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Exploring Graphs

Algorithm 1: EXPLORE(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: VISITED(u) is set to true for all nodes u reachable from v

1 VISITED(v) = true;
2 PREVIST(v);
3 for each edge (v, u) ∈ E do
4 if not VISITED(u) then
5 EXPLORE(G, u);

6 POSTVISIT(v);

Note: PREVISIT and POSTVISIT procedures are optional. They work
on a vertex when it is first discovered and left for the last time.
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Algorithm 2: EXPLORE(G, v)
Input: G = (V,E) is a graph; v ∈ V
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Algorithm 3: EXPLORE(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: VISITED(u) is set to true for all nodes u reachable from v

1 VISITED(v) = true;
2 PREVIST(v);
3 for each edge (v, u) ∈ E do
4 if not VISITED(u) then
5 EXPLORE(G, u);

6 POSTVISIT(v);

Note: PREVISIT and POSTVISIT procedures are optional. They work
on a vertex when it is first discovered and left for the last time.
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Correctness Proof

Theorem: EXPLORE(G, v) is correct, i.e., it visits exactly all nodes
that are reachable from v.

Proof: Every node which it visits must be reachable from v:
EXPLORE only moves from nodes to their neighbors and can therefore
never jump to a region that is not reachable from v.

Every node which is reachable from v must be visited eventually:
If there is some u that EXPLORE misses, choose any path from v to u,
and look at the last vertex v on that path that the procedure actually
visited. Let w be the node immediately after it on the same path.

So z was visited but w was not. This is a contradiction: while
EXPLORE was at node z, it would have noticed w and moved on to it.
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Depth-First Search

Algorithm 4: DFS(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: VISITED(v) is set to true for all nodes v ∈ V

1 VISITED(v) = true;
2 foreach v ∈ V do
3 VISITED(v) = false;

4 foreach v ∈ V do
5 if not VISITED(v) then
6 EXPLORE(G, v);
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Algorithm 5: DFS(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: VISITED(v) is set to true for all nodes v ∈ V

1 VISITED(v) = true;
2 foreach v ∈ V do
3 VISITED(v) = false;

4 foreach v ∈ V do
5 if not VISITED(v) then
6 EXPLORE(G, v);
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Running time of DFS

Because of the VISITED array, each vertex is EXPLORE’d just once.

During the exploration of a vertex, there are the following steps:
1 Some fixed amount of work – marking the spot as visited, and

the PRE/POSTVISIT.
2 A loop in which adjacent edges are scanned, to see if they lead

somewhere new. This loop takes a different amount of time for
each vertex.

The total work done in step 1 is then O(|V|).

In step 2, over the course of the entire DFS, each edge {x, y} ∈ E is
examined exactly twice, once during EXPLORE(G, x) and once during
EXPLORE(G, y). The overall time for step 2 is therefore O(|E|).

Thus the depth-first search has a running time of O(|V|+ |E|).
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Connectivity in undirected graphs

Definition: An undirected graph is connected, if there is a path
between any pair of vertices.

Definition: A connected component is a subgraph that is internally
connected but has no edges to the remaining vertices.

When EXPLORE is started at a particular vertex, it identifies precisely
the connected component containing that vertex.

Each time the DFS outer loop calls EXPLORE, a new connected
component is picked out.
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Connectivity in undirected graphs (cont’d)

Thus depth-first search is trivially adapted to check if a graph is
connected.

More generally, to assign each node v an integer CCNUM[v]
identifying the connected component to which it belongs.

All it takes is

PREVISIT(v)

CCNUM[v] = cc

where cc needs to be initialized to zero and to be incremented each
time the DFS procedure calls EXPLORE.
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Previsit and postvisit orderings

For each node, we will note down the times of two important events:

the moment of first discovery (corresponding to PREVISIT);
and the moment of final departure (POSTVISIT).

PREVISIT(v)

PRE[v] = clock
clock = clock + 1

POSTVISIT(v)

POST[v] = clock
clock = clock + 1

Lemma: For any nodes u and v, the two intervals [PRE(u), POST(u)]
and [PRE(u), POST(u)] are either disjoint or one is contained within
the other.
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An executing example

Assume we use alphabetical order to explore G:
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Types of edges

DFS yields a search tree/forests.

root.

descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the
DFS tree.

Backedges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 14/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Types of edges

DFS yields a search tree/forests.

root.

descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the
DFS tree.

Backedges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 14/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Types of edges

DFS yields a search tree/forests.

root.

descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the
DFS tree.

Backedges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 14/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Types of edges

DFS yields a search tree/forests.

root.

descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the
DFS tree.

Backedges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 14/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Types of edges

DFS yields a search tree/forests.

root.

descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the
DFS tree.

Backedges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 14/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Types of edges

DFS yields a search tree/forests.

root.

descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the
DFS tree.

Backedges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 14/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Types of edges (cont’d)

PRE/POST ordering for (u, v) Edge type

[u [v ]v ]u Tree/forward

[v [u ]u ]v Back

[v ]v [u ]u Cross
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Directed acyclic graphs (DAG)

Definition: A cycle in a directed graph is a circular path
v0 → v1 → v2 → · · · vk → v0.
Lemma: A directed graph has a cycle if and only if its depth-first
search reveals a back edge.

Proof: “⇐" One direction is quite easy: if (u, v) is a back edge, then
there is a cycle consisting of this edge together with the path from v to
u in the search tree.

“⇒" Conversely, if the graph has a cycle
v0 → v1 → v2 → · · · vk → v0, look at the first node vi on this cycle to
be discovered (the node with the lowest PRE number).

All the other vj on the cycle are reachable from it and will therefore be
its descendants in the search tree.

In particular, the edge vi−1 → vi (or vk → v0 if i = 0) is a back edge.
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Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST

number.
Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink – no outgoing edges. Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.
The guaranteed existence of a source suggests an alternative approach
to linearization:

1 Find a source, output it, and delete it from the graph.
2 Repeat until the graph is empty.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 18/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST

number.
Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink – no outgoing edges. Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.
The guaranteed existence of a source suggests an alternative approach
to linearization:

1 Find a source, output it, and delete it from the graph.
2 Repeat until the graph is empty.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 18/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST

number.

Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink – no outgoing edges. Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.
The guaranteed existence of a source suggests an alternative approach
to linearization:

1 Find a source, output it, and delete it from the graph.
2 Repeat until the graph is empty.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 18/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST

number.
Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink – no outgoing edges. Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.
The guaranteed existence of a source suggests an alternative approach
to linearization:

1 Find a source, output it, and delete it from the graph.
2 Repeat until the graph is empty.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 18/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST

number.
Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink – no outgoing edges.

Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.
The guaranteed existence of a source suggests an alternative approach
to linearization:

1 Find a source, output it, and delete it from the graph.
2 Repeat until the graph is empty.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 18/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST

number.
Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink – no outgoing edges. Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.
The guaranteed existence of a source suggests an alternative approach
to linearization:

1 Find a source, output it, and delete it from the graph.
2 Repeat until the graph is empty.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 18/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Directed acyclic graphs (cont’d)

Linearization/Topologically Sort: Order the vertices such that every
edge goes from a small vertex to a large one.

Lemma: In a dag, every edge leads to a vertex with a lower POST

number.
Hence there is a linear-time algorithm for ordering the nodes of a dag.

Since a dag is linearized by decreasing POST numbers, the vertex with
the smallest POST number comes last in this linearization, and it must
be a sink – no outgoing edges. Symmetrically, the one with the
highest POST is a source, a node with no incoming edges.

Lemma: Every dag has at least one source and at least one sink.

The guaranteed existence of a source suggests an alternative approach
to linearization:

1 Find a source, output it, and delete it from the graph.
2 Repeat until the graph is empty.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 18/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Directed acyclic graphs (cont’d)
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Defining connectivity for directed graphs

Definition: Two nodes u and v of a directed graph are connected if
there is a path from u to v and a path from v to u.

This relation partitions V into disjoint sets that we call strongly
connected components.

Lemma: Every directed graph is a dag of its strongly connected
components.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 20/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Defining connectivity for directed graphs

Definition: Two nodes u and v of a directed graph are connected if
there is a path from u to v and a path from v to u.

This relation partitions V into disjoint sets that we call strongly
connected components.

Lemma: Every directed graph is a dag of its strongly connected
components.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 20/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Defining connectivity for directed graphs

Definition: Two nodes u and v of a directed graph are connected if
there is a path from u to v and a path from v to u.

This relation partitions V into disjoint sets that we call strongly
connected components.

Lemma: Every directed graph is a dag of its strongly connected
components.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 20/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

Defining connectivity for directed graphs

Definition: Two nodes u and v of a directed graph are connected if
there is a path from u to v and a path from v to u.

This relation partitions V into disjoint sets that we call strongly
connected components.

Lemma: Every directed graph is a dag of its strongly connected
components.

X033533-Algorithm@SJTU Xiaofeng Gao Graph Decomposition 20/29



Depth-First Search in Undirected Graphs
Depth-First Search in Directed Graphs

Breadth-First Search

Types of Edges
Directed Acyclic Graphs
Strongly Connected Components

An efficient algorithm

Lemma: If the EXPLORE subroutine is started at node u, then it will
terminate precisely when all nodes reachable from u have been
visited.

Therefore, if we call explore on a node that lies somewhere in a sink
strongly connected component (a strongly connected component that
is a sink in the meta-graph), then we will retrieve exactly that
component.

We have two problems:

(A) How do we find a node that we know for sure lies in a sink
strongly connected component?

(B) How do we continue once this first component has been
discovered?
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An efficient algorithm (cont’d)

Lemma: The node that receives the highest POST number in a
depth-first search must lie in a source strongly connected component.

Lemma: If C and C′ are strongly connected components, and there is
an edge from a node in C to a node in C′, then the highest POST

number in C is bigger than the highest POST number in C′.

Hence the strongly connected components can be linearized by
arranging them in decreasing order of their highest POST numbers.
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Solving problem A

Consider the reverse graph GR, the same as G but with all edges
reversed.

GR has exactly the same strongly connected components as G.

So, if we do a depth-first search of GR, the node with the highest POST

number will come from a source strongly connected component in
GR, which is to say a sink strongly connected component in G.
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Solving problem B

Once we have found the first strongly connected component and
deleted it from the graph, the node with the highest post number
among those remaining will belong to a sink strongly connected
component of whatever remains of G.

Therefore we can keep using the post numbering from our initial
depth-first search on GR to successively output the second strongly
connected component, the third strongly connected component, and
so on.
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The linear-time algorithm

1 Run depth-first search on GR.
2 Run the undirected connected components algorithm on G, and

during the depth-first search, process the vertices in decreasing
order of their POST numbers from step 1.
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The algorithm

Algorithm 6: BFS(G, s)
Input: Graph G = (V,E), directed or undirected; vertex s ∈ V
Output: For all vertices u reachable from s, DIST(u) is set to the

distance from s to u

1 foreach u ∈ V do
2 DIST(u) =∞;

3 DIST(s) = 0; Q = [s] (queue containing just s);
4 while Q is not empty do
5 u = EJECT(Q);
6 foreach edge (u, v) ∈ E do
7 if DIST(v) =∞ then
8 INJECT(Q, v); DIST(v) = DIST(u) + 1;
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Correctness and efficiency

Lemma: For each d = 0, 1, 2, . . ., there is a moment at which (1) all
nodes at distance ≤ d from s have their distances correctly set; (2) all
other nodes have their distances set to∞; and (3) the queue contains
exactly the nodes at distance d.

Lemma: BFS has a running time of O(|V|+ |E|).
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An executing example

Assume we use alphabetical order to explore G:
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