Decidability and Undecidability*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

CS363-Computability Theory

*Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

CSC363-Computability Theory@SJTU

Decidability and Undecidability

Undecidable Problem in Computability

Decidability and Undecidability

A predicate $M(\mathbf{x})$ is decidable if its characteristic function $c_M(\mathbf{x})$ given by

$$c_M(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ 0, & \text{if } M(\mathbf{x}) \text{ does not hold.} \end{cases}$$

is computable.

The predicate $M(\mathbf{x})$ is undecidable if it is not decidable.

An algorithm for computing c_M is called a decision procedure for M(x).

- Undecidable Problem in Computability
 - Undecidability
 - Reduction
 - Rice's Theorem
- Partial Decidable Predicates
 - Partial Decidability
 - Theorems and Examples

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Decidability and Undecidability

Undecidable Problem in Computability

Undecidability

Undecidability Result

Theorem. The problem ' $x \in W_x$ ' is undecidable.

Proof. The characteristic function of this problem is given by

$$c(x) = \begin{cases} 1, & \text{if } x \in W_x, \\ 0, & \text{if } x \notin W_x. \end{cases}$$

Suppose c(x) was computable. Then the function g(x) defined below would also be computable.

$$g(x) = \begin{cases} 0, & \text{if } c(x) = 0, \\ \text{undefined}, & \text{if } c(x) = 1. \end{cases}$$

Let *m* be an index for *g*. Then

CSC363-Computability Theory@SJTU

$$m \in W_m$$
 iff $c(m) = 0$ iff $m \notin W_m$.

Undecidable Problem in Computability
Partial Decidable Predicates

Undecidability
Reduction
Rice's Theorem

Undecidability Result

Corollary. There is a computable function h such that both $x \in Dom(h)$ and $x \in Ran(h)$ are undecidable.

Proof. Let

$$h(x) = \begin{cases} x, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

Clearly $x \in Dom(h)$ iff $x \in W_x$ iff $x \in Ran(h)$.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Decidability and Undecidability

6/24

Undecidable Problem in Computability Partial Decidable Predicates Undecidability Reduction Rice's Theorem

Methodology: Reduction

Many problems can be shown to be undecidable by showing that they are at least as difficult as $x \in W_x$

Thus we can reduce one problem to another to prove the undecidability property.

If a problem $M(\mathbf{x})$ would lead to a solution to general problem $x \in W_x$, then we say that $x \in W_x$ is reduced to $M(\mathbf{x})$.

The decidability of $M(\mathbf{x})$ implies the decidability of $x \in W_x$, from which we can conclude the undecidability of M(x).

Undecidability Result (Halting Problem)

Theorem. The problem ' $\phi_x(y)$ is defined' is undecidable.

Proof. If $y \in W_x$ were decidable then $x \in W_x$ would be decidable.

In this proof we have reduced the problem ' $x \in W_x$ ' to the problem ' $y \in W_x$ '. The reduction shows that the latter is at least as hard as the former.

CSC363-Computability Theory@SJTU

Xiaofeng Ga

Decidability and Undecidability

7/24

Undecidable Problem in Computability Partial Decidable Predicates Undecidability
Reduction
Rice's Theorem

Undecidability Result

Theorem. The problem ' $\phi_x = \mathbf{0}$ ' is undecidable.

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} 0, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x,y)$.

It is clear that $\phi_{k(x)} = \mathbf{0}$ iff $x \in W_x$.

Further Discussion

Let g be the characteristic function of $\phi_x = \mathbf{0}$,

$$g(x) = \begin{cases} 1 & \text{if } \phi_x = \mathbf{0}; \\ 0 & \text{if } \phi_x \neq \mathbf{0} \end{cases}$$

Suppose that g is computable, then so is the function h(x) = g(k(x)). However, we have

$$h(x) = \begin{cases} 1 & \text{if } \phi_{k(x)} = \mathbf{0}, \text{ i.e. } x \in W_x \\ 0 & \text{if } \phi_{k(x)} \neq \mathbf{0}, \text{ i.e. } x \notin W_x \end{cases}$$

Thus h is not computable. Hence g is not computable, and the problem $\phi_r = \mathbf{0}$ is undecidable.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Decidability and Undecidability

10/24

Undecidable Problem in Computability
Partial Decidable Predicates

Undecidability Reduction Rice's Theorem

Undecidability Result

Theorem. Let *c* be any number. The followings are undecidable.

- (a) Acceptance Problem: ' $c \in W_x$ ', $(P_x(c) \downarrow$, or ' $c \in Dom(\phi_x)$ ')
- (b) Printing Problem: ' $c \in E_x$ '. (' $c \in Ran(\phi_x)$ ')

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} y, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x,y)$.

It is clear that $c \in W_{k(x)}$ iff $x \in W_x$ iff $c \in E_{k(x)}$.

Undecidability Result

Corollary. The problem ' $\phi_x = \phi_v$ ' is undecidable.

Let c be a number such that $\phi_c = \mathbf{0}$.

If f(x, y) is the characteristic function of the problem $\phi_x = \phi_y$, then the function g(x) = f(x, c) is the characteristic function of $\phi_x = \mathbf{0}$.

Thus g is not computable, neither is f.

Thus ' $\phi_x = \phi_y$ ' is undecidable.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Decidability and Undecidability

11/24

Undecidable Problem in Computability
Partial Decidable Predicates

Undecidability Reduction Rice's Theorem

Rice's Theorem

Theorem. (Rice)

Suppose $\emptyset \subseteq \mathscr{B} \subseteq \mathscr{C}_1$. Then the problem ' $\phi_x \in \mathscr{B}$ ' is undecidable.

Proof. Suppose $f_{\emptyset} \notin \mathcal{B}$ and $g \in \mathcal{B}$. Let the function f be defined by

$$f(x,y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x,y)$.

It is clear that $\phi_{k(x)} \in \mathcal{B}$ iff $\phi_{k(x)} = g$ iff $x \in W_x$.

Partially Decidable Predicates

A predicate $M(\mathbf{x})$ of natural numbers is partially decidable if the function given by

$$f(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ \text{undefined,} & \text{if } M(\mathbf{x}) \text{ does not hold,} \end{cases}$$

is computable.

The function $f(\mathbf{x})$ is the partial characteristic function.

CSC363-Computability Theory@SJTU

Decidability and Undecidability

Partial Decidable Predicates

Partial Decidability

Partially Decidable Predicates

4. The problem ' $x \notin W_x$ ' is not partially decidable. For if f is its partial characteristic function, then

$$x \in Dom(f) \Leftrightarrow x \notin W_x$$
.

The domain of its partial characteristic function differs from the domain of every computable function.

Partially Decidable Predicates

1. The halting problem is partially decidable. Its partial characteristic function is given by

$$f(x,y) = \begin{cases} 1, & \text{if } P_x(y) \downarrow, \\ \text{undefined}, & \text{otherwise.} \end{cases}$$

- 2. Any decidable predicate is partially decidable: simply arrange for the decision procedure to enter a loop whenever it gives output 0.
- 3. For any computable function $g(\mathbf{x})$ the problem $\mathbf{x} \in Dom(g)$ is partially decidable, since it has the computable characteristic function $1(g(\mathbf{x})).$

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Decidability and Undecidability

16/24

Partial Decidable Predicates

Partially Decidable Predicates

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a computable function $g(\mathbf{x})$ such that $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(g)$.

Proof. g is essentially the partial characteristic function.

Xiaofeng Gao

Partially Decidable Predicates

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a decidable predicate $R(\mathbf{x}, y)$ such that $M(\mathbf{x}) \Leftrightarrow \exists y. R(\mathbf{x}, y)$.

Proof. " \Leftarrow " If $R(\mathbf{x}, y)$ is decidable and $M(\mathbf{x}) \Leftrightarrow \exists y. R(\mathbf{x}, y)$, then $g(\mathbf{x}) \simeq \mu y R(\mathbf{x}, y)$ is computable. Clearly $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(g)$. Thus $M(\mathbf{x})$ is partially decidable.

" \Rightarrow " Conversely suppose $M(\mathbf{x})$ is partially decided by program P. Let $R(\mathbf{x}, y)$ be

$$R(\mathbf{x}, y) \equiv P(\mathbf{x}) \downarrow \text{ in } y \text{ steps.}$$

Then $R(\mathbf{x}, y)$ is decidable and $M(\mathbf{x}) \Leftrightarrow P(\mathbf{x}) \downarrow \Leftrightarrow \exists y. R(\mathbf{x}, y)$.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Decidability and Undecidability

19/24

Undecidable Problem in Computability

Partial Decidable Predicates

Partial Decidability
Theorems and Examples

Partially Decidable Predicates

Example: $x \in E_v^{(n)}$ (*n* fixed) is partially decidable.

Proof: $x \in E_y^{(n)} \Leftrightarrow \exists z_1 \cdots \exists z_n \exists t (P_y(z_1, \cdots, z_n) \downarrow x \text{ in } t \text{ steps})$. The right one is decidable so $x \in E_y^{(n)}$ is partially decidable.

Example: $W_x \neq \emptyset$ is partially decidable.

Proof: $W_x \neq \emptyset$ iff $\exists y \exists t. (P_x(y) \downarrow \text{in } t \text{ steps})$. So $W_x \neq \emptyset$ is partially decidable.

Partially Decidable Predicates

Theorem. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y. M(\mathbf{x}, y)$.

Proof. Let $R(\mathbf{x}, y, z)$ be a decidable predicate such that $M(\mathbf{x}, y) \Leftrightarrow \exists z. R(\mathbf{x}, y, z)$. Then $\exists y. M(\mathbf{x}, y) \Leftrightarrow \exists y \exists z. R(\mathbf{x}, y, z)$.

Use standard technique of coding the pair of numbers y, z such that $R(\mathbf{x}, y, z)$ reduces to the search for a single number u such that $\exists y.M(\mathbf{x}, y) \Leftrightarrow \exists u.R(\mathbf{x}, (u)_0, (u)_1)$.

The predicate $S(\mathbf{x}, y) \equiv R(\mathbf{x}, (u)_0, (u)_1)$ is decidable by substitution and so $\exists y.M(\mathbf{x}, y)$ is partially decidable.

Corollary. If $M(\mathbf{x}, \mathbf{y})$ is a partially decidable, so is $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})$.

CSC363-Computability Theory@SJTU

CSC363-Computability Theory@SJTU

Xiaofeng Ga

Decidability and Undecidability

20/24

Undecidable Problem in Computability
Partial Decidable Predicates

Partial Decidability
Theorems and Examples

Partially Decidable Predicates

Theorem. A predicate $M(\mathbf{x})$ is decidable iff both $M(\mathbf{x})$ and $\neg M(\mathbf{x})$ are partially decidable.

Proof: " \Rightarrow " If $M(\mathbf{x})$ is decidable, so is 'not $M(\mathbf{x})$ ', so both are partially decidable.

" \Leftarrow " Conversely, suppose that partial decidable procedures for $M(\mathbf{x})$ and 'not $M(\mathbf{x})$ ' are given by programs F, G. Then

 $F(x) \downarrow \Leftrightarrow M(\mathbf{x})$ holds and $G(x) \downarrow \Leftrightarrow$ 'not $M(\mathbf{x})$ ' holds.

Also, $\forall \mathbf{x}$, either $F(\mathbf{x}) \downarrow$ or $G(\mathbf{x}) \downarrow$ but not both.

Thus given \mathbf{x} , run the computation $F(\mathbf{x})$ and $G(\mathbf{x})$ simultaneously and go on until one of them stops. If $F(\mathbf{x})$ stops, then $M(\mathbf{x})$ holds; if $G(\mathbf{x})$ stops, then $M(\mathbf{x})$ not hold.

Partially Decidable Predicates

Corollary (Divergence Problem). The problem ' $y \notin W_x$ ' (' $P_x(y) \uparrow$ ' or ' $\phi_r(v)$ is undefined') is not partially decidable.

Proof: If this problem were partially decidable, since $P_x(y) \downarrow$ is partially decidable, then by the above theorem the Halting problem would be decidable.

Partially Decidable Predicates

Theorem. Let $f(\mathbf{x})$ be a partial function. Then f is computable iff the predicate ' $f(\mathbf{x}) \simeq y$ ' is partially decidable.

Proof. If $f(\mathbf{x})$ is computable by $P(\mathbf{x})$, then

$$f(\mathbf{x}) \simeq y \Leftrightarrow \exists t. (P(\mathbf{x}) \downarrow y \text{ in } t \text{ steps}).$$

We are done by observing that ' $P(\mathbf{x}) \downarrow y$ in t steps' is decidable.

Xiaofeng Gao

Conversely let $R(\mathbf{x}, y, t)$ be such that

$$f(\mathbf{x}) \simeq y \Leftrightarrow \exists t. R(\mathbf{x}, y, t).$$

The equivalence gives rise to an algorithm.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Decidability and Undecidability

Decidability and Undecidability