Introduction to Algorithms **6.046J/18.401J/SMA5503**

Lecture 19 **Prof. Erik Demaine**

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
	- Dijkstra's algorithm: *O*(*E* ⁺*V* lg *V*)
- General
	- Bellman-Ford: *O*(*VE*)
- DAG
	- One pass of Bellman-Ford: *O*(*V* ⁺*E*)
- **All-pairs shortest paths**
- Nonnegative edge weights
	- Dijkstra's algorithm |*V*| times: *O*(*VE* ⁺*V* ² lg *V*)
- General
	- Three algorithms today.

All-pairs shortest paths

Input: Digraph $G = (V, E)$, where $|V| = n$, with edge-weight function $w : E \to \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $δ(i, j)$ for all $i, j \in V$.

IDEA #1:

- Run Bellman-Ford once from each vertex.
- • \bullet Time = $O(V^2E)$.
- •• Dense graph $\Rightarrow O(V^4)$ time. *Good first try!*

Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$
of the digraph, and define

 $d_{ij}^{(m)}$ = weight of a shortest path from *i* to *j* that uses at most *^m* edges.

Claim: We have

$$
d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}
$$

and for $m = 1, 2, ..., n - 1$,

$$
d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.
$$

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices: *n*

$$
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.
$$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map $``+$,, \rightarrow "min" and "" \rightarrow " \cdot + \cdot ? \cdot $c_{ij} = \min_{k} \{ a_{ik} + b_{kj} \}.$ Thus, $D^{(m)}$ $) = D^{(m-1)}$ (c × ,, *A*. Identity matrix = $I = \begin{bmatrix} \infty & 0 & \infty \\ \infty & \infty & 0 \\ \infty & \infty & 0 \end{bmatrix}$ $\overline{}$ \int $\bigg)$ \setminus $\bigg($ ∞ ∞ ∞ ∞ ∞ ⊙ ∞ ∪ ∞ ∞ ∞ ∞ ∞ $\pmb{0}$ $\pmb{0}$ $\pmb{0}$ $\pmb{0}$ = *D* $0 = (d_{ij}^{(0)})$.

Matrix multiplication (continued)

The (min, +) multiplication is *associative*, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

$$
D^{(1)} = D^{(0)} \cdot A = A^{1}
$$

\n
$$
D^{(2)} = D^{(1)} \cdot A = A^{2}
$$

\n
$$
\vdots
$$

\n
$$
D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1}
$$
,
\nyielding $D^{(n-1)} = (\delta(i, j))$.
\n
$$
Time = \Theta(n \cdot n^{3}) = \Theta(n^{4})
$$
. No better than $n \times B - F$.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k}_{-} = A^k \times A^k$. Compute $A^2, A^4, ..., A^{2^{\lceil \log(n-1) \rceil}}$. *O*(lg *n*) squarings $Time = \Theta(n^3 \lg n)$. **Note:** $A^{n-1} = A^n = A^{n+1} = \dots$

To detect negative-weight cycles, check the diagonal for negative values in *O*(*n*) additional time.

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)}$ = weight of a shortest path from *i* to *j* with intermediate vertices belonging to the set $\{1, 2, ..., k\}$.

Floyd-Warshall recurrence

 $c_{ij}^{(k)} = \min_{k} \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$

Pseudocode for Floyd-Warshall

for
$$
k \leftarrow 1
$$
 to *n*
\ndo for $i \leftarrow 1$ to *n*
\ndo for $j \leftarrow 1$ to *n*
\ndo if $c_{ij} > c_{ik} + c_{kj}$
\nthen $c_{ij} \leftarrow c_{ik} + c_{kj}$ *relaxation*

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- •• Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.

Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\vee, \wedge) instead of $(min, +)$:

$$
t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).
$$

Time = $\Theta(n^3)$.

Graph reweighting

Theorem. Given a label $h(v)$ for each $v \in V$, reweight each edge $(u, v) \in E$ by

 $\hat{w}(u, v) = w(u, v) + h(u) - h(v).$

Then, all paths between the same two vertices are reweighted by the same amount.

Proof. Let $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ be a path in the graph. 1*k*− $\hat{w}(p) = \sum \hat{w}(v_i, v_i)$ $\hat{v}(p) = \sum \hat{w}(v_i, v_{i+1})$ Then, we have $\hat{w}(p) = \sum \hat{w}(v_i, v_{i+1})$ \cdot *i*1=1*k*− $= \sum (w(v_i, v_{i+1}) + h(v_i) - h(v_i))$ $\sum_{i} (w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))$ 1] \top μ \vee _i $)$ \top μ \vee _{i+1} $+1$) \cdots \cdots \cdots 1*i*=1*k*− $= \sum w(v_i, v_{i+1}) + h(v_1) - h(v_2)$ $(v_i, v_{i+1}) + h(v_1) - h(v_k)$ $\mu_1 + \mu_2 + \mu_3 = \mu_1 + \mu_2$ + 1*i*= \mathbb{R}^n $= w(p) + h(v_1) - h(v_k)$.

Johnson's algorithm

1. Find a vertex labeling h such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints

 $h(v) - h(u) \leq w(u, v)$,

or determine that a negative-weight cycle exists.

• Time $= O(VE)$.

2. Run Dijkstra's algorithm from each vertex using *ŵ*.

•• Time = $O(VE + V^2 \lg V)$.

3. Reweight each shortest-path length *ŵ*(*p*) to produce the shortest-path lengths *w*(*p*) of the original graph.

•• Time = $O(V^2)$.

Total time = $O(VE + V^2 \lg V)$.