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Algorithm

An algorithm is a procedure that consists of a finite set ofinstructions
which, given aninput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
that terminates in a finite number of steps.
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Algorithm

An algorithm is a procedure that consists of a finite set ofinstructions
which, given aninput from some set of possible inputs, enables us to
obtain anoutput through a systematic execution of the instructions
that terminates in a finite number of steps.

Theorem proving is in general not algorithmic.

Theorem verification is often algorithmic.
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Quotation from Donald E. Knuth

“Computer Science is the study of
algorithms."

——Donald E. Knuth

What is Computer Science?

Computer Science is the study of problem
solving using computing machines. The
computing machines must be physically
feasible. Donald E. Knuth

(1938 – )
Stanford University
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Remark on Algorithm

The word ‘algorithm’ is derived from the name
of Muhamma ibn M ūsā al-Khwārizmī
(780?-850?), a Muslim mathematician whose
works introduced Arabic numerals and algebraic
concepts to Western mathematics.

The word ‘algebra’ stems from the title of his
bookKitab al jahr wa’l-muq̄abala".

(American Heritage Dictionary)
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Algorithm vs. Program

A program is an implementation of an algorithm, or algorithms.

A program does not necessarily terminate.
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What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

Some well known models are: the general recursive function
model of Gödel and Church, Church’sλ-calculus, Post system
model, Turing machine model, RAM, etc.
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in a formal framework.
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II. Computability Theory studies what problems can be solved by
computers.
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I. Theory of Computation is to understand the notion of computation
in a formal framework.

Some well known models are: the general recursive function
model of Gödel and Church, Church’sλ-calculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

III. Computational Complexity studies how much resource is
necessary in order to solve a problem.
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What is Computer Science?

I. Theory of Computation is to understand the notion of computation
in a formal framework.

Some well known models are: the general recursive function
model of Gödel and Church, Church’sλ-calculus, Post system
model, Turing machine model, RAM, etc.

II. Computability Theory studies what problems can be solved by
computers.

III. Computational Complexity studies how much resource is
necessary in order to solve a problem.

IV. Theory of Algorithm studies how problems can be solved.
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Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.
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Linear Search, First Example of an Algorithm

The problem to start with: Search and Ordering.

Algorithm 1.1 LinearSearch
Input: An arrayA[1..n] of n elements and an elementx.
Output: j if x = A[j], 1≤ j ≤ n, and 0 otherwise.

1. j← 1
2. while j < n and x 6= A[j]
3. j← j + 1
4. end while
5. if x = A[j] then return j else return 0
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Binary Search

Algorithm 1.2 BinarySearch
Input: An arrayA[1..n] of n elements sorted in nondecreasing order
and an elementx.
Output: j if x = A[j], 1≤ j ≤ n, and 0 otherwise.

1. low← 1; high← n; j← 0
2. while low ≤ high and j = 0
3. mid ← ⌊(low + high)/2⌋
4. if x = A[mid] then j← mid break
5. else ifx < A[mid] then high← mid − 1
6. elselow← mid + 1
7. end while
8. return j
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Analysis of BinarySearch

Supposex ≥ 35. A run of BinarySearch onA[1..14] (see below) is

1 4 5 7 8 9 10 12 15 22 23 27 32 35

↓

12 15 22 23 27 32 35

↓

27 32 35

↓

35
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 14/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.
In thej-th iteration, the number of elements inA[mid + 1..n] is exactly
⌊n/2j−1⌋.
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.
In thej-th iteration, the number of elements inA[mid + 1..n] is exactly
⌊n/2j−1⌋.
The maximum number of iteration is thej such that⌊n/2j−1⌋ = 1,
which is equivalent toj− 1≤ logn < j.
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Analysis of BinarySearch

The complexity of the algorithm is the number of comparison.

The number of comparison is maximum ifx ≥ A[n].
The number of comparisons is the same as the number of iterations.

In the second iteration, the number of elements inA[mid + 1..n] is
exactly⌊n/2⌋.
In thej-th iteration, the number of elements inA[mid + 1..n] is exactly
⌊n/2j−1⌋.
The maximum number of iteration is thej such that⌊n/2j−1⌋ = 1,
which is equivalent toj− 1≤ logn < j.

Hencej = ⌊logn⌋+ 1.
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Merging Two Sorted Lists

Algorithm 1.3 Merge
Input: An arrayA[1..m] of elements and three indicesp, q andr. with
1≤ p ≤ q < r ≤ m, such that both the subarrayA[p..q] and
A[q + 1..r] are sorted individually in nondecreasing order.
Output: A[p..r] contains the result of merging the two subarrays
A[p..q] andA[q + 1..r].
Comment: B[p..r] is an auxiliary array

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 15/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Search
Sort

Merging Two Sorted Lists

1. s← p; t← q + 1; k ← p
2. while s ≤ q and t ≤ r
3. if A[s] ≤ A[t] then
4. B[k]← A[s]
5. s← s + 1
6. else
7. B[k]← A[t]
8. t← t + 1
9. end if

10. k← k + 1
11. end while
12. if s = q + 1 then B[k..r]← A[t..r]
13. elseB[k..r]← A[s..q]
13. end if
13. A[p..r]← B[p..r]
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Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is
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Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57
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Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57

at mostm + n− 1.

E.g. 2 3 66 and 7 11 13 45 57
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Analysis of Merge

SupposeA[p..q] hasm elements andA[q + 1..r] hasn elements. The
number of comparisons done by Algorithm Merge is

at least min{m, n};
E.g. 2 3 6 and 7 11 13 45 57

at mostm + n− 1.

E.g. 2 3 66 and 7 11 13 45 57

If the two array sizes are⌊n/2⌋ and⌈n/2⌉, the number of
comparisons is between⌊n/2⌋ andn− 1.
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Selection Sort

Algorithm 1.4 SelectionSort
Input: An arrayA[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 1 to n− 1
2. k← i
3. for j← i + 1 to n
4. if A[j] < A[k] then k← j
5. end for
6. if k 6= i then interchangeA[i] andA[k]
7. end for
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Analysis of SelectionSort

The number of comparisons carried out by Algorithm SelectionSort is
precisely

n−1
∑

i=1

(n− i) =
n(n − 1)

2
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Insertion Sort

Algorithm 1.5 InsertionSort
Input: An arrayA[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. for i← 2 to n
2. x← A[i]
3. j← i− 1
4. while j > 0 and A[j] > x
5. A[j + 1]← A[j]
6. j← j− 1
7. end while
8. A[j + 1]← x
9. end for
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Analysis of InsertionSort

The number of comparisons carried out by Algorithm InsertionSort is
at least

n− 1

and at most
n

∑

i=2

(i− 1) =
n(n − 1)

2
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Bottom-Up Merge Sort

Algorithm 1.6 BottomUpSort
Input: An arrayA[1..n] of n elements.
Output: A[1..n] sorted in nondecreasing order.

1. t← 1
2. while t < n
3. s← t; t← 2s; i← 0
4. while i + t ≤ n
5. Merge(A, i + 1, i + s, i + t)
6. i← i + t
7. end while
8. if i + s < n then Merge(A, i + 1, i + s, n)
9. end while
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Analysis of BottomUpSort

Suppose thatn is a power of 2, sayn = 2k.
The outerwhile loop is executedk = logn times.
Step 8 is never invoked.
In the j-th iteration of the outerwhile loop, there are 2k−j = n/2j

pairs of arrays of size 2j−1.
The number of comparisons needed in the merge of two sorted
arrays in thej-th iteration is at least 2j−1 and at most 2j − 1.
The number of comparisons in BottomUpSort is at least

k
∑

j=1

(
n
2j )2

j−1 =
k

∑

j=1

n
2
=

n logn
2

The number of comparisons in BottomUpSort is at most
k

∑

j=1

(
n
2j )(2

j − 1) =
k

∑

j=1

(n− n
2j ) = n logn− n + 1
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Time Complexity

Computational Complexity evolved from 1960’s, flourished in 1970’s
and 1980’s.

Time is the most precious resource.

Important to human.
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Running Time

Running time of a program is determined by:

input size

quality of the code

quality of the computer system

time complexity of the algorithm

We are mostly concerned with the behavior of the algorithm under
investigation on large input instances.

So we may talk about the rate of growth or the order of growth ofthe
running time
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Elementary Operation

Definition: We denote by an “elementary operation" any
computational step whose cost is always upperbounded by a constant
amount of time regardless of the input data or the algorithm used.

Example:

Arithmetic operations: addition, subtraction, multiplication and
division

Comparisons and logical operations

Assignments, including assignments of pointers when, say,
traversing a list or a tree
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Order of Growth

Our main concern is about the order of growth.

Our estimates of time are relative rather than absolute.

Our estimates of time are machine independent.

Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.
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Order of Growth

Our main concern is about the order of growth.

Our estimates of time are relative rather than absolute.

Our estimates of time are machine independent.

Our estimates of time are about the behavior of the algorithm
under investigation on large input instances.

So we are measuring theasymptotic running time of the algorithms.
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TheO-Notation

TheO-notation provides anupper bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (O-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beO(g(n)), written
f (n) = O(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≤ cg(n)

Intuitively, f grows no faster than some constant timesg.
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TheΩ-Notation

TheΩ-notation provides alower bound of the running time; it may
not be indicative of the actual running time of an algorithm.

Definition (Ω-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beΩ(g(n)), written
f (n) = Ω(g(n)), if

∃c.∃n0.∀n ≥ n0.f (n) ≥ cg(n)

Clearly f (n) = O(g(n)) if and only if g(n) = Ω(f (n)).
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TheΘ-Notation

TheΘ-notation provides an exact picture of the growth rate of the
running time of an algorithm.

Definition (Θ-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beΘ(g(n)), written
f (n) = Θ(g(n)), if both f (n) = O(g(n)) andf (n) = Ω(g(n)).

Clearly f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n)).
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Example

Example: f (n) = 10n2 + 20n.

Since∀n ≥ 1, f (n) ≤ 30n2, f (n) = O(n2);

Since∀n ≥ 1, f (n) ≥ n2, f (n) = Ω(n2);

Since∀n ≥ 1, n2 ≤ f (n) ≤ 30n2, f (n) = Θ(n2);
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Examples

aknk + ak−1nk−1 + · · · + a1n + a0 = O(nk).

logn2 = O(n).

lognk = Ω(logn).

n! = O((n + 1)!).
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Examples

Consider the series
∑n

j=1 log j. Clearly,

n
∑

j=1

log j ≤
n

∑

j=1

logn = n logn. Thus
n

∑

j=1

log j = O(n logn)

On the other hand,

n
∑

j=1

log j ≥
⌊n/2⌋
∑

j=1

log(
n
2
) = ⌊n/2⌋ log(

n
2
) = ⌊n/2⌋ log n− ⌊n/2⌋

That is
n

∑

j=1

log j = Ω(n logn)
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Examples

logn! =
n
∑

j=1
log j = Θ(n logn).

2n = O(n!). (log 2n = n)

n! = O(2n2
). (log 2n2

= n2)
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Theo-Notation

Definition (o-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beo(g(n)), written
f (n) = o(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) < cg(n)
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Theω-Notation

Definition (ω-Notation)

Let f (n) andg(n) be functions from the set of natural numbers to the
set of nonnegative real numbers.f (n) is said to beω(g(n)), written
f (n) = ω(g(n)), if

∀c.∃n0.∀n ≥ n0.f (n) > cg(n)
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Definition in Terms of Limits

Suppose lim
n→∞

f (n)/g(n) exists.

lim
n→∞

f (n)
g(n)

6=∞ implies f (n) = O(g(n)).

lim
n→∞

f (n)
g(n)

6= 0 impliesf (n) = Ω(g(n)).

lim
n→∞

f (n)
g(n)

= c implies f (n) = Θ(g(n)).

lim
n→∞

f (n)
g(n)

= 0 impliesf (n) = o(g(n)).

lim
n→∞

f (n)
g(n)

=∞ implies f (n) = ω(g(n)).
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A Helpful Analogy

f (n) = O(g(n)) is similar tof (n) ≤ g(n).

f (n) = o(g(n)) is similar tof (n) < g(n).

f (n) = Θ(g(n)) is similar tof (n) = g(n).

f (n) = Ω(g(n)) is similar tof (n) ≥ g(n).

f (n) = ω(g(n)) is similar tof (n) > g(n).
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Complexity Classes

An equivalence relationR on the set of complexity functions is
defined as follows:fRg if and only if f (n) = Θ(g(n)).
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Complexity Classes

An equivalence relationR on the set of complexity functions is
defined as follows:fRg if and only if f (n) = Θ(g(n)).

A complexity class is an equivalence class ofR.

The equivalence classes can be ordered by≺ defined as follows:
f ≺ g iff f (n) = o(g(n)).
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Complexity Classes

An equivalence relationR on the set of complexity functions is
defined as follows:fRg if and only if f (n) = Θ(g(n)).

A complexity class is an equivalence class ofR.

The equivalence classes can be ordered by≺ defined as follows:
f ≺ g iff f (n) = o(g(n)).

1≺ log logn≺ logn≺√n≺n
3
4 ≺n≺n logn≺n2≺2n≺n!≺2n2
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Space Complexity

The space complexity is defined to be the number of cells (work
space)) needed to carry out an algorithm,excluding the space
allocated to hold the input.
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Space Complexity

The space complexity is defined to be the number of cells (work
space)) needed to carry out an algorithm,excluding the space
allocated to hold the input.

The exclusion of the input space is to make sense the sublinear space
complexity.
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Space Complexity

It is clear that the work space of an algorithm can not exceed the
running time of the algorithm. That isS(n) = O(T(n)).
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Space Complexity

It is clear that the work space of an algorithm can not exceed the
running time of the algorithm. That isS(n) = O(T(n)).

Trade-off between time complexity and space complexity.
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Optimal Algorithm

In general, if we can prove that any algorithm to solve problem Π
must beΩ(f (n)), then we call any algorithm to solve problemΠ in
time O(f (n)) anoptimal algorithm for problemΠ.
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HOW do we estimate time complexity?
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Counting the Iterations

Algorithm 1.7 Count1
Input: n = 2k, for some positive integerk.
Output: count = number of times Step 4 is executed.

1. count ← 0;
2. while n ≥ 1
3. for j← 1 to n
4. count ← count + 1
5. end for
6. n← n/2
7. end while
8. return count
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Counting the Iterations

Algorithm 1.7 Count1
Input: n = 2k, for some positive integerk.
Output: count = number of times Step 4 is executed.

1. count ← 0;
2. while n ≥ 1
3. for j← 1 to n
4. count ← count + 1
5. end for
6. n← n/2
7. end while
8. return count

while is executedk + 1 times;for is executedn, n/2, . . . ,1 times
k

∑

j=0

n
2j = n

k
∑

j=0

1
2j = n(2− 1

2k ) = 2n− 1 = Θ(n)
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Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integern.
Output: count = number of times Step 5 is executed.

1. count ← 0;
2. for i← 1 to n
3. m← ⌊n/i⌋
4. for j← 1 to m
5. count ← count + 1
6. end for
7. end for
8. return count
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Counting the Iterations

Algorithm 1.8 Count2
Input: A positive integern.
Output: count = number of times Step 5 is executed.

1. count ← 0;
2. for i← 1 to n
3. m← ⌊n/i⌋
4. for j← 1 to m
5. count ← count + 1
6. end for
7. end for
8. return count

The innerfor is executedn, ⌊n/2⌋, ⌊n/3⌋, . . . , ⌊n/n⌋ times

Θ(n logn) =
n

∑

i=1

(
n
i
− 1) ≤

n
∑

i=1

⌊n
i
⌋ ≤

n
∑

i=1

n
i
= Θ(n logn)
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Counting the Iterations

Algorithm 1.9 Count3
Input: n = 22k

, k is a positive integer.
Output: count = number of times Step 6 is executed.

1. count ← 0;
2. for i← 1 to n
3. j← 2;
4. while j ≤ n
5. j← j2;
6. count ← count + 1
7. end while
8. end for
9. return count
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Counting the Iterations

For each value ofi, thewhile loop will be executed when
j = 2,22,24, · · · ,22k

.

That is, it will be executed whenj = 220
,221

,222
, · · · ,22k

.

Thus, the number of iterations forwhile loop isk + 1 = log logn + 1
for each iteration offor loop.

The total output isn(log logn + 1) = Θ(n log logn).
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Counting the Iterations

Algorithm 1.10 PSUM
Input: n = k2, k is a positive integer.

Output:
j
∑

i=1
i for each perfect squarej between 1 andn.

1. k← √n;
2. for j← 1 to k
3. sum[j]← 0;
4. for i← 1 to j2

5. sum[j]← sum[j] + i;
6. end for
7. end for
8. return sum[1 · · · k]
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Counting the Iterations

Assume that
√

n can be computed inO(1) time.

The outer and innerfor loop are executedk =
√

n andj2 times
respectively.

Thus, the number of iterations for innerfor loop is

k
∑

j=1

j2
∑

i=1

1 =

k
∑

j=1

j2 =
k(k + 1)(2k + 1)

6
= Θ(k3) = Θ(n1.5).

The total output isΘ(n1.5).
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Counting the Frequency of Basic Operations

Definition

An elementary operation in an algorithm is called abasic operation if
it is of highest frequency to within a constant factor among all other
elementary operations.
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Method of Choice

When analyzing searching and sorting algorithms, we may
choose the element comparison operation if it is an elementary
operation.

In matrix multiplication algorithms, we select the operation of
scalar multiplication.

In traversing a linked list, we may select the “operation" of
setting or updating a pointer.

In graph traversals, we may choose the “action" of visiting a
node, and count the number of nodes visited.
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Master theorem

If
T(n) = aT(⌈n/b⌉) + O(nd)

for some constantsa > 0, b > 1, andd ≥ 0,
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Master theorem

If
T(n) = aT(⌈n/b⌉) + O(nd)

for some constantsa > 0, b > 1, andd ≥ 0, then

T(n) =











O(nd) if d > logb a

O(nd logn) if d = logb a

O(nlogb a) if d < logb a.
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Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);
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Analysis for MERGESORT

The recurrence relation:

T(n) = 2T(n/2) + O(n);

By Master Theorem
T(n) = O(n logn).

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 61/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Outline

1 Basic Concepts in Algorithmic Analysis
Algorithm
Theoretical Computer Science

2 Search and Ordering
Search
Sort

3 Computational Complexity
Time Complexity
Space Complexity

4 Complexity Analysis
Estimating Time Complexity
Algorithm Analysis

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 62/73



Basic Concepts in Algorithmic Analysis
Search and Ordering

Computational Complexity
Complexity Analysis

Estimating Time Complexity
Algorithm Analysis

Performance of INSERTIONSORT
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Worst Case Analysis

Consider the following algorithm:

1. if n is oddthen k ← BinarySearch(A, x)
2. elsek ← LinearSearch(A, x)

In the worst case, the running time isΩ(log(n)) andO(n).
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Average Case Analysis

Take Algorithm InsertionSort for instance. Two assumptions:

A[1..n] contains the numbers 1 throughn.

All n! permutations are equally likely.

The number of comparisons for inserting elementA[i] in its proper
position, sayj, is on average the following

i− 1
i

+

i
∑

j=2

i− j + 1
i

=
i− 1

i
+

i−1
∑

j=1

j
i
=

i
2
− 1

i
+

1
2

Theaverage number of comparisons performed by Algorithm
InsertionSort is

n
∑

i=2

(
i
2
− 1

i
+

1
2
) =

n2

4
+

3n
4
−

n
∑

i=1

1
i
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Amortized Analysis

In amortized analysis, we average out the time taken by the operation
throughout the execution of the algorithm, and refer to thisaverage as
theamortized running time of that operation.
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Amortized Analysis

In amortized analysis, we average out the time taken by the operation
throughout the execution of the algorithm, and refer to thisaverage as
theamortized running time of that operation.

Amortized analysis guarantees the average cost of the operation, and
thus the algorithm,in the worst case.
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Amortized Analysis

In amortized analysis, we average out the time taken by the operation
throughout the execution of the algorithm, and refer to thisaverage as
theamortized running time of that operation.

Amortized analysis guarantees the average cost of the operation, and
thus the algorithm,in the worst case.

This is to be contrasted with the average time analysis in which the
average is taken over all instances of the same size. Moreover, unlike
the average case analysis, no assumptions about the probability
distribution of the input are needed.
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Amortized Analysis

Consider the following algorithm:

1. for j← 1 to n
2. x← A[j]
3. Appendx to the list
4. if x is eventhen
5. while pred(x) is odddo deletepred(x)
6. end if
7. end for
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An Example

5 7 3 4 9 8 7 3
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Analysis

Worst Case Analysis: If no input numbers are even, or if all even
numbers are at the beginning, then no elements are deleted, and hence
each iteration of thefor loop takes constant time. However, if the
input hasn− 1 odd integers followed by one even integer, then the
number of deletions isn− 1, and the number ofwhile loops isn− 1.
The overall running time isO(n2).

Amortized Analysis: The total number of elementary operations of
insertions and deletions is betweenn and 2n− 1. So the time
complexity isΘ(n). It follows that the time used to delete each
element isO(1) amortized time.
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Input Size and Problem Instance

Suppose that the following integer

21024− 1

is a legitimate input of an algorithm. What is thesize of the input?
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Input Size and Problem Instance

Algorithm 1.9 FIRST
Input: A positive integern and an arrayA[1..n] with A[j] = j for
1≤ j ≤ n.
Output:

∑n
j=1 A[j].

1. sum← 0;
2. for j← 1 to n
3. sum← sum + A[j]
4. end for
5. return sum

The input size isn. The time complexity isO(n). It is linear time.
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Input Size and Problem Instance

Algorithm 1.10 SECOND
Input: A positive integern.
Output:

∑n
j=1 j.

1. sum← 0;
2. for j← 1 to n
3. sum← sum + j
4. end for
5. return sum

The input size isk = ⌊logn⌋+ 1. The time complexity isO(2k). It is
exponential time.
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Commonly Used Measures

In sorting and searching problems, we use the number of entries
in the array or list as the input size.

In graph algorithms, the input size usually refers to the number
of vertices or edges in the graph, or both.

In computational geometry, the size of input is usually expressed
in terms of the number of points, vertices, edges, line segments,
polygons, etc.

In matrix operations, the input size is commonly taken to be the
dimensions of the input matrices.

In number theory algorithms and cryptography, the number of
bits in the input is usually chosen to denote its length. The
number of words used to represent a single number may also be
chosen as well, as each word consists of a fixed number of bits.

X033533-Algorithm@SJTU Xiaofeng Gao Introduction to Algorithm 73/73


	Basic Concepts in Algorithmic Analysis
	Algorithm
	Theoretical Computer Science

	Search and Ordering
	Search
	Sort

	Computational Complexity
	Time Complexity
	Space Complexity

	Complexity Analysis
	Estimating Time Complexity
	Algorithm Analysis


