Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 19

Prof. Erik Demaine

Shortest paths

Single-source shortest paths
* Nonnegative edge weights

* Dyjkstra’s algorithm: O(E£ + Vg V)
» General

* Bellman-Ford: O(VE)
* DAG

* One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
* Nonnegative edge weights

* Dijkstra’s algorithm |V] times: O(VE + V> 1g V)
* General

* Three algorithms today.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.2

All-pairs shortest paths

Input: Digraph G = (V, E), where |V| = n, with
edge-weight function w : £ — RR.

Output: 7 x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

IDEA #1:

* Run Bellman-Ford once from each vertex.
e Time = O(V?E).

 Dense graph = O(V'*) time.

Good first try!

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.3

Dynamic programming

Consider the 7 x n adjacency matrix 4 = (a,)
of the digraph, and define

dl.j(m) = weight of a shortest path from
I to j that uses at most 72 edges.

Claim: We have

4.(0) = {O ii=j,
J 0 1f 1 # J;

and form=1,2,....n—1,
di]-(m) = mink{dik(m_l) +ay; }

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L194

Proof of claim e

Relaxation!
for k< 1 ton
do ifdl-j >dy + Ay
then dij —d,;+ ay; <m — | edges

Note: No negative-weight cycles implies
o(i,]) =d; (n—1) = d; (n) = d; (ntl) = ...

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.5

Matrix multiplication

Compute C' =4 - B, where C, A, and B are n x n
matrices: ;
k=1

Time = O(»’) using the standard algorithm.
What if we map “+” — “min” and “-” — “+7?
c;; =miny {ay + by}

j
Thus, D) = DU=1) < 4
0 00 o0 0o
Identity matrix =1 = | 2" ﬁ% =DV = (dij(o)).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 LI19.6

Matrix multiplication
(continued)

The (min, +) multiplication is associative, and
with the real numbers, 1t forms an algebraic
structure called a closed semiring.

Consequently, we can compute

DW= pO .4 = 4]
D@ = D). 4 = 42

D) = pn-2). 4 — gn-1 |
yielding D"~V = (8(i, /)).
Time = O(n-n’) = O(n*). No better than n x B-F.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.7

Improved matrix
multiplication algorithm

Repeated squaring: 4%% = A% x 4*.

Compute 4%, A%, ..., /12ﬁg(n_lﬂ .
— —~ _/
O(lg n) squarings

Note: A" 1 =4"=4""1= ...
Time = O(n’lg n).
To detect negative-weight cycles, check the

diagonal for negative values 1n O(n) additional
time.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.8

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define cl-j(k) = weight of a shortest path from :
to ; with intermediate vertices
belonging to the set {1, 2, ..., k}.

Thus, o(7, /) = ¢; (1. Also, CU(O)— i

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.9

Floyd-Warshall recurrence

Cij(k) — mink {Czj(k_l)» Cik(k—l) + ij(k_l)}

intermediate vertices in {1, 2, ..., &}

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.10

Pseudocode for Floyd-
Warshall

for k< 1 ton
dofor:i< | ton
do for; < 1 to n
do ifcl-j>cl-k+ckj

then Cji <= Ci + Crj

} relaxation

Notes:

» Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs in ®(#n°) time.

* Simple to code.

* Efficient in practice.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.11

Transitive closure of a
directed graph

1 1f there exists a path from i to /,

Compute L = 0 otherwise.

IDEA: Use Floyd-Warshall, but with (v, A) instead
of (min, +):

k) — ¢+ (k1 k—1 k—1
t{j() = fl,j() v/ (fl,k() A tl?f()).

Time = O(n°).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.12

Graph reweighting

Theorem. Given a label /(v) for each v € V| reweight
each edge (1, v) € E by

w(u, v) =w(u, v) + h(u) — h(v).
Then, all paths between the same two vertices are
reweighted by the same amount.

Proof. Letp=v, - v, —> --- — v, be a path 1n the graph.
P=W 2, k

Then, we have Ww(p) = 2 W(v;,v.)
=1

= Z w(v; Vi) + h(vy) — h(v,)

=w(p) +h(v)) —h(v,).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.13

Johnson’s algorithm

1. Find a vertex labeling /2 such that vi(u, v) > 0 for all
(u, v) € E by using Bellman-Ford to solve the
difference constraints

h(v) — h(u) < w(u, v),
or determine that a negative-weight cycle exists.
* Time = O(V'E).

2. Run Dijkstra’s algorithm from each vertex using w.

 Time=O(VE+ V?1gV).

3. Reweight each shortest-path length v/(p) to produce
the shortest-path lengths w(p) of the original graph.
* Time = O()?).

Total time = O(VE + V2 1g V).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 32 L19.14

