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6.8  Shortest Paths



Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge 
weights cvw, find shortest path from node s to node t.

Ex.  Nodes represent agents in a financial setting and cvw is cost of 
transaction in which we buy from agent v and sell immediately to w.
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Shortest Paths:  Failed Attempts

Dijkstra.  Can fail if negative edge costs.

Re-weighting.  Adding a constant to every edge weight can fail.
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Shortest Paths:  Negative Cost Cycles

Negative cost cycle.

Observation.  If some path from s to t contains a negative cost cycle, 
there does not exist a shortest s-t path; otherwise, there exists one 
that is simple.
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Shortest Paths:  Dynamic Programming

Def.  OPT(i, v) = length of shortest v-t path P using at most i edges.

 Case 1:  P uses at most i-1 edges.
– OPT(i, v) = OPT(i-1, v)

 Case 2:  P uses exactly i edges.
– if (v, w) is first edge, then OPT uses (v, w), and then selects best 

w-t path using at most i-1 edges

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

  

 

OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w) ∈ E

min OPT(i −1, w)+ cvw{ }
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Shortest Paths:  Implementation

Analysis.  Θ(mn) time, Θ(n2) space.

Finding the shortest paths.  Maintain a "successor" for each table 
entry.

Shortest-Path(G, t) {
foreach node v ∈ V

M[0, v] ← ∞
M[0, t] ← 0

for i = 1 to n-1
foreach node v ∈ V

M[i, v] ← M[i-1, v]
foreach edge (v, w) ∈ E

M[i, v] ← min { M[i, v], M[i-1, w] + cvw }
}
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Shortest Paths:  Practical Improvements

Practical improvements.
 Maintain only one array M[v] = shortest v-t path that we have

found so far.
 No need to check edges of the form (v, w) unless M[w] changed

in previous iteration.

Theorem.  Throughout the algorithm, M[v] is length of some v-t path, 
and after i rounds of updates, the value M[v] is no larger than the length 
of shortest v-t path using ≤ i edges.

Overall impact.
 Memory:  O(m + n).
 Running time:  O(mn) worst case, but substantially faster in practice.
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Bellman-Ford:  Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
foreach node v ∈ V {

M[v] ← ∞
successor[v] ← φ

}

M[t] = 0
for i = 1 to n-1 {

foreach node w ∈ V {
if (M[w] has been updated in previous iteration) {

foreach node v such that (v, w) ∈ E {
if (M[v] > M[w] + cvw) {

M[v] ← M[w] + cvw
successor[v] ← w

}
}

}
If no M[w] value changed in iteration i, stop.

}
}
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6.10  Negative Cycles in a Graph



Detecting Negative Cycles

Lemma.  If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.
Pf.  Bellman-Ford algorithm.

Lemma.  If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest 
path from v to t contains a cycle W.  Moreover W has negative cost.

Pf.  (by contradiction)
 Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
 By pigeonhole principle, P must contain a directed cycle W.
 Deleting W yields a v-t path with < n edges  ⇒ W has negative cost.
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Detecting Negative Cycles

Theorem.  Can detect negative cost cycle in O(mn) time.
 Add new node t and connect all nodes to t with 0-cost edge.
 Check if OPT(n, v) = OPT(n-1, v) for all nodes v.

– if yes, then no negative cycles
– if no, then extract cycle from shortest path from v to t
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Detecting Negative Cycles:  Application

Currency conversion.  Given n currencies and exchange rates between 
pairs of currencies, is there an arbitrage opportunity?

Remark.  Fastest algorithm very valuable!
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Detecting Negative Cycles:  Summary

Bellman-Ford.  O(mn) time, O(m + n) space.
 Run Bellman-Ford for n iterations (instead of n-1).
 Upon termination, Bellman-Ford successor variables trace a negative 

cycle if one exists.
 See p. 304 for improved version and early termination rule.
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