

Recursively Enumerable Set Special Sets	Reduction Reduction Rice Theorem	
Solvable Problem		Examples

A recursive set is (the domain of) a solvable problem.

It is important to know if a problem is solvable.

The following sets are recursive.

(a) ℕ.

(b) \mathbb{E} (the even numbers).

(c) Any finite set.

(d) The set of prime numbers.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 6/72	CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 7/72
Recursive Sets Recursively Enumerable Set Special Sets Decidable Predicate Reduction Rice Theorem Unsolvable Problem Problem	Recursive Sets Recursively Enumerable Set Special Sets Decidable Predicate Reduction Rice Theorem Cofinite
Here are some important unsolvable problems: $K = \{x \mid x \in W_x\},$ $Fin = \{x \mid W_x \text{ is finite}\},$ $Inf = \{x \mid W_x \text{ is infinite}\},$ $Cof = \{x \mid W_x \text{ is cofinite}\},$ $Rec = \{x \mid W_x \text{ is recursive}\},$ $Tot = \{x \mid \phi_x \text{ is total}\},$ $Ext = \{x \mid \phi_x \text{ is extensible to a total recursive function}\}.$	$Cof = \{x \mid W_x \text{ is cofinite}\}$ means the set whose complement is finite. Example 1: $\{x \mid x \ge 5\}$ is cofinite. Not every infinite set is cofinite. Example 2: \mathbb{E} , \mathbb{O} are not cofinite.

Recursive Sets Decidable Predicate Recursively Enumerable Set Reduction Special Sets Rice Theorem

Extensible Functions

 $Ext = \{x \mid \phi_x \text{ is extensible to a total recursive function}\}.$

Example: $f(x) = \phi_x(x) + 1$ is not extensible.

Proof: Assume f(x) is extensible, then define total recursive function

$$g(x) = \begin{cases} \psi_U(x,x) + 1 & \text{if } \psi_U(x,x) \text{ is defined.} \\ \clubsuit & \text{otherwise} \end{cases}$$
(1)

Let ϕ_m be the Gödel coding of g(x), then ϕ_m is a total recursive function.

When x = m, $\phi_m(m) = \psi_U(m, m)$ by universal problem. However, $\phi_m(m) = g(m) = \psi_U(m, m) + 1$ by equation (1). A contradiction.

Comment: Not every partial recursive function can be obtained by restricting a total recursive function.

CSC363-Computability Theory@SITUXiaofeng GaoRecursively Enumerable Set1072CSC363-ComputabilityRecursive Sets
Special SetsDecidable Predicate
Reduction
Recursively Enumerable SetDecidable Predicate
Reduction
Recursively Enumerable SetDecidable Predicate
Reduction
Recursively Enumerable SetRecursively Enumerable Set1072CSC363-ComputabilityAlgebra of DecidabilityDecidable Predicate
Recursively Enumerable SetDecidable Predicate
Reduction
Recursively Enumerable SetDecidable Predicate
Reduction
Recursively Enumerable SetReductionTheorem. If A, B are recursive sets, then so are the sets $\overline{A}, A \cap B$,
 $A \cup B$, and $A \setminus B$.A reduction
of the solution
In recursic
computabilityProof.
 $c_{\overline{A}} = 1 - c_A$. $c_{A \cup B} = max(c_A, c_B)$.
 $c_{A \setminus B} = c_A \cdot c_{\overline{B}}$.There are
The differ
the manne

Decidable Predicate

A predicate $M(\mathbf{x})$ is decidable if its characteristic function $c_M(\mathbf{x})$ given by

 $c_M(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ 0, & \text{if } M(\mathbf{x}) \text{ does not hold.} \end{cases}$

is computable.

The predicate $M(\mathbf{x})$ is undecidable if it is not decidable.

Recursive Set \Leftrightarrow Solvable Problem \Leftrightarrow Decidable Predicate.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 11/72 Recursive Sets
Recursively Enumerable Set
Special Sets
Recursive In Lange Action Rice Theorem

Reduction between Problems

A reduction is a way of defining a solution of a problem with the help of the solutions of another problem.

In recursion theory we are only interested in reductions that are computable.

There are several ways of reducing a problem to another.

The differences between different reductions from A to B consists in the manner and extent to which information about B is allowed to settle questions about A.

Recursive Sets Recursively Enumerable Set Special Sets

Many-One Reduction

The set A is many-one reducible, or m-reducible, to the set B if there is a total computable function f such that

Reduction

 $x \in A$ iff $f(x) \in B$

for all *x*.

We shall write $A \leq_m B$ or more explicitly $f : A \leq_m B$.

If *f* is injective, then it is a one-one reducibility, denoted by \leq_1 .

Many-One Reduction

- 1. \leq_m is reflexive and transitive. 2. $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.
- 3. $A \leq_m \mathbb{N}$ iff $A = \mathbb{N}$; $A \leq_m \emptyset$ iff $A = \emptyset$.

4.
$$\mathbb{N} \leq_m A$$
 iff $A \neq \emptyset$; $\emptyset \leq_m A$ iff $A \neq \mathbb{N}$.

CSC363-Computability Theory@SJTU Xiaofeng Gao	Recursive and Recursively Enumerable Set 14/72	CSC363-Computability Theory@SJTU X	Xiaofeng Gao	Recursive and Recursively Enumerable Set	15/72
Recursive Sets Recursively Enumerable Set Special Sets	Decidable Predicate Reduction Rice Theorem	R Recursively En	Recursive Sets numerable Set Special Sets	Decidable Predicate Reduction Rice Theorem	
Non-Recursive Set		Non-Recursive Set			

Proposition. $K = \{x \mid x \in W_x\}$ is not recursive.

Proof. If K were recursive, then the characteristic function

$$c(x) = \begin{cases} 1, & \text{if } x \in W_x, \\ 0, & \text{if } x \notin W_x, \end{cases}$$

would be computable.

Then the function g(x) defined by

$$g(x) = \begin{cases} 0, & \text{if } c(x) = 0, \\ \text{undefined}, & \text{if } c(x) = 1. \end{cases}$$

would also be computable. Let m be an index for g. Then

$$m \in W_m$$
 iff $c(m) = 0$ iff $m \notin W_m$.

Proposition. Neither $Tot = \{x \mid \phi_x \text{ is total}\}$ nor $\{x \mid \phi_x \simeq \mathbf{0}\}$ is recursive.

Proof. Consider the function f defined by

$$f(x,y) = \begin{cases} 0, & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$$

By S-m-n Theorem there is a primitive recursive function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that $k : K \leq_m Tot$ and $k : K \leq_m \{x \mid \phi_x \simeq \mathbf{0}\}.$

Recursive Sets Recursively Enumerable Set Special Sets

Rice Theorem

Henry Rice.

Classes of Recursively Enumerable Sets and their Decision Problems. Transactions of the American mathematical Society, **77**:358-366, 1953.

Rice Theorem

Rice Theorem

Rice Theorem. (1953) If $\emptyset \subseteq \mathscr{B} \subseteq \mathscr{C}_1$, then $\{x \mid \phi_x \in \mathscr{B}\}$ is not recursive.

Proof. Suppose $f_{\varnothing} \notin \mathscr{B}$ and $g \in \mathscr{B}$. Let the function f be defined by

Rice Theorem

 $f(x,y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \text{undefined}, & \text{if } x \notin W_x. \end{cases}$

By S-m-n Theorem there is some primitive recursive function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that *k* is a many-one reduction from *K* to $\{x \mid \phi_x \in \mathscr{B}\}$.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 18/72	CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 19/72
Recursive Sets Recursively Enumerable Set Special Sets Decidable Predicate Reduction Rice Theorem Applying Rice Theorem Decidable Predicate Reduction	Recursive Sets Recursively Enumerable Set Special Sets Decidable Predicate Reduction Rice Theorem Remark on Rice Theorem Decidable Predicate Reduction Rice Theorem
According to Rice Theorem the following sets are non-recursive: $Fin = \{x \mid W_x \text{ is finite}\},$ $Inf = \{x \mid W_x \text{ is infinite}\},$ $Cof = \{x \mid W_x \text{ is cofinite}\},$ $Rec = \{x \mid W_x \text{ is recursive}\},$ $Tot = \{x \mid \phi_x \text{ is total}\}$	Rice Theorem deals with programme independent properties. It talks about classes of computable functions rather than classes of programmes. All non-trivial semantic problems are algorithmically undecidable. It is of no help to a proof that the set of all polynomial time Turing Machines is undecidable.

Partial Decidable Predicates Partial Decidable Predicates Recursively Enumerable Set Recursively Enumerable Set **Recursively Enumerable Set** Partially Decidable Predicate The partial characteristic function of a set A is given by A predicate $M(\mathbf{x})$ of natural number is partially decidable if its partial $\chi_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ \text{undefined}, & \text{if } x \notin A. \end{cases}$ characteristic function $\chi_M(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ \text{undefined,} & \text{if } M(\mathbf{x}) \text{ does not hold,} \end{cases}$ A is recursively enumerable if $\chi_A(x)$ is computable. Notation 1: A is also called semi-recursive set, semi-computable set. is computable. **Notation 2:** subsets of \mathbb{N}^n can be defined as r.e. by coding to r.e. subsets of \mathbb{N} . CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set Recursive Partial Decidable Predicates Partial Decidable Predicates Recursively Enumerable Set Recursively Enumerable Set Partially Decidable Problem

A problem $f : \mathbb{N} \to \{0, 1\}$ is partially decidable if dom(f) is r.e.

Partially Decidable Problem \Leftrightarrow Partially Decidable Predicate

 \Leftrightarrow Recursively Enumerable Set

Recursive Sets Recursively Enumerable Set Theorems

Quick Review

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a computable function g(x) such that $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(g)$.

Theorem. A predicate $M(\mathbf{x})$ is partially decidable iff there is a decidable predicate $R(\mathbf{x}, y)$ such that $M(\mathbf{x}) \Leftrightarrow \exists y.R(\mathbf{x}, y)$.

Theorem. If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y.M(\mathbf{x}, y)$.

Corollary. If $M(\mathbf{x}, \mathbf{y})$ is partially decidable, so is $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})$.

Theorem. $M(\mathbf{x})$ is decidable iff both $M(\mathbf{x})$ and $\neg M(\mathbf{x})$ are partially decidable.

Theorem. Let $f(\mathbf{x})$ be a partial function. Then f is computable iff the predicate ' $f(\mathbf{x}) \simeq y$ ' is partially decidable.

Partial Decidable Predicates

Some Important Decidable Predicates

For each $n \ge 1$, the following predicates are primitive recursive:

1. $S_n(e, \mathbf{x}, y, t) \stackrel{\text{def}}{=} {}^{\circ}P_e(\mathbf{x}) \downarrow y \text{ in } t \text{ or fewer steps'}.$ 2. $H_n(e, \mathbf{x}, t) \stackrel{\text{def}}{=} {}^{\circ}P_e(\mathbf{x}) \downarrow \text{ in } t \text{ or fewer steps'}.$

They are defined by

$$\begin{aligned} \mathsf{S}_n(e,\mathbf{x},y,t) &\stackrel{\text{def}}{=} & \mathsf{j}_n(e,\mathbf{x},t) = 0 \land (\mathsf{C}_n(e,\mathbf{x},t))_1 = y, \\ \mathsf{H}_n(e,\mathbf{x},t) &\stackrel{\text{def}}{=} & \mathsf{j}_n(e,\mathbf{x},t) = 0. \end{aligned}$$

Recursive Sets Recursively Enumerable Set Special Sets Theorems

Index Theorem

Theorem. A set is r.e. iff it is the domain of a unary computable function.

Proof:

" \Rightarrow ": *A* is r.e. $\Rightarrow \chi_A$ is computable \Rightarrow " $x \in A \Leftrightarrow x \in \chi_A$ ".

Thus A is the domain of unary computable function χ_A .

" \Leftarrow ": If *f* is a unary computable function, let A = Dom(f). Then $\chi_A = \mathbf{1}(f(x))$, which is computable.

Notation (Index for Recursively Enumerable Set): $W_0, W_1, W_2, ...$ is a repetitive enumeration of all r.e. sets. *e* is an index of *A* if $A = W_e$, end every r.e. set has an infinite number of indexes.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 31/72	CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 32/72
Recursively Enumerable Set Special Sets Partial Decidable Predicates Theorems Quantifier Contraction Theorem	Recursively Enumerable Set Special Sets Uniformisation Theorem
Theorem (Applying the Normal Form Theorem). If $M(\mathbf{x}, \mathbf{y})$ is partially decidable, so is $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y}) (\{\mathbf{x} \mid \exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})\}$ is r.e.). <i>Proof.</i> Let $R(\mathbf{x}, \mathbf{y}, z)$ be a primitive recursive predicate such that $M(\mathbf{x}, \mathbf{y}) \Leftrightarrow \exists z.R(\mathbf{x}, \mathbf{y}, z)$. Then $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y}) \Leftrightarrow \exists \mathbf{y}.\exists z.R(\mathbf{x}, \mathbf{y}, z) \Leftrightarrow \exists u.R(\mathbf{x}, (u)_0, \cdots, (u)_{m+1})$. $(u = 2^{y_1}3^{y_2}\cdots p_m^{y_m}, p_{m+1}^z, \text{ if } \mathbf{y} = (y_1, \cdots, y_m))$. By Normal Form Theorem, $\exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})$ is partially decidable, and $\{\mathbf{x} \mid \exists \mathbf{y}.M(\mathbf{x}, \mathbf{y})\}$ is r.e.	Theorem (Applying the Normal Form Theorem). If $R(x, y)$ is partially decidable, then there is a computable function $c(x)$ such that $c(x) \downarrow \text{ iff } \exists y.R(x,y) \text{ and } c(x) \downarrow \text{ implies } R(x, c(x)).$ We may think of $c(x)$ as a choice function for $R(x, y)$. The theorem states that the choice function is computable.

Normal Form Theorem

Theorem. The set *A* is r.e. iff there is a primitive recursive predicate $R(\mathbf{x}, y)$ such that $\mathbf{x} \in A$ iff $\exists y. R(\mathbf{x}, y)$.

Proof. " \Leftarrow ": If $R(\mathbf{x}, y)$ is primitive recursive and $\mathbf{x} \in A \Leftrightarrow \exists y. R(\mathbf{x}, y)$, then define $g(\mathbf{x}) = \mu y R(\mathbf{x}, y)$.

Then $g(\mathbf{x})$ is computable and $\mathbf{x} \in A \Leftrightarrow \mathbf{x} \in Dom(g)$.

" \Rightarrow ": suppose *A* is r.e., then χ_A is computable. Let *P* be program to compute χ_A and $R(\mathbf{x}, y)$ be

```
P(\mathbf{x}) \downarrow in y steps.
```

Then $R(\mathbf{x}, y)$ is primitive recursive (decidable) and $\mathbf{x} \in A \Leftrightarrow \exists y. R(\mathbf{x}, y)$.

Recursively Enumerable Set Special Seta

Complementation Theorem

Theorem. A is recursive iff A and \overline{A} are r.e.

Proof. " \Rightarrow ": If *A* is recursive, then χ_A and $\chi_{\overline{A}}$ are computable. Thus $\Rightarrow A$ and \overline{A} are r.e.

" \Leftarrow ": Suppose *A* and \overline{A} are r.e. Then some primitive recursive predicates R(x, y), S(x, y) exist such that

 $\begin{array}{ll} x \in A & \Leftrightarrow & \exists y R(x,y), \\ x \in \overline{A} & \Leftrightarrow & \exists y S(x,y). \end{array}$

Now let $f(x) = \mu y(R(x, y) \lor S(x, y)).$

Since either $x \in A$ or $x \in \overline{A}$ holds, f(x) is total and computable, and $x \in A \Leftrightarrow R(x, f(x))$. Thus $x \in A$ is decidable $\Rightarrow A$ is recursive.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set Recursively Enumerable Set Recursively Enumerable Set Theorems **Applying Complementation Theorem** Graph Theorem **Theorem**. Let f(x) be a partial function. Then f(x) is computable iff the predicate ' $f(x) \simeq y$ ' is partially decidable iff { $\pi(x, y) \mid f(x) \simeq y$ } isre *Proof.* If f(x) is computable by P(x), then **Proposition**. If A is r.e. but not recursive, then $\overline{A} \leq_m A \leq_m \overline{A}$. $f(x) \simeq v \Leftrightarrow \exists t. (P(x) \downarrow v \text{ in } t \text{ steps}).$ It contradicts to our intuition that A and \overline{A} are equally difficult. The predicate ' $P(x) \downarrow y$ in t steps' is primitive recursive. Conversely let R(x, y, t) be such that $f(x) \simeq v \Leftrightarrow \exists t. R(x, v, t).$ Now $f(x) = \mu y \cdot R(x, y, \mu t \cdot R(x, y, t))$.

Theorems

The Hardest Recursively Enumerable Set

Fact. If $A \leq_m B$ and *B* is r.e. then *A* is r.e..

Theorem. A is r.e. iff $A \leq_m K$.

Proof. Suppose *A* is r.e. Let f(x, y) be defined by

 $f(x,y) = \begin{cases} 1, & \text{if } x \in A, \\ \text{undefined,} & \text{if } x \notin A. \end{cases}$

By S-m-n Theorem there is a total computable function s(x) such that $f(x,y) = \phi_{s(x)}(y)$. It is clear that $x \in A$ iff $s(x) \in K$.

No r.e. set is more difficult than *K*.

Recursively Enumerable Set Theorems

Listing Theorem

Listing Theorem. A is r.e. iff either $A = \emptyset$ or A is the range of a unary total computable function.

Proof. Suppose A is nonempty and its partial characteristic function is computed by P. Let a be a member of A. The total function g(x, t)given by

 $g(x,t) = \begin{cases} x, & \text{if } P(x) \downarrow \text{ in } t \text{ steps,} \\ a, & \text{if otherwise.} \end{cases}$

is computable. Clearly *A* is the range of $h(z) = g((z)_1, (z)_2)$.

The converse follows from Graph Theorem. Suppose A = Ran(h), then

 $x \in A \Leftrightarrow \exists \mathbf{y}(h(\mathbf{y}) \simeq x) \Leftrightarrow \exists \mathbf{y} \exists t(P(\mathbf{y}) \downarrow x \text{ in } t \text{ steps})$

Theorems

Listing Theorem

It gives rise to the terminology recursively enumerable.

Recursively Enumerable Set

The elements of a r.e. set can be effectively generated. E.g., A can be enumerated as $A = \{h(0), h(1), \dots, h(n), \dots\}$, where h is a primitive recursive function.

 $\{E_0, E_1, \cdots, E_n, \cdots\}$ is another enumeration of all r.e. sets.

R.e. set are effectively generated sets, which is a list compiled by an informal effective procedure (may go on ad infinitum).

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 39/72	CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 40/72
Recursively Enumerable Set Special Sets Partial Decidable Predicates Theorems An Example	Recursive Sets Special Sets Partial Decidable Predicates Theorems Applying Listing Theorem Partial Decidable Predicates
The set $\{x \mid \text{if there is a run of exactly } x \text{ consecutive 7's in the decimal expansion of } \pi \}$ is r.e. <i>Proof.</i> Run an algorithm that computes successive digits in the decimal expansion of π . Each time a run of 7s appears, count the number of consecutive 7s in the run and add this number to the list.	A set is r.e. iff it is the range of a computable function. Equivalence Theorem. Let $A \subseteq \mathbb{N}$. Then the following are equivalent: (a). <i>A</i> is r.e. (b). $A = \emptyset$ or <i>A</i> is the range of a unary total computable function. (c). <i>A</i> is the range of a (partial) computable function.

Recursively Enumerable Set

Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.

Theorems

Proof. Suppose A = Ran(f) where f is a total computable function. An infinite recursive subset is enumerated by the total increasing computable function g given by

> g(0) = f(0), $g(n+1) = f(\mu y(f(y) > g(n))).$

(g is total since A = Ran(f) is infinite. g is computable by minimalisation and recursion). Ran(g) is an infinite recursive subset of A.

Theorem. An infinite set is recursive iff it is the range of a total increasing computable function (if it can be recursively enumerated in

 $f(0) = \mu v(v \in A),$

recursion. Ran(g) is an infinite recursive subset of A.

Proof." \Rightarrow " Suppose A is recursive and infinite. Then A is enumerated

 $f(n+1) = \mu v(v \in A \land v > f(n)).$

f is total since A is infinite. f is computable by minimalisation and

" \Leftarrow ": Suppose A is the range of the computable total increasing

function f; i.e., $f(0) < f(1) < f(2) < \cdots$ It is clear that if y = f(n)

Applying Listing Theorem

by the increasing function *f* given by

increasing order).

then $n \leq y$. Hence

Theorems

Recursively Enumerable Set

Closure Theorem

Theorem. The recursively enumerable sets are closed under union and intersection uniformly and effectively.

Theorems

Proof. According to S-m-n Theorem there are primitive recursive functions r(x, y), s(x, y) such that

$$W_{r(x,y)} = W_x \cup W_y,$$

$$W_{s(x,y)} = W_x \cap W_y.$$

Partial Decidable Predicates Theorems

Rice-Shapiro Theorem

Rice-Shapiro Theorem. Suppose that \mathscr{A} is a set of unary computable functions such that the set $\{x \mid \phi_x \in \mathscr{A}\}$ is r.e. Then for any unary computable function $f, f \in \mathscr{A}$ iff there is a finite function $\theta \subseteq f$ with $\theta \in \mathscr{A}$.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 47/72	CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 48/72
Recursive Sets Recursively Enumerable Set Special Sets Partial Decidable Predicates Theorems Proof of Rice-Shapiro Theorem	Recursively Enumerable Set Special Sets Partial Decidable Predicates Theorems Proof of Rice-Shapiro Theorem
Suppose $A = \{x \mid \phi_x \in \mathscr{A}\}$ is r.e. Suppose $f \in \mathscr{A}$ but \forall finite $\theta \subseteq f.\theta \notin \mathscr{A}$. Let P be a partial characteristic function of K . Define the computable function $g(z, t)$ by $g(z, t) \simeq \begin{cases} f(t), & \text{if } P(z) \notin \text{ in } t \text{ steps,} \\ \uparrow, & \text{otherwise.} \end{cases}$	Suppose <i>f</i> is a computable function and there is a finite $\theta \in \mathscr{A}$ such that $\theta \subseteq f$ and $f \notin \mathscr{A}$. Define the computable function $g(z,t)$ by $g(z,t) \simeq \begin{cases} f(t), & \text{if } t \in Dom(\theta) \lor z \in K, \\ \uparrow, & \text{otherwise.} \end{cases}$
According to S-m-n Theorem, there is a primitive recursive function $s(z)$ such that $g(z,t) \simeq \phi_{s(z)}(t)$. By construction $\phi_{s(z)} \subseteq f$ for all z . $z \in K \Rightarrow \phi_{s(z)}$ is finite $\Rightarrow s(z) \notin A$; $z \notin K \Rightarrow \phi_{s(z)} = f \Rightarrow s(z) \in A$.	According to S-m-n Theorem, there is a primitive recursive function $s(z)$ such that $g(z,t) \simeq \phi_{s(z)}(t)$. $z \in K \Rightarrow \phi_{s(z)} = f \Rightarrow s(z) \notin A;$ $z \notin K \Rightarrow \phi_{s(z)} = \theta \Rightarrow s(z) \in A.$

Recursive Sets Productive Sets Recursively Enumerable Set Creative Set Special Sets Simple Sets

Productive Sets

Definition. A set *A* is productive if there is a total computable function *g* such that whenever $W_x \subseteq A$, then $g(x) \in A \setminus W_x$.

The function is called a productive function for *A*.

Notation. A productive set is not r.e.

Fig. A productive set

Example. \overline{K} is productive with productive function g(x) = x.

CSC363-Computability Theory@SJTU	Xiaofeng Gao	Recursive and Recursively Enumerable Set	56/72
Recursi	Recursive Sets vely Enumerable Set Special Sets	Productive Sets Creative Set Simple Sets	
Proof			

Reduction Theorem

Theorem. Suppose that *A* and *B* are sets such that *A* is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then *B* is productive.

Proof. Suppose $W_x \subseteq B$. Then $W_z = f^{-1}(W_x) \subseteq f^{-1}(B) = A$ for some *z*.

Moreover, $f^{-1}(W_x)$ is r.e. (by substitution), so there is a *z* such that $f^{-1}(W_x) = W_z$. Now $W_z \subseteq A$, and $g(z) \in A \setminus W_z$. Hence $f(g(z)) \in B \setminus W_x$.

f(g(z)) is a witness to the fact that $W_x \neq B$.

We now need to obtain the witness f(g(z)) effectively from *x*. Apply the s-m-n theorem to $\phi_x(f(y))$, one gets a total computable function k(x) such that $\phi_{k(x)}(y) = \phi_x(f(y))$. Then $W_{k(x)} = f^{-1}(W_x)$. It follows that $f(g(k(x))) \in B \setminus W$. (SC363-Computability Theory(#SITU Xiaofeng Gao Recursive and Recursively Enumerable Set

Productive Sets

ursively Enumerable Sets Special Sets

Examples

1.
$$\{x \mid \phi_x \neq \mathbf{0}\}$$
 is productive.
Proof. $f(x, y) = \begin{cases} 0 & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$. Reduce from \overline{K} .

2. $\{x \mid c \notin W_x\}$ is productive. Proof. $f(x, y) = \begin{cases} y & \text{if } x \in W_x \\ \uparrow & \text{if } x \notin W_x \end{cases}$. Reduce from \overline{K} .

3. $\{x \mid c \notin E_x\}$ is productive.

Recursive Sets Productive Sets cursively Enumerable Set Creative Set Special Sets Simple Sets

Application of Rich's Theorem

Theorem. Suppose that \mathscr{B} is a set of unary computable functions with $f_{\varnothing} \in \mathscr{B}$ and $\mathscr{B} \neq \mathscr{C}_1$. Then the set $B = \{x \mid \phi_x \in \mathscr{B}\}$ is productive.

Proof. Choose a computable function $g \notin \mathscr{B}$. Consider function *f* defined by

$$f(x,y) = \begin{cases} g(y), & \text{if } x \in W_x, \\ \uparrow, & \text{if } x \notin W_x. \end{cases}$$

By s-m-n theorem there is some total computable function k(x) such that $\phi_{k(x)}(y) \simeq f(x, y)$.

It is clear that $x \in W_x$ iff $\phi_{k(x)} = g$ iff $\phi_{k(x)} \notin \mathscr{B}$. Thus $x \in \overline{K}$ iff $k(x) \in B$.

Example. { $x \mid \phi_x$ is not total} is productive. ($\mathscr{B} = \{f \mid f \in \mathscr{C}_1 \land f \text{ is not total}\}.$)

CSC363-Computability Theory@SJTU

Creative Set

Special Sets

Definition. A set A is creative if it is r.e. and its complement \overline{A} is

Example. K is creative. (The simplest example of a creative set).

Notation. From the theorem that A is recursive $\Leftrightarrow A$ and \overline{A} are r.e. we

can say that a creative set is an r.e. set that fails to be recursive in a very strong way. (Creative sets are r.e. sets having the most difficult

Creative Sets

productive.

decision problem.)

Recursive Sets Productive Sets ecursively Enumerable Set Creative Set Special Sets Simple Sets

Examples

1. $A = \{x \mid c \in W_x\}$ is creative. It corresponds to $\mathscr{A} = \{f \in \mathscr{C}_1 \mid f(c) \downarrow\}.$

2. $A = \{x \mid c \in E_x\}$ is creative. It corresponds to $\mathscr{A} = \{f \in \mathscr{C}_1 \mid \exists x(f(x) \downarrow c)\}.$

3. $A = \{x \mid W_x \neq \emptyset\}$ is creative. It corresponds to $\mathscr{A} = \{f \in \mathscr{C}_1 \mid f \neq f_\emptyset\}.$

Lemma. Suppose that *g* is a total computable function. Then there is a total computable function *k* such that for all *x*, $W_{k(x)} = W_x \cup \{g(x)\}$.

Proof. Using the s-m-n theorem, take k(x) to be a total computable function such that

$$\phi_{k(x)}(y) = \begin{cases} 1, \text{ if } y \in W_x \lor y = g(x), \\ \uparrow, \text{ otherwise} \end{cases}$$

Recursive Sets Productive S Recursively Enumerable Set Creative Set Special Sets Simple Sets

Discussion

Question. Are all non-recursive r.e. sets creative?

The answer is negative. By a special construction we can obtain r.e.sets that are neither recursive nor creative.

Subset Theorem

CSC363-Computability Theory@SJTU

Theorem. A productive set contains an infinite r.e. subset.

Xiaofeng Gao

Special Sets

Proof. Let *A* be a productive set with productive function *g*. The idea is to enumerate a non-repetitive infinite set $B = \{y_0, y_1, \dots\} \subseteq A$.

Creative Set

Take e_0 to be some index for $W_{e_0} = \emptyset$. Since $W_{e_0} \subseteq A$, $g(e_0) \in A$. Put $y_0 = g(e_0) \in A$.

For $n \ge 0$, assume $\{y_0, \dots, y_n\} \subseteq A$. Find an e_{n+1} s.t. $\{y_0, \dots, y_n\} = W_{e_{n+1}} \subseteq A$. Then $g(e_{n+1}) \in A \setminus W_{e_{n+1}}$. Thus if we put $y_{n+1} = g(e_{n+1})$, we have $y_{n+1} \in A$ and $y_{n+1} \neq y_0, \dots, y_n$.

By the Lemma there is some total computable function k such that for all x, $W_{k(x)} = W_x \cup \{g(x)\}$. So the infinite set $\{e_0, \ldots, k^n(e_0), \ldots\}$ is r.e.

It follows that the infinite set $\{g(e_0), \ldots, g(k^n(e_0)), \ldots\}$ is a r.e. subset of *A*.

CSC363-Computability Theory@SJTU

Recursive and Recursively Enumerable Set

Recursive Sets Productive Sets Recursively Enumerable Set Creative Set Special Sets Simple Sets	Recursive Sets Productive Sets Recursively Enumerable Set Creative Set Special Sets Simple Sets
Illumination	Corollary
A y_{0} y_{1} y_{2} $W_{e_{n+1}}$ $y_{n+1} = g(e_{n+1})$	If A is creative, then \overline{A} contains an infinite r.e. subset.
CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 68/72	CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 69/72
Recursive Sets Recursively Enumerable Set Special Sets Productive Sets Creative Set Simple Sets Simple Sets	Recursive Sets Recursively Enumerable Set Special Sets Productive Sets Creative Set Simple Sets Simple Sets
Definition . A set <i>A</i> is simple if (i) <i>A</i> is r.e., (ii) \overline{A} is infinite, (iii) \overline{A} contains no infinite r.e. subset.	Theorem . A simple set is neither recursive nor creative. <i>Proof.</i> Since \overline{A} can not be r.e., A can not be recursive. (iii) implies that A can not be creative.

71/72

Recursive Sets Productive S Recursively Enumerable Set Creative Set Special Sets Simple Sets

Simple Sets

Theorem. There is a simple set.

Proof. Define $f(x) = \phi_x(\mu z(\phi_x(z) > 2x))$. Let *A* be *Ran*(*f*).

Xiaofeng Gao

(i) *A* is r.e.

(ii) \overline{A} is infinite. This is because $A \cap \{0, 1, \dots, 2n\}$ contains at most the elements $\{f(0), f(1), \dots, f(n-1)\}$.

(iii) Suppose *B* is an infinite r.e. set. Then there is a total computable function ϕ_b such that $B = E_b$. Since ϕ_b is total, f(b) is defined and $f(b) \in A$. Hence $B \not\subseteq \overline{A}$.

Recursive and Recursively Enumerable Set