Introduction to Algorithms 6.046J/18.401J/SMA5503

Lecture 17

Prof. Erik Demaine

Paths in graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortest-path weight from u to v is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

Proof.

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal.
- 3. Update the distance estimates of vertices adjacent to ν .

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    \operatorname{do} d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
                                                              relaxation
             do if d[v] > d[u] + w(u, v)
                      then d[v] \leftarrow d[u] + w(u, v)
                                                                    step
                    Implicit Decrease-Key
```

Graph with nonnegative edge weights:

S: {}

S: { A }

S: { *A* }

S: { *A*, *C* }

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

$$d[v] < \delta(s, v)$$
 supposition
 $\leq \delta(s, u) + \delta(u, v)$ triangle inequality
 $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path
 $\leq d[u] + w(u, v)$ v is first violation

Contradiction.

Correctness — Part II

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] \neq \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part II (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$. Since subpaths of shortest paths are shortest paths, it follows that d[y] was set to $\delta(s, x) + w(x, y) = \delta(s, y)$ when (x, y) was relaxed just after x was added to S. Consequently, we have $d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$. But, $d[u] \le d[y]$ by our choice of u, and hence $d[y] = \delta(s, y) = \delta(s, u) = d[u]$. Contradiction.

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

Analysis of Dijkstra (continued)

$$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

CATRACITION CAREASETRE			
Q	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V^2)$
binary heap	$O(\lg V)$	$O(\lg V)$	$O(E \lg V)$
Fibonacci heap	i $O(\lg V)$ amortized	O(1) amortized	$O(E + V \lg V)$ worst case

Unweighted graphs

Suppose w(u, v) = 1 for all $(u, v) \in E$. Can the code for Dijkstra be improved?

- Use a simple FIFO queue instead of a priority queue.
- Breadth-first search

 while $Q \neq \emptyset$ do $u \leftarrow \text{Dequeue}(Q)$ for each $v \in Adj[u]$ do if $d[v] = \infty$ then $d[v] \leftarrow d[u] + 1$ Enqueue(Q, v)

Analysis: Time = O(V + E).

Q: a b d c e g i f h

Q: a b d c e g i f h

Correctness of BFS

```
while Q \neq \emptyset

do u \leftarrow \text{Dequeue}(Q)

for each v \in Adj[u]

do if d[v] = \infty

then d[v] \leftarrow d[u] + 1

Enqueue(Q, v)
```

Key idea:

The FIFO *Q* in breadth-first search mimics the priority queue *Q* in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1.