

X033533 -- Algorithm: Analysis and Theory

Course Syllabus -- Spring 2016

COURSE INFORMATION:

Time: 12:55pm--3:40pm, Thursday Location: Chen Rui Qiu Building 219 (陈瑞球楼 219)

February 2016					March 2016							April 2016											
week	S	Μ	Т	W	Т	F	S	week	S	Μ	Т	W	Т	F	S	week	S	Μ	Т	W	Т	F	S
		1	2	3	4	5	6	(2)			1	2	3	4	5	(6)						1	2
	7	8	9	10	11	12	13	(3)	6	7	8	9	10	11	12	(7)	3	4	5	6	7	8	9
	14	15	16	17	18	19	20	(4)	13	14	15	16	17	18	19	(8)	10	11	12	13	14	15	16
(1)	21	22	23	24	25	26	27	(5)	20	21	22	23	24	25	26	(9)	17	18	19	20	21	22	23
(2)	28	29				•		(6)	27	28	29	30	31			(10)	24	25	26	27	28	29	30

May 2016

week	S	Μ	Т	W	Т	F	S
(11)	1	2	3	4	5	6	7
(12)	8	9	10	11	12	13	14
(13)	15	16	17	18	19	20	21
(14)	22	23	24	25	26	27	28
(15)	29	30	31				

	June 2016										
week	S	Μ	Т	W	Т	F	S				
(15)				1	2	3	4				
(16)	5	6	7	8	9	10	11				
(17)	12	13	14	15	16	17	18				
(18)	19	20	21	22	23	24	25				
	26	27	28	29	30						

Total: 18 weeks, 16 classes

INSTRUCTOR INFORMATION:

Name: Xiaofeng Gao(高晓沨)

Office: Telecom Building 3-543

Phone: 021-34207407

Email: gao-xf@cs.sjtu.edu.cn (best way to contact with me)

Office Hour: By appointment (Please mention your class ID and purpose in email beforehand) **Teaching Assistant:** Zhiyin Chen (陈智殷), Email: cknight(at)foxmail.com

COURSE PREREQUISITES:

Discrete Mathematics, Data Structure, Programming Language

REFERENCE:

• Algorithm:

- o T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, MIT Press, 2009
- M. H. Alsuwaiyel, Algorithm Design Technique and Analysis, World Scientific, 1999.
- o S. Dasgupta, C. Papadimitriou, U. Vazirani, Algorithm, McGraw-Hill, 2007.
- o J. Kleinberg, and E. Tardos, Algorithm Design, Pearson-Addison Wesley, 2005.
- Alfred V. Aho, John E Hopcroft, Jeffery D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.
- o Udi Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley, 1989.
- Henming Zou, The Way of Algorithms, China Machine Press, 2010.

Computational Complexity:

- o Christos Papadimitriou, Computational Complexity, Addison Wesley, 1994.
- Theory of Computational Complexity, by Ding-Zhu Du, and Ker-I Ko, published by John Wiley & Sons, Inc., 2000.
- Computational Complexity: A Modern Approach, by Sanjeev Arora and Boaz Barak, Cambridge University Press, 2006.

Approximation:

- o Vijay V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001.
- o D.P. Williamson and D.B. Shmoys, The Design of Approximation Algorithms, 2011.
- o D.Z Du, K-I. Ko, and X.D. Hu, Design and Analysis of Approximation Algorithms, 2012.

EVENTS AND GRADING:

The final grade will be derived from your performance on the tests, and assignments. The class participation is shown as follows:

Events:		Grading Policy:	
Midterm Exam	25%	90-100%	Α
Final Exam	25%	80-89%	В
Assignments	30%	70-79%	С
Projects	10%	60-69%	D
Class Participation	10%	59% and below	F
Total	100%		

WEBPAGE AND MATERIALS:

- All the class materials (slides, references), homework assignments, announcements, and other information can be seen from http://cs.sjtu.edu.cn/~gao-xf/algorithm/
- Please check the webpage often to get the up-to-date information.

INSTRUCTOR/COURSE POLICIES

Common Sense Notices

- Please attend every class and do not be late. **15-minute** late attendance is considered absent.
- Please turn off all cell phones, buzzers, and other noisy electronic devices during class time.
- Please show common courtesy to your fellow classmates and professor.

Homework

- English only. Each takes 5%, Bonus for Electronic Submission.
- Late assignments. Every effort should be made to hand assignments by the due date and time. NO late submission is accepted. Missed work will result in a grade of ZERO.
- Academic dishonesty. Your work must be your own. Cheating will result in a grade of 0 for the applicable assignment; further disciplinary action, including assigning a failing grade for the entire course and reporting your name to the department may also be taken.

Email Netiquette

- My response will be irregular on the weekend or when I am away from campus.
- When you email me you should consider the email as official correspondence. As such, the email should not appear as a text message but should have proper grammar and punctuation. The email title should include: **Class ID/Your Purpose.** An example is below.

(Email Title: [X033533]Want a material for midterm)

Dear Dr. Gao,

My name is John Smith. I'm from your class X033533-Algorithm. I will not attend tomorrow's class due to sickness. Can you send me a copy of the midterm review so I may use it as a study tool? Thanks a lot.

Sincerely Yours,

John Smith SID: 509030XXXX Department of Computer Science and Engineering Shanghai Jiao Tong University Email: JohnASmith@gmail.com

TENTATIVE SCHEDULE: (These dates could be changed depending upon the pace of the course)

Week	Date	Lecture Topic	HW	Event
1	Tue.25	Syllabus, Preliminary, Introduction to Algorithm Schedule, Grading Policy, Preliminary, Basic Introduction, etc.	Lab-01	
2	Mar.03	Data Structure, Math Functions Data Structure, Graph, Disjoint Set, Mathematical Fundamentals, etc.	Lab-02	
3	Mar.10	<u>Divide-and-Conquer</u> Mergesort, Selection, Sorting Network, etc.	Lab-03	
4	Mar.17	Greedy Approach (1) Activity Selection, Minimum Spanning Tree, Huffman Code, etc.	Lab-04	
5	Mar.24	Greedy Approach (2) Interval Partitioning, Task Scheduling, Shortest Path, Cache, Matroid, etc.	Lab-05	
6	Mar.31	Dynamic Programming (1) Matrix-Chain, Longest Common Subsequence, 0-1 Knapsack, etc.	Lab-06	
7	Apr.07	Dynamic Programming (2) Optimal Substructure, Weighted Interval Scheduling, Sequence Alignment		
8	Apr.14	Application. Exercises. Midterm.		Midterm
9	Apr.21	Graph Algorithms (1) Single Source Shortest Paths, All-Pairs Shortest Paths, etc.	Lab-07	Project-01
10	Apr.28	<u>Graph Algorithms (2)</u> Maximum Flow, Minimum Cut, etc.	Lab-08	
11	May 07	Graph Algorithms (3) Computational Geometry, Real-World Applications	Lab-09	
12	May 14	Amortized Analysis Aggregate Analysis, Accounting Method, Potential Method	Lab-10	
13	May 21	NP-Completeness (1) NP class, Polynomial time, etc.	Lab-11	
14	May 28	NP-Completeness (2) Reducibility, Proofs, etc.	Lab-12	
15	Jun.04	Approximation Design (1) Approximation Ratio, Approximation Class, Examples	Lab-13	
16	Jun.11	Approximation Design (2) Sequential Algorithm, Local-Search, LP, Primal-Dual Technique, etc.		
17-18	TBD	Review. Exercises. Tutoring. Final Exam		Final