
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 19
Prof. Erik Demaine

Introduction to Algorithms Day 32 L19.2© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Shortest paths
Single-source shortest paths
• Nonnegative edge weights

Dijkstra’s algorithm: O(E + V lg V)
• General

Bellman-Ford: O(VE)
• DAG

One pass of Bellman-Ford: O(V + E)
All-pairs shortest paths
• Nonnegative edge weights

Dijkstra’s algorithm |V| times: O(VE + V 2 lg V)
• General

Three algorithms today.

Introduction to Algorithms Day 32 L19.3© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

All-pairs shortest paths

Input: Digraph G = (V, E), where |V | = n, with
edge-weight function w : E → R.
Output: n × n matrix of shortest-path lengths
δ(i, j) for all i, j ∈ V.
IDEA #1:
• Run Bellman-Ford once from each vertex.
• Time = O(V 2E).
• Dense graph ⇒ O(V 4) time.
Good first try!

Introduction to Algorithms Day 32 L19.4© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Dynamic programming
Consider the n × n adjacency matrix A = (aij)
of the digraph, and define

dij
(0) = 0 if i = j,

∞ if i ≠ j;

Claim: We have

and for m = 1, 2, …, n – 1,
dij

(m) = mink{dik
(m–1) + akj }.

dij
(m) = weight of a shortest path from

i to j that uses at most m edges.

Introduction to Algorithms Day 32 L19.5© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof of claim
dij

(m) = mink{dik
(m–1) + akj }

ii jji
M

k’s

≤ m – 1 edges

≤ m – 1 edges

≤ m – 1 edges

≤ m – 1 edges

Relaxation!
for k ← 1 to n

do if dij > dik + akj
then dij ← dik + akj

Note: No negative-weight cycles implies
δ(i, j) = dij

(n–1) = dij
(n) = dij

(n+1) = L

Introduction to Algorithms Day 32 L19.6© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Matrix multiplication
Compute C = A · B, where C, A, and B are n × n
matrices:

∑
=

=
n

k
kjikij bac

1
.

Time = Θ(n3) using the standard algorithm.
What if we map “+” → “min” and “·” → “+”?

cij = mink {aik + bkj}.
Thus, D(m) = D(m–1) “×” A.

Identity matrix = I =
















∞∞∞
∞∞∞
∞∞∞
∞∞∞

0
0

0
0

= D0 = (dij
(0)).

Introduction to Algorithms Day 32 L19.7© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Matrix multiplication
(continued)

The (min, +) multiplication is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.
Consequently, we can compute

D(1) = D(0) · A = A1

D(2) = D(1) · A = A2

M M
D(n–1) = D(n–2) · A = An–1 ,

yielding D(n–1) = (δ(i, j)).
Time = Θ(n·n3) = Θ(n4). No better than n × B-F.

Introduction to Algorithms Day 32 L19.8© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Improved matrix
multiplication algorithm

Repeated squaring: A2k = Ak × Ak.
Compute A2, A4, …, A2lg(n–1) .

O(lg n) squarings

Time = Θ(n3 lg n).

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional
time.

Note: An–1 = An = An+1 = L.

Introduction to Algorithms Day 32 L19.9© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define cij
(k) = weight of a shortest path from i

to j with intermediate vertices
belonging to the set {1, 2, …, k}.

ii ≤ k≤ k ≤ k≤ k ≤ k≤ k ≤ k≤ k jj

Thus, δ(i, j) = cij
(n). Also, cij

(0) = aij .

Introduction to Algorithms Day 32 L19.10© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Floyd-Warshall recurrence
cij

(k) = mink {cij
(k–1), cik

(k–1) + ckj
(k–1)}

ii jj

k

i
cij

(k–1)

cik
(k–1) ckj

(k–1)

intermediate vertices in {1, 2, …, k}

Introduction to Algorithms Day 32 L19.11© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Pseudocode for Floyd-
Warshall

for k ← 1 to n
do for i ← 1 to n

do for j ← 1 to n
do if cij > cik + ckj

then cij ← cik + ckj
relaxation

Notes:
• Okay to omit superscripts, since extra relaxations

can’t hurt.
• Runs in Θ(n3) time.
• Simple to code.
• Efficient in practice.

Introduction to Algorithms Day 32 L19.12© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Transitive closure of a
directed graph

Compute tij = 1 if there exists a path from i to j,
0 otherwise.

IDEA: Use Floyd-Warshall, but with (∨, ∧) instead
of (min, +):

tij(k) = tij(k–1) ∨ (tik(k–1) ∧ tkj
(k–1)).

Time = Θ(n3).

Introduction to Algorithms Day 32 L19.13© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Graph reweighting
Theorem. Given a label h(v) for each v ∈ V, reweight
each edge (u, v) ∈ E by

ŵ(u, v) = w(u, v) + h(u) – h(v).
Then, all paths between the same two vertices are
reweighted by the same amount.
Proof. Let p = v1 → v2 →L→ vk be a path in the graph.

()

)()()(

)()(),(

)()(),(

),(ˆ)(ˆ

1

1

1

1
1

1

1
11

1

1
1

k

k

k

i
ii

k

i
iiii

k

i
ii

vhvhpw

vhvhvvw

vhvhvvw

vvwpw

−+=

−+=

−+=

=

∑

∑

∑

−

=
+

−

=
++

−

=
+

.

Then, we have

Introduction to Algorithms Day 32 L19.14© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Johnson’s algorithm
1. Find a vertex labeling h such that ŵ(u, v) ≥ 0 for all

(u, v) ∈ E by using Bellman-Ford to solve the
difference constraints

h(v) – h(u) ≤ w(u, v),
or determine that a negative-weight cycle exists.
• Time = O(VE).

2. Run Dijkstra’s algorithm from each vertex using ŵ.
• Time = O(VE + V 2 lg V).

3. Reweight each shortest-path length ŵ(p) to produce
the shortest-path lengths w(p) of the original graph.
• Time = O(V 2).

Total time = O(VE + V 2 lg V).

