible. Donald E. Knuth
(1938 -)
Stanford University

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis

Algorithm
Theoretical Computer Science

Remark on Algorithm

The word ‘algorithm’ is derived from the name
of Muhamma ibn M usa al-Khwarizmi
(7807-8507?), a Muslim mathematician whose
works introduced Arabic numerals and algebraic
concepts to Western mathematics.

The word ‘algebra’ stems from the title of his
bookKitab al jahr wa’l-muabala’
(American Heritage Dictionary)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

Algorithm vs. Program

A programis an implementation of an algorithm, or algorithms.

A program does not necessarily terminate.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

Outline

@ Basic Concepts in Algorithmic Analysis
@ Algorithm
@ Theoretical Computer Science

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.
o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

lll. Computational Complexity studies how much resource is
necessary in order to solve a problem.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

o Some well known models are: the general recursive function
model of Godel and Church, Church¥scalculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

lll. Computational Complexity studies how much resource is
necessary in order to solve a problem.

IV. Theory of Algorithm studies how problems can be solved.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Outline

© Search and Ordering
@ Search
@ Sort

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

Algorithm 1.1 LinearSearch
Input: An arrayA[1..n] of n elements and an element
Output: jif x = A[j], 1 <j < n, and 0 otherwise.

l.j«1

2. whilej < nandx # AJj]

3. j«j+1

4. end while

5. if x = A]j] then return j else return 0

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Binary Search

Algorithm 1.2 BinarySearch

Input: An arrayA[1..n] of n elements sorted in nondecreasing order
and an element

Output: jif x=A[j], 1 <j < n, and 0 otherwise.

l.low<« 1;high+n;j« O

2. while low < highandj =0

3. mid < [(low + high)/2|

4. if x=Almid] thenj < mid break

5. elseifx < A[mid] then high <— mid — 1
6. elselow + mid+1

7. end while

8. return j

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

Suppose& > 35. A run of BinarySearch oA[1..14] (see below) is

[1]4[5[7]8[9]10[12[15] 22 23] 2732 35]

!
|12[15]22[23]27]32]35]
!

!

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].

In thej-th iteration, the number of elementsAfmid + 1..n] is exactly

[n/271).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].

In thej-th iteration, the number of elementsAfmid + 1..n] is exactly

[n/271).

The maximum number of iteration is theuch that n/2-1] = 1,
which is equivalent t¢g — 1 < logn < j.

X033533-Algorithm@SJTU Xiaofeng Gao

Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximunxif> A[n].
The number of comparisons is the same as the number of desati

In the second iteration, the number of elementa[mid + 1..n| is
exactly |n/2].

In thej-th iteration, the number of elementsAfmid + 1..n] is exactly
|n/2-1].

The maximum number of iteration is theuch that n/2-1] = 1,
which is equivalent t¢g — 1 < logn < j.

Hencej = [logn| + 1.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Merging Two Sorted Lists

Algorithm 1.3 Merge

Input: An arrayA[1..m| of elements and three indicesg andr. with
1 < p < g<r <m,such that both the subarr&jp..q] and

A[g + 1..r] are sorted individually in nondecreasing order.
Output: Alp..r] contains the result of merging the two subarrays
Alp..q] andA[q + 1..r].

Comment: B[p..r] is an auxiliary array

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Merging Two Sorted Lists

lL.s—pt—qg+1,k«p
2.whiles<gandt<r
3. if Alg < Alt] then

4 BlK] < Alg
5 s+s+1
6. else
7 B[k] « At]
8 t—t+1
9. endif
10. k+k+1
11. end while

12.if s=q+ 1then Blk..r] < Alt..r]
13. elseBlk..r] < Als..q]

13.end if

13. Alp..r] < B[p..r]

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

@ at least migm, n};
Eg.[2[3[6]and[7[11]13]45] 57|

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

@ at least migm, n};
Eg.[2[3[6]and[7[11]13]45] 57|

@ atmostm+n— 1.
E.g.\2\3\66\and\7\11\ 13\45\57\

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of Merge

SupposeéA[p..q] hasm elements and[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

@ at least migm, n};
Eg.[2[3[6]and[7[11]13]45] 57|

@ atmostm+n— 1.
E.g.\2\3\66\and\7\11\ 13\45\57\

If the two array sizes argn/2] and[n/2], the number of
comparisons is betwegm/2| andn — 1.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Outline

© Search and Ordering
@ Search
@ Sort

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Selection Sort

Algorithm 1.4 SelectionSort
Input: An arrayA[l..n| of n elements.
Output: A[l..n| sorted in nondecreasing order.

l.fori< lton—1
2. k<«

3. forj«<i+1lton

4. if A]j] < AKk] thenk < j

5. endfor

6. if k#itheninterchangeA[i] andA[K|
7. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of SelectionSort

The number of comparisons carried out by Algorithm SeleSiart is
precisely

n(n—1)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Insertion Sort

Algorithm 1.5 InsertionSort
Input: An arrayA[l..n| of n elements.
Output: A[l..n] sorted in nondecreasing order.

1.fori< 2ton

2. x<+ Al

3. j«i—-1

4. whilej > 0andA[j] > x
5 Aj+1 + A[j]

6 j<j—1

7. endwhile

8. Aj+1 +x

9. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of InsertionSort

The number of comparisons carried out by Algorithm InseSiort is
at least

and at most

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Bottom-Up Merge Sort

Algorithm 1.6 BottomUpSort
Input: An arrayA[l..n| of n elements.
Output: A[l..n] sorted in nondecreasing order.

1l.t+1

2. whilet <n

3. s« tt«25i+0
4, whilei+t<n

5 Merge(A,i +1,i +s,i +t)

6 i+t

7. endwhile

8. if i+s< nthenMerge(Ai+ 1,i +sn)
9. end while

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

An Example

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Search and Ordering Search
Sort

Analysis of BottomUpSort

Suppose that is a power of 2, sap = 2.

@ The outemwhile loop is executed = logn times.
@ Step 8 is never invoked. _ _
e In thej-th iteration of the outewhile loop, there are'9’ = n/2i

pairs of arrays of sizel 21.
The number of comparisons needed in the merge of two sorted
arrays in thg-th iteration is at least’i2! and at mosti2— 1.

The number of comparisons in BottomUpSort is at least
k

k
n. n nlogn
—_— J_l = —_ =

ICTEED S

j=1

@ The number of comparisons in BottomUpSort is at most
k k
n, . n
VD 1) =)= _
E (Zj)(z 1)_§ (n 2j)_nlogn n+1

j=1 j=1

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Outline

© Computational Complexity
@ Time Complexity
@ Space Complexity

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Time Complexity

Computational Complexity evolved from 1960’s, flourishadB70’s
and 1980's.

o Time is the most precious resource.
@ Important to human.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Running Time

Running time of a program is determined by:
@ input size
@ quality of the code
o quality of the computer system
@ time complexity of the algorithm

We are mostly concerned with the behavior of the algorithichenn
investigation on large input instances.

So we may talk about the rate of growth or the order of growttinef
running time

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Running Time vs Input Size

n logn n nlogn n’ n | 2"

8 3nsec | 001pu | 002p | 006p | 051u 0.26 u
16 dnsec | 0.02p 006p | 026u | 410 65.5 1
32 5 nsec 0.03 u 0.16 p 1.02 p 32.7Tp 4.29 sec
64 6 nsec 0.06 0.38 p 410 p 262 p 5.85 cent

128 " | 001 | 013p 090 | 1638 | 0.01 sec 10%° cent
256 0.01 p 0.26 p 2.05 p 65.54 o | 0.02 sec 10°® cent
512 001 | 051pu 461 p | 26214 u | 0.13sec | 10'° cent
2048 | 001 p| 205 2253 u | 0.01 sec | 1.07 sec 10%%® cent
4096 | 001pu | 4.10u 49.15 u | 0.02sec | 8.40sec | 10'*' cent
8192 |[001p| 819p 106.50 iz | 0.07sec | 1.15 min | 10%**7 cent
16384 | 0.01p | 1638 | 22938 x| 0.27sec | 1.22hrs | 10" cent
32768 | 002p | 3277 | 491524 | 1.07sec | 9.77 hrs | 10°°*° cent
65536 | 002 | 6554 | 1048.6 . | 0.07 min | 3.3 days | 10"97% cent
131072 | 002 | 13107 p | 22282 12 | 0.29 min | 26 days | 10%94% cent
262144 | 0024 | 262.14 ;¢ | 47186 41 | 1.15 min | 7 mnths | 10735 cent
524288 | 0.02 p | 524.29 ;2 | 9961.5 1 | 4.58 min | 4.6 years | 10'578% cent
1048576 | 0.02 ¢ | 1048.60 p | 20972 i | 18.3 min | 37 years | 10°'%%%* cent

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Growth of Typical Functions

60
e -

50
o 40
|
= nlogn
g 20
:

20

10 n

log n

input size

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Elementary Operation

Definition: We denote by an “elementary operation” any
computational step whose cost is always upperbounded bystard
amount of time regardless of the input data or the algoritsedu

Example:
@ Arithmetic operations: addition, subtraction, multiglimn and
division
@ Comparisons and logical operations

@ Assignments, including assignments of pointers when, say,
traversing a list or a tree

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Order of Growth

Our main concern is about the order of growth.
@ Our estimates of time are relative rather than absolute.
o Our estimates of time are machine independent.

o Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Order of Growth

Our main concern is about the order of growth.
@ Our estimates of time are relative rather than absolute.
o Our estimates of time are machine independent.

o Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.

So we are measuring tlasymptotic running time of the algorithms.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

The O-Notation

The O-notation provides anpper bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (O-Notation)
Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbef$n) is said to beD(g(n)), written

f(n) = O(g(n)), if

3c.3ne.Vn > ng.f(n) < cg(n)

Intuitively, f grows no faster than some constant tirges

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

The2-Notation

TheQ-notation provides éower bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (©2-Notation)

Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbef$n) is said to be2(g(n)), written

f(n) = Q(g(n), if

3c.3np.Vn > ng.f(n) > cg(n)

Clearlyf(n) = O(g(n)) if and only if g(n) = Q(f(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

The ©-Notation

The ©-notation provides an exact picture of the growth rate of the
running time of an algorithm.

Definition (©-Notation)

Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbefgn) is said to bed(g(n)), written

f(n) = ©(g(n)), if both f (n) = O(g(n)) andf(n) = 2(g(n)).

Clearlyf(n) = ©(g(n)) if and only if g(n) = ©(f(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Example

Example: f(n) = 1002 + 20n.

e Sincevn > 1,f(n) < 30n2, f(n) = O(n?);
@ Sincevn > 1,f(n) > n () = Q(rP);
@ SinceVn > 1,n? < f(n) < 30, f(n) = O(n?);

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Examples

o ank+a_ 1N+ ...+ ain+ ag = O(nK).
@ logn? = O(n).

e logn® = Q(logn).

o nl=O((n+ 1),

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Examples

Consider the serieEj”:l logj. Clearly,

n n n
> “logj <) "logn = nlogn. Thus) " logj = O(nlogn)
=1 =1 i=1

On the other hand,
n [n/2] n n
> _logj > 3~ log(3) = [n/2] log(3) = [n/2] logn — |n/2)
j=1 j=1
That is
n
) "logj = (nlogn)
j=1

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Examples

o logn! = Zlogj_ O(nlogn).

e2"=0 () (log2" =n)
o nl = 0(2™). (log 2% = n?)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Theo-Notation

Definition (o-Notation)
Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbefgn) is said to beo(g(n)), written

f(n) = o(g(n)), if

Vc.3ng.Vn > ng.f(n) < cg(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Thew-Notation

Definition (w-Notation)
Letf(n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbef$n) is said to bev(g(n)), written

f(n) = w(g(n)), if

Vc.3ng.Vn > ng.f(n) > cg(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Definition in Terms of Limits

Supposen_!imf(n)/g(n) exists

f(n)

o im0 # o0 mpliesf(n) = O(g(n).
o lim % £ 0 impliesf (n) = Q(g(n)).
o lim ;2—:) — cimpliesf(n) = ©(g(n)).
o lim % — 0 impliesf(n) = o(g(n)).
o lim o = oo mpliest (m) = w(g(n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

A Helpful Analogy

e f(n) = O(g(n)) is similar tof (n) < g(n).
e f(n) = o(g(n)) is similar tof (n) < g(n).
e f(n) = O(g(n)) is similar tof (n) = g(n).
e f(n) = Q(g(n)) is similar tof (n) > g(n).
o f(n) = w(g(n)) is similar tof (n) > g(n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).

A complexity class is an equivalence classf

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).

A complexity class is an equivalence classf

The equivalence classes can be ordereé lefined as follows:
f < giff f(n) = o(g(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Complexity Classes

An equivalence relatiofR on the set of complexity functions is
defined as followsf Rg if and only if f (n) = ©(g(n)).

A complexity class is an equivalence classf

The equivalence classes can be ordereé lefined as follows:
f < giff f(n) = o(g(n)).

3
1<loglogn=<logn<,/n<nz<n=<nlogn< n?<2"<nl<2"

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Outline

© Computational Complexity
@ Time Complexity
@ Space Complexity

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Space Complexity

The space complexity is defined to be the number of cetsk
space)) needed to carry out an algorithexcluding the space
allocated to hold the input.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Space Complexity

The space complexity is defined to be the number of cetsk
space)) needed to carry out an algorithexcluding the space
allocated to hold the input.

The exclusion of the input space is to make sense the subkpeae
complexity.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Space Complexity

It is clear that the work space of an algorithm can not exckeed t
running time of the algorithm. That §n) = O(T(n)).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Space Complexity

It is clear that the work space of an algorithm can not exckeed t
running time of the algorithm. That §n) = O(T(n)).

Trade-off between time complexity and space complexity.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Summary

Algorithm Time Complexity| Space Complexity
LINEARSEARCH

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Computational Complexity

Summary

Time Complexity

Space Complexity

Algorithm

Time Complexity

Space Complexity

LINEARSEARCH

O(n)

o(1)

BINARYSEARCH

X033533-Algorithm@SJTU

Xiaofeng Gao Introduction to Algorithm

Computational Complexity

Summary

Time Complexity

Space Complexity

X033533-Algorithm@SJTU

Algorithm Time Complexity| Space Complexity
LINEARSEARCH o(n) 0(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE

Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Summary

Algorithm Time Complexity| Space Complexity
LINEARSEARCH o(n) 0(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE O(n), 2(ny) o(n)
SELECTIONSORT]

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Summary

Algorithm Time Complexity| Space Complexity
LINEARSEARCH o(n) 0(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE O(n), 2(ny) o(n)
SELECTIONSORT o(n?) o(1)
INSERTIONSORT

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Summary

Algorithm Time Complexity| Space Complexity
LINEARSEARCH o(n) o(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE O(n), 2(ny) o(n)
SELECTIONSORT o(n?) o(1)
INSERTIONSORT| O(r?), Q(n) o(1)
BOTTOMUPSORT

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Summary

Algorithm Time Complexity| Space Complexity
LINEARSEARCH o(n) o(1)
BINARYSEARCH | O(logn), ©(1) o(1)

MERGE O(n), 2(ny) o(n)
SELECTIONSORT o(n?) o(1)
INSERTIONSORT| O(r?), Q(n) o(1)
BOTTOMUPSORT ©(nlogn) o(n)

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Time Complexity
Computational Complexity Space Complexity

Optimal Algorithm

In general, if we can prove that any algorithm to solve problé
must be2(f (n)), then we call any algorithm to solve probldinin
time O(f (n)) anoptimal algorithm for problemII.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Outline

© Complexity Analysis
o Estimating Time Complexity
@ Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analy:

Complexity Analysis

HOW do we estimate time complexity?

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Algorithm 1.7 Countl

Input: n = 2, for some positive integek.

Output: count = number of times Step 4 is executed.
1. count + O;

2.whilen>1

3. forj« 1ton

4 count <— count + 1

5. endfor

6. n<n/2

7. end while

8. return count

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Algorithm 1.7 Countl

Input: n = 2, for some positive integek.

Output: count = number of times Step 4 is executed.
1. count + O;

2.whilen>1

3. forj« 1ton

4 count < count + 1

5. endfor

6. n<n/2

7. end while

8. return count

while is executed + 1 times;for is executedh,n/2, ..., 1 times

| 1
j= j=

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integem.
Output: count = number of times Step 5 is executed.
1. count + O;
2. fori<+ 1ton
3. m<+« [n/i]
forj+«+ ltom
5 count <— count + 1
6. endfor
7. end for
8. return count

B

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integem.
Output: count = number of times Step 5 is executed.
1. count <— O;
2. fori<+ 1ton
3. m<+« [n/i]
4. forj«+<1tom
5 count «<— count + 1
6. endfor
7. end for
8. return count
The innerfor is executed1 In/2], Ln/3J , [n/n] times

@(nlogn)—Z——l <Z <zn:i9:®(nlogn)

i=1 i=1

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Algorithm 1.9 Count3
Input: n= 2% kisa positive integer.
Output: count = number of times Step 6 is executed.

1. count < O;

2.fori+ 1ton

3. j« 2

4. whilej <n

5. j«j5

6 count < count + 1
7. endwhile
8. end for

9. return count

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

For each value af thewhile loop will be executed when
j=22224 ... 2%

That is, it will be executed whejn= 22°, 22 22 ... 22,

Thus, the number of iterations farhile loop isk + 1 = log logn + 1
for each iteration ofor loop.

The total output isi(loglogn + 1) = ©(nlog logn).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Algorithm 1.10 PSUM
Input: n= k2, k is a positive integer.

Output: JZ i for each perfect squajebetween 1 and.
i=1
1.k« /n
2.forj« 1tok
3. sum(j] < 0;
4. fori« 1toj?
5. sum[j] + sum[j] +i;
6. endfor
7. end for
8. return sum[1.- - - K]

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Counting the Iterations

Assume that/n can be computed i®(1) time.

The outer and innefor loop are executek = /n andj? times
respectively.

Thus, the number of iterations for innfer loop is

k
1oy Kk 1)6(2k+ D _ 606 — o).

The total output i®(n*>).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis

Complexity Analysis

Counting the Frequency of Basic Operations

Definition

An elementary operation in an algorithm is callebaaic operation if
it is of highest frequency to within a constant factor amothgtaer
elementary operations.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Method of Choice

@ When analyzing searching and sorting algorithms, we may
choose the element comparison operation if it is an elementa
operation.

@ In matrix multiplication algorithms, we select the opevatiof
scalar multiplication.

o In traversing a linked list, we may select the “operation" of
setting or updating a pointer.

@ In graph traversals, we may choose the “action” of visiting a
node, and count the number of nodes visited.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Master theorem

T(n) = aT([n/b]) + O(n%)

for some constanta > 0,b > 1, andd > 0,

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Master theorem

T(n) = aT([n/b]) + O(n%)
for some constanta > 0,b > 1, andd > 0, then
Oo(n%) if d > log, a

T(n) =< O(ndlogn) if d =log,a
O(n°%3) if d < log, a.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Analysis for MERGESORT

The recurrence relation:
T(n) = 2T(n/2) + O(n);

By Master Theorem
T(n) = O(nlogn).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Outline

© Complexity Analysis
o Estimating Time Complexity
@ Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis

Complexity Analysis

Performance of INSERTIONSORT

worst case

average case

running time

best case

input size

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Worst Case Analysis

Consider the following algorithm:

1.if nis oddthenk <« BinarySearctA, x)
2. elsek <« LinearSearcfA, x)

In the worst case, the running time{log(n)) andO(n).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Average Case Analysis

Take Algorithm InsertionSort for instance. Two assumpion
@ A[l..n] contains the numbers 1 through
o All n! permutations are equally likely.

The number of comparisons for inserting elemafit in its proper
position, say, is on average the following

i—1 mi—j+1 -1 i i1
Tl ;ZQ—T

j=2

NII—‘

Theaverage number of comparisons performed by Algorithm
InsertionSort is

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Amortized Analysis

In amortized analysis, we average out the time taken by theatipn
throughout the execution of the algorithm, and refer to &visrage as
the amortized running time of that operation.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Amortized Analysis

In amortized analysis, we average out the time taken by theatipn
throughout the execution of the algorithm, and refer to &visrage as
the amortized running time of that operation.

Amortized analysis guarantees the average cost of thetaperand
thus the algorithmin the worst case.

Xiaofeng Gao Introduction to Algorithm

X033533-Algorithm@SJTU

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Amortized Analysis

In amortized analysis, we average out the time taken by theatipn
throughout the execution of the algorithm, and refer to &visrage as
the amortized running time of that operation.

Amortized analysis guarantees the average cost of thetaperand
thus the algorithmin the worst case.

This is to be contrasted with the average time analysis irchvtiie
average is taken over all instances of the same size. Maraovike
the average case analysis, no assumptions about the gitgbabi
distribution of the input are needed.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Amortized Analysis

Consider the following algorithm:

l.forj<« 1lton

2. x<«+ A]j]

3. Appendx to the list

4. if xis eventhen

5. while pred(x) is odddo deletepred(x)
6. endif

7. end for

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

An Example

(5]7[3]4[9]8][7]3]

(a)—~{1o11 (b)Y () ~[BO-A{SH-{EY
(d)~OR{BI-ERHIEY (e)~{I0{Bh-{EH-{EH{EN
() —(oR={1aV (g)—>{I0]

(h)—~{To (AR E={1EN (i) == A=Y
() ~{O0= @B (k)= {E (B0 =B

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

EWAIS

Worst Case Analysis If no input numbers are even, or if all even
numbers are at the beginning, then no elements are deleigtheace
each iteration of théor loop takes constant time. However, if the
input hasn — 1 odd integers followed by one even integer, then the
number of deletions is — 1, and the number aofhile loops isn — 1.
The overall running time i©(n?).

Amortized Analysis: The total number of elementary operations of
insertions and deletions is betweeand 2 — 1. So the time
complexity isO(n). It follows that the time used to delete each
element i90(1) amortized time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Input Size and Problem Instance

Suppose that the following integer

21024 -1

is a legitimate input of an algorithm. What is tdee of the input?

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Input Size and Problem Instance

Algorithm 1.9 FIRST
Input: A positive integem and an arrayA[1..n] with Afj] = j for
1<j<n
Output: Y1 Afj].
1. sum+< 0O;
2.forj« 1ton
3. sum < sum+ A[j]
4. end for
5. return sum

The input size is1. The time complexity i(n). Itis linear time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Input Size and Problem Instance

Algorithm 1.10 SECOND
Input: A positive integem.
Output: >, j.

1. sum <« O;
2.forj« 1ton

3. sUm< sum+j
4. end for

5. return sum

The input size ik = |logn| + 1. The time complexity i©(2X). It is
exponential time.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

Estimating Time Complexity
Algorithm Analysis
Complexity Analysis

Commonly Used Measures

@ In sorting and searching problems, we use the number ofentri
in the array or list as the input size.

o In graph algorithms, the input size usually refers to the neim
of vertices or edges in the graph, or both.

@ In computational geometry, the size of input is usually egped
in terms of the number of points, vertices, edges, line segsne
polygons, etc.

@ In matrix operations, the input size is commonly taken toHee t
dimensions of the input matrices.

@ In number theory algorithms and cryptography, the number of
bits in the input is usually chosen to denote its length. The
number of words used to represent a single number may also be
chosen as well, as each word consists of a fixed number of bits.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm

	Basic Concepts in Algorithmic Analysis
	Algorithm
	Theoretical Computer Science

	Search and Ordering
	Search
	Sort

	Computational Complexity
	Time Complexity
	Space Complexity

	Complexity Analysis
	Estimating Time Complexity
	Algorithm Analysis

