

4/4

$\cup,\cap,\rightarrow,\overline{S}$

- Union: $S \cup T \rightarrow$ the set of elements that are either in *S* or in *T*.
 - $S \cup T = \{s \mid s \in S \text{ or } s \in T\}$
 - $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
 - $|S \cup T| \le |S| + |T|$
- Intersection: $S \cap T$
 - $S \cap T = \{s \mid s \in S \text{ and } s \in T\}$
 - $\{a, b, c\} \cap \{c, d, e\} = \{c\}$
- Difference: $S T \rightarrow \text{set of all elements in } S$ not in T
 - $S T = \{s \mid s \in S \text{ but not in } T\} = S \cap \overline{T}$
 - $\{1, 2, 3\} \{1, 4, 5\} = \{2, 3\}$

• Complement:

- Need universal set U
- $\overline{S} = \{s \mid s \in U \text{ but not in } S\}$

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 7/47	CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue
Set Basic Concepts Function Basic Concepts Relations and Predicates Set Operations Proof Proof	Set Function Basic Concepts Relations and Predicates Proof
Ordered Pair	Definition
 (x,y): ordered pair of elements x and y; (x, y) ≠ (y, x). (x₁,, x_n): ordered <i>n</i>-tuple → boldfaced x. A₁ × A₂ × ··· × A_n = {(x₁, ··· , x_n) x₁ ∈ A₁, ··· , x_n ∈ A_n}. A × A × ··· × A = Aⁿ. A¹ = A. 	 f is a set of ordered pairs s.t. if (x, y) ∈ f and (x, z) ∈ f, then y = z, and f(x) = y. Dom(f): Domain of f, {x : f(x) is defined}. f(x) is undefined if x ∉ Dom(f). Ran(f): Range of f, {f(x) : x ∈ Dom(f)}. f is a function from A to B: Dom(f) ⊆ A and Ran(f) ⊆ B. f : A → B: f is a function from A to B with Dom(f) = A.

a b c

0 0

0 1 0

1

 $\{a, b, c\}$ 1 1 1

 $\{a\}$

 $\{b\}$

0

• Cartesian Product

 $\times, 2^{S}$

- $S \times T = \{(s, t) \mid s \in S, t \in T\}$
- In a graph G = (V, E), the edge set E is the subset of Cartesian product of vertex set V. E ⊆ V × V.

• Power Set

- 2^S set of all subsets of S
- Note: notation $|2^{S}| = 2^{|S|}$, meaning 2^{S} is a good representation for power set.
- $S = \{a, b, c\}$, then
 - $2^S = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$
- Indicator Vector: Use a zero/one vector to represent the elements in power set.

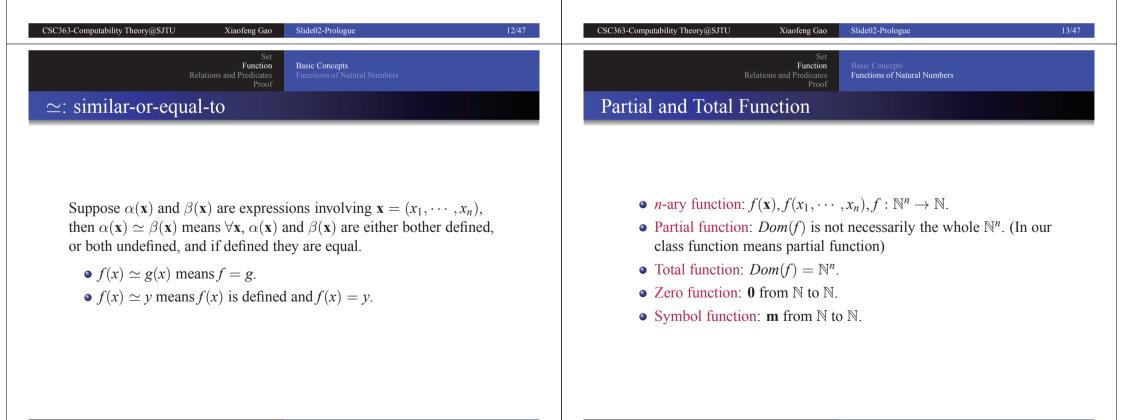
on Basic Concepts es Functions of Natu

Mapping

- Injective: if $x, y \in Dom(f), x \neq y$, then $f(x) \neq f(y)$.
- Inverse f^{-1} : the unique function g s.t. Dom(g) = Ran(f), and g(f(x)) = x.
- Surjective: if Ran(f) = B.
- Bijective: both injective and surjective.

Operation

- f|X: Restriction of f to X. Domain X ∩ Dom(f). Write f(X) for Ran(f|X).
 f⁻¹(Y) = {x : f(x) ∈ Y}: inverse image of Y under f.
 f ⊆ g: g extends f, f = g|Dom(f). Dom(f) ⊆ Dom(g) and ∀x ∈ Dom(f), f(x) = g(x).
 f ∘ g: composition of f and g. Domain {x : x ∈ Dom(g) and g(x) ∈ Dom(f)}, value f(g(x)).
 f₀: function defined nowhere. Dom(f₀) = Ran(f₀) = Ø.
 - $f_{\emptyset} = g|\emptyset$ for any function g.



CSC363-Computability Theory@SJTU

Relation

If *A* is a set, a property $M(x_1, \dots, x_n)$ that holds for some *n*-tuple from A^n and does not hold for all other *n*-tuples from A^n is called an *n*-ary relation or predicate on *A*.

- Property x < y. 2 < 5, 6 < 4.
- f from \mathbb{N}^n to \mathbb{N} gives rise to predicate $M(\mathbf{x}, y)$ by: $M(x_1, \cdots, x_n, y)$ iff $f(x_1, \cdots, x_n) \simeq y$.

reflexive

No

Yes

No Yes

<

<

Parent of

=

symmetric

No

No

No

Yes

transitive

Yes

Yes

No

Yes

Equivalence Relation

• A binary relation R on A is called equivalence relation if

reflexivity	$\forall x \text{ in } A \qquad R(x, x)$)	
symmetry	$R(x,y) \Rightarrow R(y,x)$	}	equivalence
transitivity	$R(x,y), R(y,z) \Rightarrow R(x,z)$;) J	

• A binary relation R on A is called a partial order if

irreflexivity	not $R(x, x)$	nartial order
transitivity	$R(x,y), R(y,z) \Rightarrow R(x,z)$	> partial order

CSC363-Computability Theory@SJTU	Xiaofeng Gao	Slide02-Prologue	18/47	CSC363-Computability Theory@SJTU	Xiaofeng Gao	Slide02-Prologue	19/47
	Set Function Relations and Predicates Proof	Basic Concepts Logical Notation			Set Function Relations and Predicates Proof	Basic Concepts Logical Notation	
Example				Hand Writing			

- Small letters for elements and functions.
 - *a*, *b*, *c* for elements,
 - f, g for functions,
 - *i*, *j*, *k* for integer indices,
 - *x*, *y*, *z* for variables,
- Capital letters for sets. A, B, S. $A = \{a_1, \dots, a_n\}$
- Bold small letters for vectors. $\mathbf{x}, \mathbf{y}, \mathbf{v} = \{v_1, \cdots, v_m\}$
- Bold capital letters for collections. A, B. $S = \{S_1, \dots, S_n\}$
- Blackboard bold capitals for domains (standard symbols). \mathbb{N} , \mathbb{R} .
- German script for collection of functions. $\mathscr{C}, \mathscr{S}, \mathscr{T}$.
- Greek letters for parameters or coefficients. α , β , γ .
- Double strike handwriting for bold letters.

20/47

What is proof?

A proof of a statement is essentially a convincing argument that the statement is true. A typical step in a proof is to derive statements from

- assumptions or hypotheses.
- statements that have already been derived.
- other generally accepted facts, using general principles of logical reasoning.

Categories

Types of Proof

- Proof by Construction
- Proof by Contrapositive
 - Proof by Contradiction
 - Proof by Counterexample
- Proof by Cases
- Proof by Mathematical Induction
 - The Principle of Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction

CSC363-Computability Theory@SJTU Xiaofeng Gao	Slide02-Prologue 24/47	CSC363-Computability Theory@SJTU Xiaofeng Gao	Slide02-Prologue 26/47
Set Function Relations and Predicates Proof	Definition Categories Peano Axioms	Set Function Relations and Predicates Proof	Definition Categories Peano Axioms
Proof by Construction ($\forall x, P($	x) holds)	Proof by Contrapositive ($p \rightarrow$	$q \Leftrightarrow \neg q \to \neg p$

Example: For any integers *a* and *b*, if *a* and *b* are odd, then *ab* is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer *z* so that ab = 2z + 1. Let us therefore consider *ab*.

ab = (2x + 1)(2y + 1)= 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1

Thus if we let z = 2xy + x + y, then ab = 2z + 1, which implies that ab is odd.

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \le \sqrt{n}$ or $j \le \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$. If it is not true that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$. Since j > 0, $\sqrt{n} \geq 0$, we have

$$i > \sqrt{n} \Rightarrow i \times j > \sqrt{n} \times j \ge \sqrt{n} \times \sqrt{n} = n.$$

It follows that $i \times j \neq n$. The original statement is true.

Function Relations and Predicates

Proof by Contradiction (*p* is true $\Leftrightarrow \neg p \rightarrow false$ is true)

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists x with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Therefore $x \in A \cap B$, which contradicts the assumption that $A \cap B = \emptyset$.

Xiaofeng Gao

Slide02-Prologue

Categories

Proof by Contradiction (2)

Example: $\sqrt{2}$ is irrational. (A real number *x* is *rational* if there are two integers *m* and *n* so that x = m/n.)

Categories

Proof: Suppose on the contrary $\sqrt{2}$ is rational.

Then there are integers m' and n' with $\sqrt{2} = \frac{m'}{n'}$.

By dividing both m' and n' by all the factors that are common to both, we obtain $\sqrt{2} = \frac{m}{n}$, for some integers *m* and *n* having no common factors.

Since $\frac{m}{n} = \sqrt{2}$, we can have $m^2 = 2n^2$, therefore m^2 is even, and *m* is also even.

Slide02-Prologue

Function and Predicates Proof

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Xiaofeng Gao

Proof: Let $n \in \mathbb{N}$. We can consider two cases: *n* is even and *n* is odd.

Case 1. *n* is even. Let n = 2k, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k)^{2} + 2k + 14$$
$$= 12k^{2} + 2k + 14$$
$$= 2(6k^{2} + k + 7)$$

Since $6k^2 + k + 7$ is an integer, $3n^2 + n + 14$ is even if *n* is even.

CSC363-Computability Theory@SJTU

number.

Proof by Contradiction (Cont.)

Let m = 2k. Therefore, $(2k)^2 = 2n^2$.

factors. Therefore, $\sqrt{2}$ is irrational.

Simplifying this we obtain $2k^2 = n^2$, which means *n* is also a even

We have shown that *m* and *n* are both even numbers and divisible by 2. This contradicts the previous statement *m* and *n* have no common

CSC363-Computability Theory@SJTU

30/47

Proof by Cases (Cont.)

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

 $3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$ = 3(4k² + 4k + 1) + (2k + 1) + 14 = 12k² + 12k + 3 + 2k + 1 + 14 = 12k² + 14k + 18 = 2(6k² + 7k + 9)

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd.

Since in both cases $3n^2 + n + 14$ is even, it follows that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

The Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer *n*. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(k) is true, then P(k+1) is true.

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 33/47	CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 34/47
Set Function Relations and Predicates Proof Definition Categories Peano Axioms An Example for Mathematical Induction	Set Function Relations and Predicates ProofDefinition Categories Peano AxiomsAn Example for Mathematical Induction (2)
Example: Let $P(n)$ be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that $P(n)$ is true for every $n \ge 0$. Proof: We prove $P(n)$ is true for $n \ge 0$ by induction. Basis step. $P(0)$ is $0 = 0(0+1)/2$, and it is obviously true. Induction Hypothesis. Assume $P(k)$ is true for some $k \ge 0$. Then $0+1+2+\dots+k=k(k+1)/2$. Proof of Induction Step. Now let us prove that $P(k+1)$ is true. $0+1+2+\dots+k+(k+1) = k(k+1)/2+(k+1)$ = (k+1)(k/2+1) = (k+1)(k/2)/2	Example : For any $x \in \{0, 1\}^*$, if x begins with 0 and ends with 1 (i.e., $x = 0y1$ for some string y), then x must contain the substring 01. (Note that * is the <i>Kleene star</i> . $\{0, 1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".) Proof : Consider the statement $P(n)$: If $ x = n$ and $x = 0y1$ for some string $y \in \{0, 1\}^*$, then x contains the substring 01. If we can prove that $P(n)$ is true for every $n \ge 2$, it will follow that the original statement is true. We prove it by induction. Basis step. $P(2)$ is true. Induction hypothesis. $P(k)$ for $k \ge 2$.

An Example for Mathematical Induction (2)

The Minimal Counterexample Principle

Proof of induction step. Let's prove P(k + 1).

Since |x| = k + 1 and x = 0y1, |y1| = k.

If y begins with 1 then x begins with the substring 01. If y begins with 0, then y1 begins with 0 and ends with 1;

by the induction hypothesis, *y* contains the substring 01, therefore *x* does else. \Box

Example: Prove $\forall n \in \mathbb{N}$, $5^n - 2^n$ is divisible by 3.

Proof: If $P(n) = 5^n - 2^n$ is not true for every $n \ge 0$, then there are values of *n* for which P(n) is false, and there must be a smallest such value, say n = k.

Categories

Since $P(0) = 5^0 - 2^0 = 0$, which is divisible by 3, we have $k \ge 1$, and $k - 1 \ge 0$.

Since k is the smallest value for which P(k) false, P(k-1) is true. Thus $5^{k-1} - 2^{k-1}$ is a multiple of 3, say 3j.

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue	7/47 CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 38/47
Set Function Relations and Predicates Proof	Set Function Relations and Predicates Proof
The Minimal Counterexample Principle (Cont.)	An Example for the Weakness of Mathematical Induction
	Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.
However, we have	Proof: Define $P(n)$ be the statement that " <i>n</i> is either prime or the product of two or more primes". We will try to prove that $P(n)$ is true for every $n \ge 2$.
$5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}$ = 5 \times (5^{k-1} - 2^{k-1}) + 3 \times 2^{k-1} = 5 \times 3j + 3 \times 2^{k-1} This expression is divisible by 3. We have derived a contradiction, which allows us to conclude that our original assumption is false.	Basis step. $P(2)$ is true, since 2 is a prime. \checkmark
	Induction hypothesis. $P(k)$ for $k \ge 2$. (as usual process)
	Proof of induction step. Let's prove $P(k + 1)$.
	If $P(k + 1)$ is prime, \checkmark If $P(k + 1)$ is not a prime, then we should prove that $k + 1 = r \times s$, where <i>r</i> and <i>s</i> are positive integers greater than 1 and less than $k + 1$.
	However, from $P(k)$ we know nothing about r and $s \longrightarrow ???$

The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer *n*. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

Categories

• $P(n_0)$ is true.

For any k ≥ n₀, if P(n) is true for every n satisfying n₀ ≤ n ≤ k, then P(k + 1) is true.

Also called the principle of complete induction, or course-of-values induction.

To Complete the Example

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

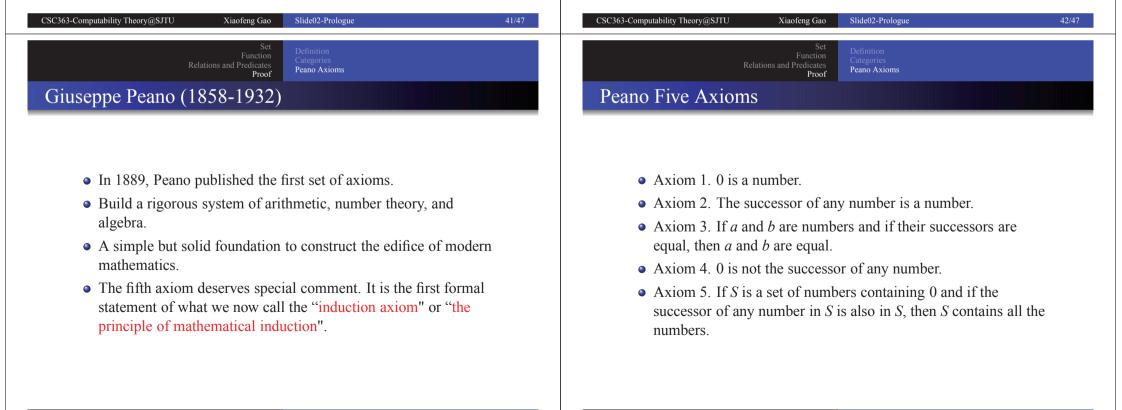
Categories

Continue the Proof: Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k + 1).

If P(k + 1) is prime, \checkmark If P(k + 1) is not a prime, by definition of a prime, $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

It follows that $2 \le r \le k$ and $2 \le s \le k$. Thus by induction hypothesis, both *r* and *s* are either prime or the product of two or more primes. Then their product k + 1 is the product of two or more primes. P(k + 1) is true.



CSC363-Computability Theory@SJTU

Set Function Relations and Predicates Proof Definition Categories Peano Axioms	Set Function Relations and Predicates ProofDefinition Categories Peano Axioms
Peano Axioms vs Theorem of Mathematical Induction	Proof
Let $S(n)$ be a statement about $n \in \mathbb{N}$. Suppose • $S(1)$ is true, and • $S(t+1)$ is true whenever $S(t)$ is true for $t \ge 1$. Then $S(n)$ is true for all $n \in \mathbb{N}$.	Let $A = \{n \in \mathbb{N} \mid S(n) \text{ is false}\}$. It suffices to show that $A = \emptyset$. If $A \neq \emptyset$, A would contain a smallest positive integer, say $n_0 \in \mathbb{N}$, s.t. $n_0 \leq n, n \in A$. Thus, the statement $S(n_0)$ is false and because of hypothesis (1), $n_0 > 1$. Since n_0 is the smallest element of A , the statement $S(n_0 - 1)$ is true. Thus, by hypothesis (2), $S(n_0 - 1)$ is true which implies that $S(n_0)$ is true, a contradiction which implies that $A = \emptyset$.
CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 46/47	CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 47/47