
Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

1

6.8 Shortest Paths

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights cvw, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and cvw is cost of
transaction in which we buy from agent v and sell immediately to w.

s

3

t

2

6

7

4
5

10

18
-16

9

6

15 -8

30

20

44

16

11

6

19

6

allow negative weights

3

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

u

t

s v

2

1

3

-6

s t

2

3

2

-3

3

5 5

66

0

4

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle,
there does not exist a shortest s-t path; otherwise, there exists one
that is simple.

s t
W

c(W) < 0

-6

7

-4

5

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

 Case 1: P uses at most i-1 edges.
– OPT(i, v) = OPT(i-1, v)

 Case 2: P uses exactly i edges.
– if (v, w) is first edge, then OPT uses (v, w), and then selects best

w-t path using at most i-1 edges

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

OPT(i, v) =
 0 if i = 0

 min OPT(i −1, v) ,
(v, w) ∈ E

min OPT(i −1, w)+ cvw{ }

otherwise

6

Shortest Paths: Implementation

Analysis. Θ(mn) time, Θ(n2) space.

Finding the shortest paths. Maintain a "successor" for each table
entry.

Shortest-Path(G, t) {
foreach node v ∈ V

M[0, v] ← ∞
M[0, t] ← 0

for i = 1 to n-1
foreach node v ∈ V

M[i, v] ← M[i-1, v]
foreach edge (v, w) ∈ E

M[i, v] ← min { M[i, v], M[i-1, w] + cvw }
}

7

Shortest Paths: Practical Improvements

Practical improvements.
 Maintain only one array M[v] = shortest v-t path that we have

found so far.
 No need to check edges of the form (v, w) unless M[w] changed

in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t path,
and after i rounds of updates, the value M[v] is no larger than the length
of shortest v-t path using ≤ i edges.

Overall impact.
 Memory: O(m + n).
 Running time: O(mn) worst case, but substantially faster in practice.

8

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
foreach node v ∈ V {

M[v] ← ∞
successor[v] ← φ

}

M[t] = 0
for i = 1 to n-1 {

foreach node w ∈ V {
if (M[w] has been updated in previous iteration) {

foreach node v such that (v, w) ∈ E {
if (M[v] > M[w] + cvw) {

M[v] ← M[w] + cvw
successor[v] ← w

}
}

}
If no M[w] value changed in iteration i, stop.

}
}

9

6.10 Negative Cycles in a Graph

Detecting Negative Cycles

Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.
Pf. Bellman-Ford algorithm.

Lemma. If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest
path from v to t contains a cycle W. Moreover W has negative cost.

Pf. (by contradiction)
 Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
 By pigeonhole principle, P must contain a directed cycle W.
 Deleting W yields a v-t path with < n edges ⇒ W has negative cost.

v t
W

c(W) < 0
11

Detecting Negative Cycles

Theorem. Can detect negative cost cycle in O(mn) time.
 Add new node t and connect all nodes to t with 0-cost edge.
 Check if OPT(n, v) = OPT(n-1, v) for all nodes v.

– if yes, then no negative cycles
– if no, then extract cycle from shortest path from v to t

v

18

2

5
-23

-15
-11

6

t

0

0

0 0
0

12

Detecting Negative Cycles: Application

Currency conversion. Given n currencies and exchange rates between
pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

F$

£ ¥DM

1/7

3/102/3 2

170 56

3/504/3

8

IBM

1/10000

800

13

Detecting Negative Cycles: Summary

Bellman-Ford. O(mn) time, O(m + n) space.
 Run Bellman-Ford for n iterations (instead of n-1).
 Upon termination, Bellman-Ford successor variables trace a negative

cycle if one exists.
 See p. 304 for improved version and early termination rule.

14

	Chapter 6��Dynamic Programming
	6.8 Shortest Paths
	Shortest Paths
	Shortest Paths: Failed Attempts
	Shortest Paths: Negative Cost Cycles
	Shortest Paths: Dynamic Programming
	Shortest Paths: Implementation
	Shortest Paths: Practical Improvements
	Bellman-Ford: Efficient Implementation
	6.10 Negative Cycles in a Graph
	Detecting Negative Cycles
	Detecting Negative Cycles
	Detecting Negative Cycles: Application
	Detecting Negative Cycles: Summary

