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History of Approximation

1966 Graham : First analyzed algorithms by approxima-
tion ratio

1971 Cook : Gave the concepts of NP-Completeness

1972 Karp : Introduced plenty NP-Hard combinatorial op-
timization problems

1970’s Approximation became a popular research area

1979 Garey & Johnson : Computers and Intractability: A
guide to the Theory of NP-Completeness
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Books

CS 351
Stanford
Univ

(1991-1992) Rajeev Motwani
Lecture Notes on Approximation Algorithms
Volume I

(1997) Hochbaum (Editor)
Approximation Algorithms for NP-Hard Prob-
lems

(1999) Ausiello, Crescenzi, Gambosi, etc.
Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximabil-
ity Properties
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Books (2)

(2001) Vijay V. Vazirani
Approximation Algorithms

(2010) D.P. Williamson & D.B. Shmoys
The Design of Approximation Algorithms

(2012) D.Z Du, K-I. Ko & X.D. Hu
Design and Analysis of Approximation Algo-
rithms

Spring, 2015 Xiaofeng Gao Approximation Basics 5/53



Approximation Basics
Greedy Algorithm

Sequential Algorithm

History
NP Optimization
Definition of Approximation

Hardness

There are not much hardness results until 1990s...

Theorem (PCP Theorem, ALMSS’92)

There is no PTAS for MAX-3SAT unless P = NP

ALMSS: Arora, Lund, Motwani, Sudan, and Szegedy

Conjecture (Unique Games Conjecture, Knot’02)

The Unique Game is NP-hard to approximate for any constant
ratio.

Subhash Khot
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NP Optimization Problem

A NP Optimization Problem P is a fourtuple (I, sol ,m,goal) s.t.

I is the set of the instances of P and is recognizable in
polynomial time.

Given an instance x of I, sol(x) is the set of short feasible
solutions of x and ∀x and ∀y such that |y | ≤ p(|x |), it is
decidable in polynomial time whether y ∈ sol(x).

Given an instance x and a feasible solution y of x , m(x , y)
is a polynomial time computable measure function
providing a positive integer which is the value of y .

goal ∈ {max,min} denotes maximization or minimization.
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An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph G = (V ,E), the Minimum Vertex Cover
problem (MVC) is to find a vertex cover of minimum size, that
is, a minimum node subset U ⊆ V such that, for each edge
(vi , vj) ∈ E , either vi ∈ U or vj ∈ U.
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An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph G = (V ,E), the Minimum Vertex Cover
problem (MVC) is to find a vertex cover of minimum size, that
is, a minimum node subset U ⊆ V such that, for each edge
(vi , vj) ∈ E , either vi ∈ U or vj ∈ U.

Justification → MVC is an NP Optimization Problem

I = {G = (V ,E) | G is a graph}; poly-time decidable

sol(G) = {U ⊆ V | ∀(vi , vj ) ∈ E [vi ∈ U ∨ vj ∈ U]};

short feasible solution set and poly-time decidable

m(G,U) = |U|; poly-time computable function

goal = min.
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NPO Class

Definition: (NPO Class)

The class NPO is the set of all NP optimization problems.

Definition: (Goal of NPO Problem)

The goal of an NPO problem with respect to an instance x is
to find an optimum solution, that is, a feasible solution y such
that m(x , y) = goal{m(x , y ′) : y ′ ∈ sol(x)}.
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What is Approximation Algorithm?

Definition: (Approximation Algorithm)

Given an NP optimization problem P = (I, sol ,m,goal), an
algorithm A is an approximation algorithm for P if, for any given
instance x ∈ I, it returns an approximate solution, that is a
feasible solution A(x) ∈ sol(x) with guaranteed quality.
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What is Approximation Algorithm?

Definition: (Approximation Algorithm)

Given an NP optimization problem P = (I, sol ,m,goal), an
algorithm A is an approximation algorithm for P if, for any given
instance x ∈ I, it returns an approximate solution, that is a
feasible solution A(x) ∈ sol(x) with guaranteed quality.

Note:

Guaranteed quality is the difference between
approximation and heuristics.

Approximation for PO, NPO and NP-hard Optimization.

Decision, Optimization, and Constructive Problems.
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r -Approximation

Definition: (Approximation Ratio)

Let P be an NPO problem. Given an instance x and a
feasible solution y of x , we define the performance ratio of y
with respect to x as

R(x , y) = max
{

m(x , y)
opt(x)

,
opt(x)
m(x , y)

}

.

Definition: (r -Approximation)

Given an optimization problem P and an approximation
algorithm A for P, A is said to be an r -approximation for P if,
given any input instance x of P, the performance ratio of the
approximate solution A(x) is bounded by r , say, R(x ,A(x)) ≤ r .
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APX Class

Definition: (F-APX)

Given a class of functions F , an NPO problem P belongs to
the class F-APX if an r -approximation polynomial time
algorithm A for P exists, for some function r ∈ F .

Example:

F is constant functions→ P ∈ APX.

F is O(log n) functions→ P ∈ log-APX.

F is O(nk ) functions (polynomials)→ p ∈ poly-APX.

F is O(2nk
) functions→ P ∈ exp-APX.
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Special Case

Definition: (Polynomial Time Approximation Scheme→ PTAS)

An NPO problem P belongs to the class PTAS if an
algorithm A exists such that, for any rational value ǫ > 0, when
applied A to input (x , ǫ), it returns an (1 + ǫ)-approximate
solution of x in time polynomial in |x |.

Definition: (Fully PTAS→ FPTAS)

An NPO problem P belongs to the class FPTAS if an
algorithm A exists such that, for any rational value ǫ > 0, when
applied A to input (x , ǫ), it returns a (1 + ǫ)-approximate
solution of x in time polynomial both in |x | and in 1

ǫ
.
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Approximation Class Inclusion

If P 6= NP, then FPTAS ⊆ PTAS ⊆ APX ⊆ Log-APX ⊆
Poly-APX ⊆ Exp-APX ⊆ NPO

Constant-Factor
Approximation (APX)

Reduce App. Ratio
Reduce Time
Complexity

PTAS ((1 + ǫ)-Appx)
Test Existence
Reduce Time
Complexity
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Procedure

Given:

An instance of the problem specifies a set of items

Goal:

Determine a subset of the items that satisfies the problem
constraints

Maximize or minimize the measure function

Steps:

Sort the items according to some criterion

Incrementally build the solution starting from the empty set

Consider items one at a time, and maintain a set of
“selected” items

Terminate when break the problem constraints
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Set Cover Problem

Problem

Instance: Given a universe U = {e1, · · · ,en} of n elements, a
collection of subsets S = {S1, . . . ,Sm} of U, and a cost function
c : S→ Q+.

Solution: A subcollection S′ ⊆ S that covers all elements of U.

Measure: Total cost of the chosen subcollection,
∑

Si∈S′

c(S).
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An Example

S4

1 2 3

10

4 5 6

7 8 9

11 12

S2

S1

S5S3

S6

U = {1,2, · · · ,12}

S = {S1,S2, · · · ,S6}

S1 = {1,2,3,4,5,6}
S2 = {5,6,8,9}
S3 = {1,4,7,10}
S4 = {2,4,7,8,11}
S5 = {3,6,9,12}
S6 = {10,11}
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An Example

S4

1 2 3

10

4 5 6

7 8 9

11 12

S2

S1

S5S3

S6

U = {1,2, · · · ,12}

S = {S1,S2, · · · ,S6}

S1 = {1,2,3,4,5,6}
S2 = {5,6,8,9}
S3 = {1,4,7,10}
S4 = {2,4,7,8,11}
S5 = {3,6,9,12}
S6 = {10,11}

Optimal Solution:
S′ = {S3,S4,S5}

Spring, 2015 Xiaofeng Gao Approximation Basics 18/53



Approximation Basics
Greedy Algorithm

Sequential Algorithm

Set Cover Problem
Knapsack Problem
Maximum Independent Set

Greedy Algorithm

Algorithm 1 Greedy Set Cover
Input: U with n item; S with m subsets; cost function c(Si).
Output: Subset S′ ⊆ S such that

⋃

ei∈Sk∈S′

ei = U.

1: C ← ∅
2: while C 6= U do
3: Find the most cost-effective set S. Set C ← C ∪ S.

4: ∀e ∈ S\C, set price(e) =
c(S)

|S − C|
.

5: end while
6: Output selected S.

The cost-effectiveness of a set S is the average cost at which it
covers new elements; The price of an element e is the average
cost when e is covered.
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Time Complexity

Theorem: Greedy Set Cover has time complexity O(mn).
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Time Complexity

Theorem: Greedy Set Cover has time complexity O(mn).

Proof:
(1). There are at most O(min{m,n}) iterations to select the
subcollection. Within each iteration to find the minimum
cost-effectiveness, it requires O(m) times;

(2). There are totally n elements, and each ei , the price
modification will perform at most O(m) times, each with linear
operations. Totally the price updating procedure requires
O(mn) time.

Thus the total running time is
O(min{m,n}) ·O(m) + O(mn) = O(mn). 2
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Approximation Ratio

Theorem: Greedy Set Cover is an Hn factor approximation
algorithm for the minimum set cover problem, where
Hn = 1 + 1

2 + · · ·+ 1
n . ← Harmonic Number (Log-APX)
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Approximation Ratio

Theorem: Greedy Set Cover is an Hn factor approximation
algorithm for the minimum set cover problem, where
Hn = 1 + 1

2 + · · ·+ 1
n . ← Harmonic Number (Log-APX)

Proof: Let mg(U) be the cost of Greedy Set Cover, m∗(U) be
the cost of the optimal solution.

Number the elements of U in the order in which they were
covered by the algorithm.

Let e1, . . . ,en be this numbering (resolving ties arbitrarily).
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Approximation Ratio

Theorem: Greedy Set Cover is an Hn factor approximation
algorithm for the minimum set cover problem, where
Hn = 1 + 1

2 + · · ·+ 1
n . ← Harmonic Number (Log-APX)

Proof: Let mg(U) be the cost of Greedy Set Cover, m∗(U) be
the cost of the optimal solution.

Number the elements of U in the order in which they were
covered by the algorithm.

Let e1, . . . ,en be this numbering (resolving ties arbitrarily).

Observation: For each k ∈ {1, . . . ,n}, price(ek ) ≤
m∗(U)

n − k + 1
.
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Proof (Continued)

Since in any iteration, the optimal solution can cover the
remaining elements C with cost m∗(U).

Therefore, among the remaining sets, there must be one having
cost-effectiveness of at most m∗(U)/|C|.

In the iteration in which ek was covered, |C| ≥ n − k + 1. Thus

price(ek ) ≤
m∗(U)

|C|
≤

m∗(U)

n − k + 1
.
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Proof (Continued)

The total cost of the sets picked by this algorithm is equal to
n
∑

k=1
price(ek ). Then

mg(U) =
n

∑

k=1

price(ek )

≤ (1 +
1
2
+ · · ·+

1
n
) ·m∗(U)

= Hn ·m∗(U)

2
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Tight Example

The optimal cover has a cost of 1 + ǫ. While the greedy

algorithm will output a cover of cost
1
n
+

1
n − 1

+ · · ·+ 1 = Hn.
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Maximum Knapsack Problem

Problem

Instance: Given finite set X of items and a positive integer b,
for each xi ∈ X, it has value pi ∈ Z+ and size ai ∈ Z+.

Solution: A set of items Y ⊆ X such that
∑

xi∈Y
ai ≤ b.

Measure: Total value of the chosen items,
∑

xi∈Y
pi .
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Greedy Algorithm

Algorithm 2 Greedy Knapsack
Input: X with n item and b; for each xi ∈ X , value pi , and ai .
Output: Subset Y ⊆ X such that

∑

xi∈Y
ai ≤ b.

1: Sort X in non-increasing order with respect to the ratio pi
ai

⊲ Let x1, · · · , xn be the sorted sequence
2: Y = ∅;
3: for i = 1 to n do
4: if b ≥ ai then
5: Y = Y ∪ {xi};
6: b = b − ai ;
7: end if
8: end for
9: Return Y
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Time Complexity

Theorem: Greedy Knapsack has time complexity O(n log n).
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Time Complexity

Theorem: Greedy Knapsack has time complexity O(n log n).

Proof: Consider items in non-increasing order with respect to
the profic/occupancy ratio.

(1). To sort the items, it requires O(n log n) times;

(2). and then the complexity of the algorithm is linear in their
number.

Thus the total running time is O(n log n). 2
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Approximation Ratio

Theorem: The solution of Greedy Knapsack can be arbitrarily
far from the optimal value.
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Approximation Ratio

Theorem: The solution of Greedy Knapsack can be arbitrarily
far from the optimal value.

Proof: (A Worst Case Example)

Consider an instance X of Maximum Knapsack with n
items. pi = ai = 1 for i = 1, · · · ,n − 1. pn = b − 1 and
an = b = kn where k is an arbitrarily large number.

Let m∗(X ) be the size of optimal solution, and mg(X ) the
size of Greedy Knapsack solution. Then, m∗(X ) = b − 1,
while mg(X ) = n − 1,
m∗(X )

mg(X )
>

kn − 1
n − 1

> k .

2
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Improvement

The poor behavior of Greedy Knapsack if due to the fact that
the algorithm does not include the element with highest profit in
the solution while the optimal solution contains only this
element.
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Improvement

The poor behavior of Greedy Knapsack if due to the fact that
the algorithm does not include the element with highest profit in
the solution while the optimal solution contains only this
element.

Theorem

Given an instance X of the Maximum Knapsack problem, let
mH(X ) = max{pmax ,mg(X )}. where pmax is the maximum profit
of an item in X. Then mH(X ) satisfies the following inequality:

m∗(X )

mH(X )
< 2. (Constant-Factor Approximation)
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Proof (1)

Let j be the first index of an item in the order that cannot be
included. The profit achieved so far (up to item j) is:

pj =

j−1
∑

i=1

pi ≤ mg(X ).

The total occupancy (size) is

aj =

j−1
∑

i=1

ai ≤ b.
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Proof (1)

Let j be the first index of an item in the order that cannot be
included. The profit achieved so far (up to item j) is:

pj =

j−1
∑

i=1

pi ≤ mg(X ).

The total occupancy (size) is

aj =

j−1
∑

i=1

ai ≤ b.

Observation: m∗(X ) < pj + pj .
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Proof (2)

xi are ordered by pi
ai

, so any exchange of any subset of the
chosen items x1, · · · , xj−1 with any subset of the unchosen
items xj , · · · , xn that does not increase aj will not increase the
overall profit.

Thus m∗(X ) is bounded by pj plus the maximum profit from
filling the remaining space.

Since aj + aj > b (otherwise xj will be selected), we obtain:

m∗(X ) ≤ pj + (b − aj) ·
pj

aj
< pj + pj .
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Proof (3)

To complete the proof we consider two possible cases.

If pj ≤ pj , then

m∗(X ) < pj + pj ≤ 2pj ≤ 2mg(X ) ≤ 2mH(X ).

If pj > pj , then pmax > pj , and

m∗(X ) < pj + pmax ≤ 2pmax ≤ 2mH(X )

Thus Greedy Knapsack is 2-approximation. 2
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Maximum Independent Set Problem

Definition

Instance: Given a graph G = (V ,E)

Solution: An independent set V ′ ⊆ V on G, such that for any
(u, v) ∈ E , either u 6∈ V ′ or v 6∈ V ′.

Measure: Cardinality of the independent set, |V ′|.
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An Example

The cube has 6 maximal independent sets (red nodes).
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Greedy Algorithm

Algorithm 3 Greedy Independent Set
Input: Graph G = (V ,E).
Output: Independent Node Subset V ′ ⊆ V in G.

1: V ′ = ∅;
2: U = V ;
3: while U 6= ∅ do
4: x = vertex of minimum degree in the graph induced by U.
5: V ′ = V ′ ∪ {x}.
6: Eliminate x and all its neighbors from U.
7: end while
8: Return V ′.
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Worst Case Example

v

K4 I4

Let K4 be a clique with four nodes and I4 an independent set of
four nodes. v is the first to be chosen by algorithm, and the
resulting solution contains this node and exactly one node of
K4. The optimal solution contains I4. Thus m∗(X)

mg(X) ≥
n
2 .
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Approximation Ratio

Theorem: Given a graph G with n vertices and m edges, let
δ = m

n . The approximation ratio of Greedy Independent Set is

m∗(X )

mg(X )
≤ δ + 1. (Poly-APX )
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Approximation Ratio

Theorem: Given a graph G with n vertices and m edges, let
δ = m

n . The approximation ratio of Greedy Independent Set is

m∗(X )

mg(X )
≤ δ + 1. (Poly-APX )

Proof:

Define V ∗ the optimal independent set for G.

xi the vertex chosen at i th iteration of Greedy Algorithm.

di the degree of xi , then each time remove di + 1 vertices.

ki the number of vertices in V ∗ that are among di + 1
vertices deleted in the i th iteration.
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Proof (2)

Since algorithm stops when all vertices are eliminated,
mg(G)
∑

i=1

(di + 1) = n.

ki represent distinct vertices set in V ∗,
mg(G)
∑

i=1

ki = |V
∗| = m∗(G).

Each iteration the degree of the deleted vertices is at least
di(di + 1) and an edge cannot have both its endpoints in V ∗,
the number of deleted edges is at least di(di+1)+ki (ki−1)

2 ,
mg(G)
∑

i=1

di(di + 1) + ki(ki − 1)
2

≤ m = δn.
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Proof (3)

Adding three inequalities together, we have

mg(G)
∑

i=1

(

di(di + 1) + ki(ki − 1) + (di + 1) + ki

)

≤ 2δn + n +m∗(G)

=⇒

mg(G)
∑

i=1

(

(di + 1)2 + k2
i

)

≤ n(2δ + 1) + m∗(G).

By applying the Cauchy-Schwarz Inequality, the left part is
minimized when di + 1 = n

mg(G) and ki =
m∗(G)
mg(G) , hence,

n2 + m∗(G)2

mg(G)
≤

mg(G)
∑

i=1

(

(di + 1)2 + k2
i

)

≤ n(2δ + 1) + m∗(G),

C-S:
( n
∑

i=1
xi

)2
≤ n

n
∑

i=1
x2

i , equality holds when x1 = · · · = xn.
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Proof (4)

Thus,

mg(G) ≥
n2 + m∗(G)2

n(2δ + 1) + m∗(G)
= m∗(G)

n2

m∗(G) + m∗(G)

n(2δ + 1) + m∗(G)

We have
m∗(G)

mg(G)
≤

2δ + 1 + m∗(G)
n

n
m∗(G) +

m∗(G)
n

When m∗(G) = n, the right-hand inequality is maximized,

m∗(G)

mg(G)
≤

2δ + 1 + 1
1 + 1

= δ + 1.

Note: max(m) = n(n−1)
2 when G is a Kn clique, and δ = n−1

2 . 2
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Outline

1 Approximation Basics
History
NP Optimization
Definition of Approximation

2 Greedy Algorithm
Set Cover Problem
Knapsack Problem
Maximum Independent Set

3 Sequential Algorithm
Maximum Cut Problem
Job Scheduling
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Procedure

Given:

An instance of the problem specifies a set of items
I = {x1, · · · , xn}

Goal:

Determine a suitable partition that satisfies the problem
constraints
Maximize or minimize the measure function

Steps:

Sort the items according to some criterion.
Build the output partition P sequentially.
Note that when algorithm considers item xi , it is not
allowed to modify the partition of items xj , for j < i (only
assign once).
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Maximum Cut Problem

Problem

Instance: Given a graph G = (V ,E).

Solution: A partition of V into sets S and S.

Measure: Maximize the number of edges running between S
and S.
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Sequential Algorithm

Algorithm 4 Sequential Maximum Cut
Input: G = (V ,E);
Output: Partition of V = S ∪ S.

1: Pick v1, v2 from V arbitrarily. Set A← {v1}; B ← {v2}
2: for v ∈ V − {v1, v2} do
3: if d(u,A) ≥ d(u,B) then
4: B ← B ∪ {v}
5: else
6: A← A ∪ {v}
7: end if
8: end for
9: Return A, B.

d(u,A) is the number of edges between u and A
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Approximation Ratio

Theorem . Greedy Sequential has approximation ratio 2.
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Approximation Ratio

Theorem . Greedy Sequential has approximation ratio 2.

Proof . Consider each edge (vi , vj ). Whether it belongs to the
cut is determined when vi is fixed and at the moment when vj is
fixed. Thus we can partition the edge set by its “decision
vertex".

At each iteration, by the algorithm strategy at least half of
edges in each partition will be assigned to the cut, and will
never change again.

Thus |Ag| ≥
|E|
2 . It is easy to see that |OPT | ≤ |E |. Hence

|OPT |
|Ag |

≤
|E |
|E |/2

= 2.
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Tight Example

1

3

2

4

A

A

B

B

1

3

2

4

A A

BB
OPT Ag
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Minimum Scheduling on Identical Machines

Problem

Instance: Given set of jobs T , number p of machines, length lj
for executing job tj ∈ T .

Solution: A p-machine schedule for T , i.e., a function
f : T 7→ [1, · · · ,p].

Measure: Minimize the schedule’s makespan, i.e.,

min
(

max
i∈[1,··· ,p]

∑

tj∈T :f (tj )=i

lj
)

.

Note: This problem is NP-Hard even in the case of p = 2.
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Sequential Algorithm

Algorithm 5 Largest Processing Time Sequential Algorithm
Input: Set T with n jobs, each has length lj , p machines;
Output: Partition P of T .

1: Sort I in non-increasing order w.r.t. their processing time
⊲ Let t1, · · · , tn be the obtained sequence,l1 ≥ · · · ≥ ln.

2: P = {{t1}, ∅, · · · , ∅}
3: for i = 2 to n do
4: Find machine pj with minimum finish time

Aj(i − 1) = min
1≤j≤p

∑

1≤k≤i−1:f (tk )=j

lk

5: Append ti into pj .
6: end for
7: Return P.
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Approximation Ratio

Theorem: Greedy Sequential has approximation ratio 4
3 −

1
3p .
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Approximation Ratio

Theorem: Greedy Sequential has approximation ratio 4
3 −

1
3p .

Proof : Use Contradiction. Assume theorem doesn’t hold and
let T violate the claim having the minimum number of jobs.

Let j be the job of T that is last considered by Greedy
Sequential and let lmin be its length (the shortest one).

Consider two cases: lmin > m∗(T )
3 and lmin ≤

m∗(T )
3 .
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Proof (2)

If lmin > m∗(T )
3 , then at most two jobs may have been assigned

to any machine (otherwise it will violate the definition of m∗(T )).
Then p < |T | ≤ 2p.

Next, let us prove that mL(T ) = m∗(T ) For |T | ≤ 2p, we can
setup 2p − |T | virtual jobs with length 0. Thus we can assume
|T | = 2p.

Easy to see, either greedy approach or optimal solution will
divide those 2p jobs into p pairs.
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Proof (3)

Assume mL(T ) is the length of i th machine (obviously i ≤ p,
and the i th machine is the makespan). Then
mL(T ) = li + l2p−i+1.

If l2p−i+1 = 0, then it means li is the minimum length single job.
Thus mL(T ) = m∗(T ) = li .

If l2p−i+1 > 0, then it means the i th machine has two jobs with
length>0. Assume mL(T ) > m∗(T ) at this scenario.

Consider the new matching pair on the i th machine in optimal
solution. Then, in the optimal solution, the pairs containing
{l1, · · · , li−1} must have an lj (1 ≤ j ≤ i − 1), whose new
matching is greater than mL(T ).
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Proof (4)

If lmin ≤
m∗(X)

3 , let W =
∑|T |

k=1 lk , then we have m∗(T ) ≥ W
p .

Since T is a minimum counter-example, then T ′ obtained from
T by removing job tj satisfies the claim (mL(T ) > mL(T ′)).

Thus Greedy Sequential assigns tj to machine h that will have
the largest processing time.
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Proof (5)

Since tj was assigned to the least loaded machine, then the
finish time of any other machine is at least Ah(|T |)− lj . Then
W ≥ p(Ah(|T |)− lj) + lj and we obtain that

mL(T ) = Ah(|T |) ≤
W
p

+
p − 1

p
lmin

Since m∗(T ) ≥ W
p and lmin ≤

m∗(T )
3 , we have

mL(T ) ≤ m∗(T ) +
p − 1

3p
m∗(T ) = (

4
3
−

1
3p

)m∗(T ).

2
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