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Decision Problem, Predicate, Number Set

The following emphasizes the importance of the subsets of N:

Decision Problems ⇔ Predicates on Number

⇔ Sets of Numbers

A central theme of recursion theory is to look for sensible

classification of number sets.

Classification is often done with the help of reduction.
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Recursive Set

Let A be a subset of N. The characteristic function of A is given by

cA(x) =

{

1, if x ∈ A,
0, if x /∈ A.

A is recursive if cA(x) is computable.
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Solvable Problem

A recursive set is (the domain of) a solvable problem.

It is important to know if a problem is solvable.
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Examples

The following sets are recursive.

(a) N.

(b) E (the even numbers).

(c) Any finite set.

(d) The set of prime numbers.
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Unsolvable Problem

Here are some important unsolvable problems:

K = {x | x ∈ Wx},

Fin = {x | Wx is finite},

Inf = {x | Wx is infinite},

Cof = {x | Wx is cofinite},

Rec = {x | Wx is recursive},

Tot = {x | φx is total},

Ext = {x | φx is extensible to a total recursive function}.
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Cofinite

Cof = {x | Wx is cofinite} means the set whose complement is finite.

Example 1: {x | x ≥ 5} is cofinite.

Not every infinite set is cofinite.

Example 2: E, O are not cofinite.
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Extensible Functions

Ext = {x | φx is extensible to a total recursive function}.

Example: f (x) = φx(x) + 1 is not extensible.

Proof: Assume f (x) is extensible, then define total recursive function

g(x) =

{

ψU(x, x) + 1 if ψU(x, x) is defined.
z otherwise

(1)

Let φm be the Gödel coding of g(x), then φm is a total recursive
function.

When x = m, φm(m) = ψU(m,m) by universal problem.

However, φm(m) = g(m) = ψU(m,m) + 1 by equation (1). A

contradiction. 2

Comment: Not every partial recursive function can be obtained by

restricting a total recursive function.
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Decidable Predicate

A predicate M(x) is decidable if its characteristic function cM(x)
given by

cM(x) =

{

1, ifM(x) holds,
0, ifM(x) does not hold.

is computable.

The predicate M(x) is undecidable if it is not decidable.

Recursive Set⇔ Solvable Problem ⇔ Decidable Predicate.
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Algebra of Decidability

Theorem. If A, B are recursive sets, then so are the sets A, A ∩ B,
A ∪ B, and A\B.

Proof.

cA = 1−̇cA.

cA∩B = cA · cB.

cA∪B = max(cA, cB).

cA\B = cA · cB.
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Reduction between Problems

A reduction is a way of defining a solution of a problem with the help

of the solutions of another problem.

In recursion theory we are only interested in reductions that are

computable.

There are several ways of reducing a problem to another.

The differences between different reductions from A to B consists in

the manner and extent to which information about B is allowed to

settle questions about A.
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Many-One Reduction

The set A is many-one reducible, or m-reducible, to the set B if there

is a total computable function f such that

x ∈ A iff f (x) ∈ B

for all x.

We shall write A ≤m B or more explicitly f : A ≤m B.

If f is injective, then it is a one-one reducibility, denoted by ≤1.
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Many-One Reduction

1. ≤m is reflexive and transitive.

2. A ≤m B iff A ≤m B.

3. A ≤m N iff A = N; A ≤m ∅ iff A = ∅.

4. N ≤m A iff A 6= ∅; ∅ ≤m A iff A 6= N.
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Non-Recursive Set

Proposition. K = {x | x ∈ Wx} is not recursive.

Proof. If K were recursive, then the characteristic function

c(x) =

{

1, if x ∈ Wx,
0, if x /∈ Wx,

would be computable.

Then the function g(x) defined by

g(x) =

{

0, if c(x) = 0,
undefined, if c(x) = 1.

would also be computable.

Let m be an index for g. Then

m ∈ Wm iff c(m) = 0 iff m /∈ Wm.
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Non-Recursive Set

Proposition. Neither Tot = {x | φx is total} nor {x | φx ≃ 0} is
recursive.

Proof. Consider the function f defined by

f (x, y) =

{

0, if x ∈ Wx,
undefined, if x /∈ Wx.

By S-m-n Theorem there is a primitive recursive function k(x) such
that φk(x)(y) ≃ f (x, y).

It is clear that k : K ≤m Tot and k : K ≤m {x | φx ≃ 0}.
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Rice Theorem

Henry Rice.

Classes of Recursively Enumerable Sets and their Decision Problems.

Transactions of the American mathematical Society, 77:358-366,

1953.
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Rice Theorem

Rice Theorem. (1953)

If ∅ ( B ( C1, then {x | φx ∈ B} is not recursive.

Proof. Suppose f∅ 6∈ B and g ∈ B. Let the function f be defined by

f (x, y) =

{

g(y), if x ∈ Wx,
undefined, if x /∈ Wx.

By S-m-n Theorem there is some primitive recursive function k(x)
such that φk(x)(y) ≃ f (x, y).

It is clear that k is a many-one reduction from K to {x | φx ∈ B}.
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Applying Rice Theorem

According to Rice Theorem the following sets are non-recursive:

Fin = {x | Wx is finite},

Inf = {x | Wx is infinite},

Cof = {x | Wx is cofinite},

Rec = {x | Wx is recursive},

Tot = {x | φx is total}
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Remark on Rice Theorem

Rice Theorem deals with programme independent properties.

It talks about classes of computable functions rather than classes of

programmes.

All non-trivial semantic problems are algorithmically undecidable.

It is of no help to a proof that the set of all polynomial time Turing

Machines is undecidable.
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Recursively Enumerable Set

The partial characteristic function of a set A is given by

χA(x) =

{

1, if x ∈ A,
undefined, if x /∈ A.

A is recursively enumerable if χA(x) is computable.

Notation 1: A is also called semi-recursive set, semi-computable set.

Notation 2: subsets of Nn can be defined as r.e. by coding to r.e.

subsets of N.
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Partially Decidable Predicate

A predicate M(x) of natural number is partially decidable if its partial
characteristic function

χM(x) =

{

1, ifM(x) holds,
undefined, ifM(x) does not hold,

is computable.
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Partially Decidable Problem

A problem f : N → {0, 1} is partially decidable if dom(f ) is r.e.
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Partially Decidable Problem ⇔ Partially Decidable Predicate

⇔ Recursively Enumerable Set
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Quick Review

Theorem. A predicate M(x) is partially decidable iff there is a
computable function g(x) such that M(x) ⇔ x ∈ Dom(g).

Theorem. A predicate M(x) is partially decidable iff there is a
decidable predicate R(x, y) such that M(x) ⇔ ∃y.R(x, y).

Theorem. If M(x, y) is partially decidable, so is ∃y.M(x, y).

Corollary. If M(x, y) is partially decidable, so is ∃y.M(x, y).

Theorem. M(x) is decidable iff both M(x) and ¬M(x) are partially
decidable.

Theorem. Let f (x) be a partial function. Then f is computable iff the
predicate ‘f (x) ≃ y’ is partially decidable.
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Some Important Decidable Predicates

For each n ≥ 1, the following predicates are primitive recursive:

1. Sn(e, x, y, t)
def
= ‘Pe(x) ↓ y in t or fewer steps’.

2. Hn(e, x, t)
def
= ‘Pe(x) ↓ in t or fewer steps’.

They are defined by

Sn(e, x, y, t)
def
= jn(e, x, t) = 0 ∧ (cn(e, x, t))1 = y,

Hn(e, x, t)
def
= jn(e, x, t) = 0.
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Example

1. The halting problem is partially decidable. Its partial characteristic

function is given by

χH(x, y) =

{

1, if Px(y) ↓,
undefined, otherwise.

2. K = {x | x ∈ Wx} is r.e., but not recursive.

Proof: χK(x) = 1(ψU(x, x)).

3. K = {x | x 6∈ Wx} is not r.e., (also not recursive).

Proof: If yes, then define f (x) =

{

1 if x 6∈ Wx
↑ if x ∈ Wx

Then x ∈ Dom(f ) ⇔ x 6∈ Wx. f is computable while Dom(f ) doesn’t
equal to any computable function. Contradiction!

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 29/72

Recursive Sets
Recursively Enumerable Set

Special Sets

Partial Decidable Predicates
Theorems

Example (Cont.)

4. Any recursive set is r.e.

5. {x | Wx 6= ∅} is r.e.

Proof: Wx 6= ∅ ⇔ ∃y∃t(Px(y) ↓ in t steps).

6. If f is a computable function, then Ran(f ) is r.e.

Proof: Let φm be the Gödel coding of f .

x ∈ Em ⇔ ∃y∃t(Pm(y) ↓ x in t steps).

x ∈ Em is partial decidable ⇔ Ran(f ) is r.e.
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Index Theorem

Theorem. A set is r.e. iff it is the domain of a unary computable

function.

Proof:

“⇒": A is r.e. ⇒ χA is computable ⇒ “x ∈ A⇔ x ∈ χA".

Thus A is the domain of unary computable function χA.

“⇐": If f is a unary computable function, let A = Dom(f ).

Then χA = 1(f (x)), which is computable.

Notation (Index for Recursively Enumerable Set): W0,W1,W2, . . . is
a repetitive enumeration of all r.e. sets. e is an index of A if A = We,
end every r.e. set has an infinite number of indexes.
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Normal Form Theorem

Theorem. The set A is r.e. iff there is a primitive recursive predicate

R(x, y) such that x ∈ A iff ∃y.R(x, y).

Proof. “⇐": If R(x, y) is primitive recursive and x ∈ A⇔ ∃y.R(x, y),
then define g(x) = µyR(x, y).

Then g(x) is computable and x ∈ A⇔ x ∈ Dom(g).

“⇒": suppose A is r.e., then χA is computable. Let P be program to

compute χA and R(x, y) be

P(x) ↓ in y steps.

Then R(x, y) is primitive recursive (decidable) and
x ∈ A⇔ ∃y.R(x, y).
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Quantifier Contraction Theorem

Theorem (Applying the Normal Form Theorem). IfM(x, y) is
partially decidable, so is ∃y.M(x, y) ({x | ∃y.M(x, y)} is r.e.).

Proof. Let R(x, y, z) be a primitive recursive predicate such that

M(x, y) ⇔ ∃z.R(x, y, z).

Then ∃y.M(x, y) ⇔ ∃y.∃z.R(x, y, z) ⇔ ∃u.R(x, (u)0, · · · , (u)m+1).

(u = 2y13y2 · · · pymm , p
z
m+1, if y = (y1, · · · , ym)).

By Normal Form Theorem, ∃y.M(x, y) is partially decidable, and
{x | ∃y.M(x, y)} is r.e.
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Uniformisation Theorem

Theorem (Applying the Normal Form Theorem). If R(x, y) is
partially decidable, then there is a computable function c(x) such that
c(x) ↓ iff ∃y.R(x, y) and c(x) ↓ implies R(x, c(x)).

We may think of c(x) as a choice function for R(x, y). The theorem
states that the choice function is computable.
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Complementation Theorem

Theorem. A is recursive iff A and A are r.e.

Proof. “⇒": If A is recursive, then χA and χA are computable.
Thus⇒ A and A are r.e.

“⇐": Suppose A and A are r.e. Then some primitive recursive

predicates R(x, y), S(x, y) exist such that

x ∈ A ⇔ ∃yR(x, y),

x ∈ A ⇔ ∃yS(x, y).

Now let f (x) = µy(R(x, y) ∨ S(x, y)).

Since either x ∈ A or x ∈ A holds, f (x) is total and computable, and
x ∈ A⇔ R(x, f (x)). Thus x ∈ A is decidable ⇒ A is recursive.
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The Hardest Recursively Enumerable Set

Fact. If A ≤m B and B is r.e. then A is r.e..

Theorem. A is r.e. iff A ≤m K.

Proof. Suppose A is r.e. Let f (x, y) be defined by

f (x, y) =

{

1, if x ∈ A,
undefined, if x /∈ A.

By S-m-n Theorem there is a total computable function s(x) such that
f (x, y) = φs(x)(y). It is clear that x ∈ A iff s(x) ∈ K.

No r.e. set is more difficult than K.
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Applying Complementation Theorem

Proposition. If A is r.e. but not recursive, then A 6≤m A 6≤m A.

It contradicts to our intuition that A and A are equally difficult.
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Graph Theorem

Theorem. Let f (x) be a partial function. Then f (x) is computable iff
the predicate ‘f (x) ≃ y’ is partially decidable iff {π(x, y) | f (x) ≃ y}
is r.e.

Proof. If f (x) is computable by P(x), then

f (x) ≃ y⇔ ∃t.(P(x) ↓ y in t steps).

The predicate ‘P(x) ↓ y in t steps’ is primitive recursive.

Conversely let R(x, y, t) be such that

f (x) ≃ y⇔ ∃t.R(x, y, t).

Now f (x) = µy.R(x, y, µt.R(x, y, t)).
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Listing Theorem

Listing Theorem. A is r.e. iff either A = ∅ or A is the range of a

unary total computable function.

Proof. Suppose A is nonempty and its partial characteristic function is

computed by P. Let a be a member of A. The total function g(x, t)
given by

g(x, t) =

{

x, if P(x) ↓ in t steps,
a, if otherwise.

is computable. Clearly A is the range of h(z) = g((z)1, (z)2).

The converse follows from Graph Theorem.

Suppose A = Ran(h), then

x ∈ A⇔ ∃y(h(y) ≃ x) ⇔ ∃y∃t(P(y) ↓ x in t steps)

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 39/72

Recursive Sets
Recursively Enumerable Set

Special Sets

Partial Decidable Predicates
Theorems

Listing Theorem

It gives rise to the terminology recursively enumerable.

The elements of a r.e. set can be effectively generated. E.g., A can be

enumerated as A = {h(0), h(1), · · · , h(n), · · · }, where h is a primitive
recursive function.

{E0,E1, · · · ,En, · · · } is another enumeration of all r.e. sets.

R.e. set are effectively generated sets, which is a list compiled by an

informal effective procedure (may go on ad infinitum).
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An Example

The set {x | if there is a run of exactly x consecutive 7’s in the decimal
expansion of π} is r.e.

Proof. Run an algorithm that computes successive digits in the

decimal expansion of π. Each time a run of 7s appears, count the
number of consecutive 7s in the run and add this number to the list.
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Applying Listing Theorem

A set is r.e. iff it is the range of a computable function.

Equivalence Theorem. Let A ⊆ N. Then the following are

equivalent:

(a). A is r.e.

(b). A = ∅ or A is the range of a unary total computable function.

(c). A is the range of a (partial) computable function.
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Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.

Proof. Suppose A = Ran(f ) where f is a total computable function.
An infinite recursive subset is enumerated by the total increasing

computable function g given by

g(0) = f (0),

g(n+ 1) = f (µy(f (y) > g(n))).

(g is total since A = Ran(f ) is infinite. g is computable by
minimalisation and recursion).

Ran(g) is an infinite recursive subset of A.
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Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total

increasing computable function (if it can be recursively enumerated in

increasing order).

Proof.“⇒" Suppose A is recursive and infinite. Then A is enumerated

by the increasing function f given by

f (0) = µy(y ∈ A),

f (n + 1) = µy(y ∈ A ∧ y > f (n)).

f is total since A is infinite. f is computable by minimalisation and

recursion. Ran(g) is an infinite recursive subset of A.

“⇐": Suppose A is the range of the computable total increasing

function f ; i.e., f (0) < f (1) < f (2) < · · · It is clear that if y = f (n)
then n ≤ y. Hence

y ∈ A⇔ y ∈ Ran(f ) ⇔ ∃n ≤ y(f (n) = y)

and the predicate on the right is decidable. Hence A is recursive.
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Applying Listing Theorem

Theorem. The set {x | φx is total} is not r.e.

Proof. If {x | φx is total} were a r.e. set, then there would be a total
computable function f whose range is the r.e. set.

The function g(x) given by g(x) = φf (x)(x) + 1 would be total and

computable.
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An Alternative Proof

Let f (x, y) =
{

1 if Px(x) does not converge in y or fewer steps,
undefined otherwise.

Since f (x, y) is computable by Church’s Thesis, from s-m-n theorem,

there is a total computable function k(x), such that φk(x)(y) ≃ f (x, y).

From the definition of f , we have

{

x ∈ Wx ⇒ (∃y)(Px(x) converges in y steps) ⇒ φk(x) is not total

x 6∈ Wx ⇒ (∀y)(Px(x) does not converge in y steps) ⇒ φk(x) is total

Therefore, ‘x 6∈ Wx’ iff. ‘φk(x) is total’. We have ‘φx is total’ is not
partially computable.
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Closure Theorem

Theorem. The recursively enumerable sets are closed under union

and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive

functions r(x, y), s(x, y) such that

Wr(x,y) = Wx ∪Wy,

Ws(x,y) = Wx ∩Wy.
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Rice-Shapiro Theorem

Rice-Shapiro Theorem. Suppose that A is a set of unary

computable functions such that the set {x | φx ∈ A } is r.e. Then for
any unary computable function f , f ∈ A iff there is a finite function

θ ⊆ f with θ ∈ A .
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Proof of Rice-Shapiro Theorem

Suppose A = {x | φx ∈ A } is r.e.

Suppose f ∈ A but ∀ finite θ ⊆ f .θ /∈ A .

Let P be a partial characteristic function of K.

Define the computable function g(z, t) by

g(z, t) ≃

{

f (t), if P(z) 6↓ in t steps,
↑, otherwise.

According to S-m-n Theorem, there is a primitive recursive function

s(z) such that g(z, t) ≃ φs(z)(t).

By construction φs(z) ⊆ f for all z.

z ∈ K ⇒ φs(z) is finite⇒ s(z) /∈ A;
z /∈ K ⇒ φs(z) = f ⇒ s(z) ∈ A.
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Proof of Rice-Shapiro Theorem

Suppose f is a computable function and there is a finite θ ∈ A such

that θ ⊆ f and f /∈ A .

Define the computable function g(z, t) by

g(z, t) ≃

{

f (t), if t ∈ Dom(θ) ∨ z ∈ K,
↑, otherwise.

According to S-m-n Theorem, there is a primitive recursive function

s(z) such that g(z, t) ≃ φs(z)(t).

z ∈ K ⇒ φs(z) = f ⇒ s(z) /∈ A;
z /∈ K ⇒ φs(z) = θ⇒ s(z) ∈ A.
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Reversing Rice-Shapiro Theorem

{x | φx ∈ A } is r.e. if the following hold:

(1) Θ = {g(θ) | θ ∈ A and θ is finite} is r.e., where g is a canonical
encoding of the finite functions.

(2) ∀f ∈ A , ∃ finite θ ∈ A , θ ⊆ f .
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Corollary

The sets {x | φx is total} and {x | φx is not total} are not r.e.

Proof. Consider the set A = {f | f ∈ C1 ∧ f is total}. For no f ∈ A

is there a finite θ ⊆ f with θ ∈ A . Hence {x | φx is total} is not r.e.

Consider the set B = {f | f ∈ C1 ∧ f is not total}. Then if f is any
total computable function, f 6∈ B; but every finite function θ ⊆ f is in
B. Hence {x | φx is not total} is not r.e. by Rice-Shapiro theorem.
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Applying Rice-Shapiro Theorem

The following sets are not recursively enumerable:

Fin = {x | Wx is finite},

Inf = {x | Wx is infinite},

Cof = {x | Wx is cofinite},

Rec = {x | Wx is recursive},

Tot = {x | φx is total},

Con = {x | φx is total and constant},

Ext = {x | φx is extensible to a total recursive function}.
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Non-r.e. Sets

Target. We consider non-r.e. sets to form creative sets. Suppose A is

any non-r.e. set, then if Wx is an r.e. set contained in A, there must be

a number y ∈ A\Wx. This number y is a witness of A 6= Wx.

Example. Consider K = {x | x 6∈ Wx}

Suppose Wx ⊆ K. Then x ∈ K \Wx. So x is a witness that the
inclusion Wx ⊆ K is strict.

We call K productive.
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Productive Sets

Definition. A set A is productive if

there is a total computable function

g such that whenever Wx ⊆ A, then

g(x) ∈ A \Wx.

The function is called a productive

function for A.

Notation. A productive set is not r.e.
Fig. A productive set

Example. K is productive with productive function g(x) = x.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 56/72

Recursive Sets
Recursively Enumerable Set

Special Sets

Productive Sets
Creative Set
Simple Sets

Reduction Theorem

Theorem. Suppose that A and B are sets such that A is productive,

and there is a total computable function such that x ∈ A iff f (x) ∈ B.
Then B is productive.

Proof. Suppose Wx ⊆ B. ThenWz = f
−1(Wx) ⊆ f

−1(B) = A for
some z.

Moreover, f−1(Wx) is r.e. (by substitution), so there is a z such that
f−1(Wx) = Wz. NowWz ⊆ A, and g(z) ∈ A \Wz. Hence
f (g(z)) ∈ B \Wx.

f (g(z)) is a witness to the fact that Wx 6= B.

We now need to obtain the witness f (g(z)) effectively from x. Apply
the s-m-n theorem to φx(f (y)), one gets a total computable function
k(x) such that φk(x)(y) = φx(f (y)). ThenWk(x) = f

−1(Wx). It follows
that f (g(k(x))) ∈ B \Wx.
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Proof
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Examples

1. {x | φx 6= 0} is productive.

Proof. f (x, y) =

{

0 if x ∈ Wx
↑ if x 6∈ Wx

. Reduce from K.

2. {x | c /∈ Wx} is productive.

Proof. f (x, y) =

{

y if x ∈ Wx
↑ if x 6∈ Wx

. Reduce from K.

3. {x | c /∈ Ex} is productive.
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Application of Rich’s Theorem

Theorem. Suppose that B is a set of unary computable functions with

f∅ ∈ B and B 6= C1. Then the set B = {x | φx ∈ B} is productive.

Proof. Choose a computable function g /∈ B. Consider function f

defined by

f (x, y) =

{

g(y), if x ∈ Wx,
↑, if x /∈ Wx.

By s-m-n theorem there is some total computable function k(x) such
that φk(x)(y) ≃ f (x, y).

It is clear that x ∈ Wx iff φk(x) = g iff φk(x) /∈ B. Thus x ∈ K iff

k(x) ∈ B.

Example. {x | φx is not total} is productive.

(B = {f | f ∈ C1 ∧ f is not total}.)
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Creative Sets

Definition. A set A is creative if it is r.e. and its complement A is

productive.

Example. K is creative. (The simplest example of a creative set).

Notation. From the theorem that A is recursive ⇔ A and A are r.e. we

can say that a creative set is an r.e. set that fails to be recursive in a

very strong way. (Creative sets are r.e. sets having the most difficult

decision problem.)
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Examples

1. {x | c ∈ Wx} is creative.

2. {x | c ∈ Ex} is creative.

3. A = {x | φx(x) = 0} is creative.

Proof. A is r.e.

To obtain a productive function for A, by s-m-n theorem one gets a

total computable function g(x) such that φg(x)(y) = 0 ⇔ φx(y) is
defined.

Then g(x) ∈ A⇔ g(x) ∈ Wx. So if Wx ⊆ A we must have
g(x) ∈ A \Wx.

Thus g is a productive function for A.
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Application of Rice’s Theorem

Theorem. Suppose that A ⊆ C1 and let A = {x | φx ∈ A }. If A is
r.e. and A 6= ∅,N, then A is creative.

Proof. Suppose A is r.e. and A 6= ∅, N.

If f∅ ∈ A , then A is productive by the previous theorem. This is a

contradiction.

Thus f∅ 6∈ A . A is productive by the same theorem. Hence A is

creative.
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Examples

1. A = {x | c ∈ Wx} is creative. It corresponds to
A = {f ∈ C1 | f (c) ↓}.

2. A = {x | c ∈ Ex} is creative. It corresponds to
A = {f ∈ C1 | ∃x(f (x) ↓ c)}.

3. A = {x | Wx 6= ∅} is creative. It corresponds to
A = {f ∈ C1 | f 6= f∅}.
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Discussion

Question. Are all non-recursive r.e. sets creative?

The answer is negative. By a special construction we can obtain

r.e.sets that are neither recursive nor creative.
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Subset Theorem

Lemma. Suppose that g is a total computable function. Then there is

a total computable function k such that for all x,Wk(x) = Wx ∪ {g(x)}.

Proof. Using the s-m-n theorem, take k(x) to be a total computable
function such that

φk(x)(y) =

{

1, if y ∈ Wx ∨ y = g(x),
↑, otherwise

.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive function g. The idea

is to enumerate a non-repetitive infinite set B = {y0, y1, · · · } ⊆ A.

Take e0 to be some index for We0 = ∅. Since We0 ⊆ A, g(e0) ∈ A.
Put y0 = g(e0) ∈ A.

For n ≥ 0, assume {y0, · · · , yn} ⊆ A. Find an en+1 s.t.

{y0, · · · , yn} = Wen+1
⊆ A. Then g(en+1) ∈ A\Wen+1

. Thus if we put

yn+1 = g(en+1), we have yn+1 ∈ A and yn+1 6= y0, · · · , yn.

By the Lemma there is some total computable function k such that for

all x, Wk(x) = Wx ∪ {g(x)}. So the infinite set {e0, . . . , k
n(e0), . . .} is

r.e.

It follows that the infinite set {g(e0), . . . , g(k
n(e0)), . . .} is a r.e.

subset of A.
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Illumination
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Corollary

If A is creative, then A contains an infinite r.e. subset.
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Simple Sets

Definition. A set A is simple if

(i) A is r.e.,

(ii) A is infinite,

(iii) A contains no infinite r.e. subset.
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Simple Sets

Theorem. A simple set is neither recursive nor creative.

Proof. Since A can not be r.e., A can not be recursive.

(iii) implies that A can not be creative.
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Simple Sets

Theorem. There is a simple set.

Proof. Define f (x) = φx(µz(φx(z) > 2x)). Let A be Ran(f ).

(i) A is r.e.

(ii) A is infinite. This is because A ∩ {0, 1, . . . , 2n} contains at most
the elements {f (0), f (1), . . . , f (n − 1)}.

(iii) Suppose B is an infinite r.e. set. Then there is a total computable

function φb such that B = Eb. Since φb is total, f (b) is defined and
f (b) ∈ A. Hence B 6⊆ A.
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