
Checklist for Midterm, Spring 2016
CS363-Computability Theory, Xiaofeng Gao

Description:

• This checklist covers all the contents for the midterm exam.
• Include Prologue, History, Chapter 1-6 (Exclude §3.5, §6.2-§6.5), and Notations (pp.241-245).
• Note: multiple options are available to prepare for the midterm. Reading the textbook is a
must for success. Slides, assignments, and answer keys can be good supplements for all topics.

Prologue and History

1. What is Theory of Computation? See its branches as follows:

2. History of computation. (At least catch the milestones of computation)
3. Set: An unordered collection of elements. → No duplications

(a) the concepts of cardinality of a set, set equality, subset, proper subset and strict subset;
(b) Basic operation: union/intersection/difference/complement/cartesian product/power set;
(c) the concept of an ordered pair.

4. Function: a set of ordered pairs s.t. if (x, y) ∈ f and (x, z) ∈ f , then y = z, and f(x) = y.

(a) the concept of mapping, injective, surjective, bijective, and the inverse function;
(b) the basic operation of a function, f |X, f−1(Y ), f ⊆ g, f ◦ g, f∅;
(c) functions of natural numbers, partial function, total function.

5. Relations and Predicates:

(a) Basic concept of a relation;
(b) what is equivalence relation or partial order;
(c) the notation of :=, ≃, ∅, x, x, X, X, and X .

6. Proof: a statement is essentially a convincing argument that the statement is true

(a) Proof by Construction/Cases.
(b) Proof by Contrapositive: Contradiction; Counterexample.
(c) Proof by Mathematical Induction: The Principle of Mathematical Induction, Minimal

Counterexample Principle, The Strong Principle of Mathematical Induction.

7. Peano Axioms (Five axioms of peano arithmetic):

(a) Mathematical induction based on the natural numbers in Peano arithmetic.
(b) The constraints for mathematical inductions.

1



Key Terms:

Computability Theory, Set, Function, Relation, Peano Axiom, Gottfried Leibniz, David Hilbert,
Georg Cantor, Kurt Gödel, Alan Turing, Alonzo Church, Stephen Kleene, Jonh von Neumann,
Juris Hartmanis, Richard Stearns, Stephen Cook.

Practice and Sources:

1. Slide01-History, Slide02-Prologue; 2. Textbook page 1-5; 3. Lab01-Proof

Chapter 1. Computable Functions

1. Algorithm, or Effective Procedure:

(a) Mechanical rule/automatic method/programme to perform mathematical operations.
(b) What is effectively/algorithmically/effectively computable?

2. Unlimited Register Machine (URM):

(a) The definition and notations of an URM;
(b) four kinds of instructions of URM: Z(n), S(n), T (m,n) and J(m,n, q);
(c) the operation of URM under a program P with the concept of converges and diverges;
(d) the flow diagram of an URM program.

3. URM-computable functions:

(a) The definition of an URM-computable function;
(b) Definition. f is a partial function from Nn to N, P is a program, a1, a2, . . . , an, b ∈ N.

The computation P (a1, a2, . . . , an) converges to b if P (a1, a2, . . . , an) ↓ and r1 = b in the
final configuration. We write P (a1, a2, . . . , an) ↓ b in this case.

(c) P URM-computes f if, for all a1, . . . , an, b ∈ N P (a1, . . . , an) ↓ b iff f(a1, . . . , an) = b. f
is URM-computable if there is a program that URM-computes f .

(d) C is the set of computable functions. Cn is the set of n-ary computable functions.

(e) fn
P is defined by program fn

P (a1, . . . , an) =

{
b, if P (a1, . . . , an) ↓ b,
undefined, if P (a1, . . . , an) ↑ .

(f) Show the computability of a function by designing a URM program to compute it.

4. Decidable predicates and problems:

(a) Definition. M(x) is an n-ary predicate of natural numbers, x = x1, . . ., xn. The

characteristic function cM(x) is given by fn
P (a1, . . . , an) =

{
1, if M(x) holds,
0, if otherwise.

(b) Definition. M(x) is decidable if cM is computable; it is undecidable otherwise.

5. Computability on other domains:

(a) What is a coding of a domain.
(b) A function f : D → D extends to a numeric function f ∗ : N → N. We say that f is

computable if f ∗ is computable. f ∗ = α ◦ f ◦ α−1

6. Joining programs together:

(a) Definition. A program P = I1, I2, . . . , Is is in standard form if, for every jump instruc-
tion J(m,n, q) in P we have q ≤ s+ 1.

(b) Lemma. For any program P there is a program P ∗ in standard form such that for any

a1, . . . , an, b, P (a1, . . . , an) ↓ b iff P ∗(a1, . . . , an) ↓ b,. Thus f (n)
P = f

(n)
P ∗ for every n > 0.

(c) Definition. Let P and Q be programs of lengths s, t respectively, in standard form. The
join or concatenation of P and Q , written PQ or P

Q
, is the program I1, I2, · · · , Is, Is+1,

· · · , Is+t where P = I1, · · · , Is and the instructions Is+1, · · · , Is+t are the instructions of
Q with each jump J(m,n, q) replaced by J(m,n, s+ q).

(d) P [l1, · · · , ln → l] has the effect of computing f(rl1 , · · · , rln) and placing the result in Rl.
The only registers affected by this program are (at most) R1, · · · , Rρ(P ) and Rl.

2



Key Terms:

Algorithm, Effective Procedures, Computable/Decidable, URM, Computable Functions, Coding,
Standard Form, Join Programs.

Practice and Sources:

1. Slide03-URM, 2. Textbook page 7-24; 3. Lab02-URM.

Chapter 2. Generating Computable Functions

1. The Basic functions:

(a) the zero function 0;
(b) the successor function x+1;
(c) for each n ≥ 1 and 1 ≤ i ≤ n, the projection function Un

i given by Un
i (x1, x2, . . . , xn) = xi

2. Substitution:

(a) Theorem. f(y1, . . . , yk) and g1(x), . . . , gk(x) are computable functions, where x =
x1, . . . , xn. Then h(x) given by h(x) ≃ f(g1(x), . . . , gk(x)) is a computable function.

(b) Theorem. f(y1, . . . , yk) is a computable function and xi1 , . . . , xik is a sequence of k
of the variables x1, . . . , xn (possibly with repetitions). Then the function h given by
h(x1, . . . , xn) ≃ f(xi1 , . . . , xik) is computable.

(c) Methods of forming new functions:
rearrangement h1(x1, x2) ≃ f(x2, x1);
identification h2(x) ≃ f(x, x);
adding dummy variables h3(x1, x2, x3) ≃ f(x2, x3).

3. Recursion:

(a) Theorem. x = {x1, · · · , xn}, f(x) and g(x, y, z) are functions; then there is a unique

function h(x, y) satisfying the recursion equations

{
h(x, 0) ≃ f(x),
h(x, y + 1) ≃ g(x, y, h(x, y)).

(b) Theorem. Suppose that f(x) and g(x, y, z) are computable functions, where x =
(x1, . . . , xn); then the function h(x, y) obtained from f and g by recursion is computable.

(c) Theorem. The following functions are computable.
i. x+ y
ii. xy
iii. xy

iv. x−̇1

v. x−̇y =

{
x− y if x ≥ y,
0 otherwise.

vi. |x− y|

vii. sg(x) =

{
0 if x = 0,
1 if x ̸= 0.

viii. s̄g(x) =

{
1 if x = 0,
0 if x ̸= 0.

ix. x!
x. min(x, y) = minimum of x and y.
xi. max(x, y) = maximum of x and y.
xii. rm(x, y) = remainder when y is divided by x.
xiii. qt(x, y) = quotient when y is divided by x.

xiv. div(x, y) =

{
1 if x|y,
0 if x . y.

(d) Corollary. (Definition by Cases) f1(x), . . . , fk(x) are computable functions, andM1(x),
. . .,Mk(x) are decidable predicates such that for every x exactly one ofM1(x), . . . ,Mk(x)

holds. Then the function g given by g(x) ≃


f1(x), if M1(x) holds,

...
fk(x), if Mk(x) holds.

is computable.

(e) Corollary. (Algebra of Decidability) Suppose that M(x) and Q(x) are decidable pred-
icates; then the following are also decidable.

i. not M(x) (¬M(x))
ii. M(x) and Q(x) (M(x) ∧Q(x))
iii. M(x) or Q(x) (M(x) ∨Q(x))

3



(f) Theorem. Suppose that f(x.z) is a total computable function; then the functions∑
z<y f(x, z) and

∏
z<y f(x, z) are computable.

(g) Corollary. Suppose that f(x, z) and k(x,w) are total computable functions; then so
are the functions

∑
z<k(x,w) f(x, z) and

∏
z<k(x,w) f(x, z).

(h) Theorem. f(x, y) is a total computable function; then so is function µz < y(f(x, y) = 0).
(i) Corollary. If f(x, z) and k(x,w) are total and computable functions, then so is the

function µz<k(x,w) (f(x, z) = 0).
(j) Corollary. If R(x, y) is a decidable predicates, then the following statements are valid:

i. the function f(x, y) ≃ µz<y R(x, y) is computable;
ii. the following predicates are decidable:

A. M1(x, y) ≡ ∀z < yR(x, z);
B. M2(x, y) ≡ ∃z < yR(x, z).

(k) Theorem. The following functions are computable.

i. D(x) = the number of divisors of x;

ii. Pr(x) =

{
1, if x is prime,
0, if x is not prime.

;

iii. px = the x-th prime number;

iv. (x)y =

{
k, k is the exponent of py in the primefactorisation of x, for x, y > 0,
0, if x = 0 or y = 0.

.

4. Minimalisation:

(a) Definition. ∀f(x, y): µy(f(x, y) = 0) ≃


the least y such that
(i) f(x, y) is defined for all z ≤ y, and
(ii) f(x, y) = 0,

undefined if otherwise.
(b) Theorem. Suppose f(x, y) is computable; then so is g(x) = µy(f(x, y) = 0).
(c) Corollary. Suppose R(x, y) is a decidable predicate; then the function

g(x) = µyR(x, y) =

{
the least y such that R(x, y) holds, if there is such a y,
undefined, otherwise.

is computable.

5. Ackermann function ψ(x, y).

(a) Definition. ψ(x, y) is defined by


ψ(0, y) ≃ y + 1,
ψ(x+ 1, 0) ≃ ψ(x, 1),
ψ(x+ 1, y + 1) ≃ ψ(x, ψ(x+ 1, y)).

(b) Fact. The Ackermann function is computable.

Key Terms:

Basic Functions, Primitive Recursive Function, Substitution, Recursion, Bounded/Unbounded Min-
imalisation, Ackermann function.

Practice and Sources:

1. Slide04-RecursiveFunction; 2. Textbook page 25-47; 3. Lab03-RecursiveFunction.

Chapter 3. Other Approaches to Computability: Church’s Thesis

1. Partial recursive functions

(a) Definition. The class R of partial recursive functions is the smallest class of partial
functions that contains the basic functions 0, x+1, Un

i and is closed under the operations
of substitution, recursion and minimalisation.

(b) Theorem. R = C .

4



(c) Definition. The class PR of primitive recursive functions is the smallest class of partial
functions that contains the basic functions 0, x+1, Un

i and is closed under the operations
of substitution and recursion.

(d) Function f(x) defined by P (x): f(x) ≃ c(x, µt(j(x, t) = 0)).
(e) Corollary. Every total function in R belongs to R0.
(f) A recursive predicate is a predicate M(x) whose characteristic function cM is recursive.

2. Turing machine:

(a) A One-Tape Turing machine has five components:

i. A finite set {s1, . . . , sn} ∪ {◃, ▹,2} of symbols.
ii. A tape consists of an infinite number of cells, each cell may store a symbol.

· · ·222222222222222222 · · ·
iii. A reading head that scans and writes on the cells.
iv. A finite set {qS, q1, . . . , qm, qH} of states.
v. A finite set of instructions (specification).

(b) A Multi-Tape Turing Machine is described by a tuple (Γ, Q, δ) containing

i. A finite set Γ called alphabet, of symbols. The minimum alphabet usually contains
a blank symbol 2, a start symbol �, and the digits 0 and 1.

ii. Multi-tapes: 1 read-only input tape, k− 1 working tapes (including 1 output tape).
iii. A finite set Q of states. It contains a start state qstart and a halting state qhalt.
iv. A transition function δ : Q× Γk → Q× Γk−1 ×L, S,Rk, describing the rules of each

computation step.

(c) Comparison on different kinds of Turing Machines:

i. {0, 1,2,�} vs. larger alphabets: If f : {0, 1}∗ → {0, 1}∗ is computable in time T (n)
by a TM M using the alphabet set Γ, then it is computable in time 4 log |Γ|T (n) by
a TM M̃ using the alphabet {0, 1,2,�}.

ii. Single-Tape vs. Multi-Tape: If f : {0, 1}∗ → {0, 1}∗ is computable in time T (n) by

a k-tape TM M , then it is computable in time 5kT (n)2 by a single-tape TM M̃ .
iii. Unidirectional Tape vs. Bidirectional Tape: If f : {0, 1}∗ → {0, 1}∗ is computable in

time T (n) by a bidirectional TM M , then it is computable in time 4T (n) by a TM

M̃ with one-directional tape.

(d) Turing-computable function: The partial recursive function f(x) computed by M is

f(n) =

{
m, if M stops with input number n (m is the number of 1’s between ◃& ▹)
↑, otherwise.

(e) Theorem. R = T C = C .

3. Computability on domain other than N: Direct approaches to computability on other domains.
4. Other approaches to computability:

(a) Gödel-Kleene (1936): Partial recursive functions.
(b) Turing (1936): Turing machines.
(c) Church (1936): λ-terms.
(d) Post (1943): Post systems.
(e) Markov (1951): Variants of the Post systems.
(f) Shepherdson-Sturgis (1963): URM-computable functions.
(g) Fundamental result: Each of the above proposals for a characterization of the notion of

effective computability gives rise to the same class of functions, denoted C .

5. Church’s thesis (proved by his student):

(a) The functions definable in all computation models are the same. They are precisely the
computable functions.

(b) The evidence for Church’s thesis.

5



6. Proof by Church’s thesis:

(a) Write a program to URM-compute f or prove such a program exists by indirect means.
(b) Give an informal (though rigorous) proof that given informal algorithm is indeed an

algorithm that serves to compute f , then appeal Church’s thesis and conclude that f is
URM-computable. (proof by church’s thesis).

Key Terms:

Other approaches to computability, Primitive/partial recursive functions, Turing machine, Turing-
computable function, computability on other domains, Church’s thesis, proof using Church’s thesis.

Practice and Sources:

1. Slide05-ChurchThesis; 2. Textbook page 48-71 ; 3. Lab04-ChurchThesis.

Chapter 4. Numbering Computable Functions

1. Numbering programs:

(a) Definition.

i. A set X is denumerable if there is a bijection f : X → N.
ii. An enumeration of a set X is a surjection g : N → X; this is often represented by

writing {x0, x1, x2, . . .}. It is an enumeration without repetitions if g is injective.
iii. Let X be a set of “finite objects”. Then X is effectively denumerable if there is a

bijection f : X → N such that both f and f−1 are effectively computable functions.

(b) Theorem. Effective Denumerability:

i. N× N is effectively denumerable.
Proof. A bijection π : N× N → N is defined by{
π(m,n)

def
= 2m(2n+ 1)− 1,

π−1(l)
def
= (π1(l), π2(l))

where

{
π1(x)

def
= (x+ 1)1,

π2(x)
def
= ((x+ 1)/2π1(x) − 1)/2.

ii. N+ × N+ × N+ is effectively denumerable.
Proof. A bijection ζ : N+ × N+ × N+ → N is defined by{
ζ(m,n, q)

def
= π(π(m− 1, n− 1), q − 1),

ζ−1(l)
def
= (π1(π1(l)) + 1, π2(π1(l)) + 1, π2(l) + 1).

iii.
∪

k>0Nk is effectively denumerable.
Proof. A bijection τ :

∪
k>0 Nk → N is defined by

τ(a1, . . . , ak)
def
= 2a1 + 2a1+a2+1 + 2a1+a2+a3+2 + . . .+ 2a1+a2+a3+...,ak+k−1 − 1.

(c) Theorem. (Gödel encoding) I is effectively denumerable.
Proof. The bijection β : I → N is defined as follows:

β(Z(n)) = 4(n− 1),
β(S(n)) = 4(n− 1) + 1,

β(T (m,n)) = 4π(m− 1, n− 1) + 2,
β(J(m,n, q)) = 4ζ(m,n, q) + 3.

(d) Theorem. P is effectively denumerable.
Proof. The bijection γ : P → N is defined as follows: γ(P ) = τ(β(I1), . . . , β(Is)),
assuming P = I1, . . . , Is. The converse γ−1 is obvious.

(e) The number γ(P ) is called the Gödel number of P .
Pn = the program with Godel number n = γ−1(n).

2. Numbering computable functions

(a) Definition. Suppose a ∈ N and n ≥ 1.

ϕ
(n)
a = the n ary function computed by Pa = f

(n)
Pn
,

W
(n)
a = the domain of ϕ

(n)
a = {(x1, . . . , xn) | Pa(x1, . . . , xn) ↓},

E
(n)
a = the range of ϕ

(n)
a .

 The super script (n)
is omitted when n = 1.

6



(b) Theorem. Cn is denumerable.
(c) Corollary. C is denumerable.

3. Diagonal method:

(a) Theorem. There is a total unary function that is not computable.
(b) Make χ and χn differ at n.

4. The s-m-n theorem:

(a) Theorem. (simple form) Suppose that f(x, y) is a computable function. There is a total
computable function k(x) such that f(x, y) ≃ ϕk(x)(y).

(b) Theorem. For m,n, there is a total computable (m+1)-function smn ( ,x) such that for
all e: ϕm+n

e (x,y) ≃ ϕn
smn (e,x)(y).

Key Terms:

Denumerable, effectively denumerable, enumeration (without repetitions), Gödel number, diagonal
method, s-m-n Theorem

Practice and Sources:

1. Slide06-GödelCoding; 2. Textbook page 72-84; 3. Lab05-NumberingPrograms.

Chapter 5. Universal programs

1. Universal functions and universal programs

(a) Definition. The universal function for n-ary computable functions is the (n + 1)-ary

function ψ
(n)
U defined by ψ

(n)
U (e, x1, . . . , xn) ≃ ϕ

(n)
e (x1, . . . , xn). We write ψU for ψ

(1)
U .

(b) Theorem. For each n, the universal function ψ
(n)
U is computable.

(c) Corollary. (Kleene’s normal form theorem) There is a primitive recursive function U(x)
and for each n ≥ 1 a primitive recursive predicate Tn(e,x, z) such that

i. ϕ
(n)
e (x) is defined if and only if ∃z.Tn(e,x, z).

ii. ϕ
(n)
e (x) ≃ U(µzTn(e,x, z)).

(d) Fact. Every computable function can be obtained from a primitive recursive function
by using at most one application of the µ-operator in a standard manner.

2. Applications of the universal program:

(a) Theorem. The problem ‘ϕx is total’ is undecidable.
(b) Theorem. There is a total computable function that is not primitive recursive.

3. Effective operations on computable functions

(a) Fact. (Effectiveness of function operation) There is a total computable function s(x, y)
such that ϕs(x,y) = ϕxϕy for all x, y.

(b) Fact. (Effectiveness of set operation) There is a total computable function s(x, y) such
that Ws(x,y) =Wx ∪Wy.

(c) Fact. (Effectiveness of taking inverses) Let g(x, y) be a computable function such that

i. g(x, y) is defined iff y ∈ Ex,
ii. if y ∈ Ex, then g(x, y) ∈ Wx and ϕx(g(x, y)) = y.

By s-m-n theorem there is a total computable function such that g(x, y) ≃ ϕk(x)(y). Then

i. Wk(x) = Ex,
ii. if y ∈ Ex, then ϕx(ϕk(x)(y)) = y.

(d) Fact. (Effectiveness of recursion) Consider f defined by the following recursion

f(e1, e2,x, 0) ≃ ϕ
(n)
e1 (x) ≃ ψ

(n)
U (e1,x)

f(e1, e2,x, y + 1) ≃ ϕ
(n+2)
e2 (x, y, f(e1, e2,x, y)) ≃ ψ

(n+2)
U (e2,x, y, f(e1, e2,x, y)).

7



4. Proofs of theorems/corollaries/facts (E.g., below is the process of proving ‘ψ
(n)
U is computable’)

Key Terms:

Universal function/program, Kleene’s normal form theorem, application of ψ
(n)
U , effective operations.

Practice and Sources:

1. Slide07-UniversalProgram; 2. Textbook page 85-99; 3. Lab06-UniversalProgram.

Chapter 6. Decidability, undecidability and partial decidability

1. Decidability:

(a) Definition. A predicate M(x) is decidable if its characteristic function cM(x) given by

cM(x) =

{
1, if M(x) holds,
0, if M(x) does not hold.

is computable.

(b) The predicate M(x) is undecidable if it is not decidable.
(c) In literature ‘M(x) is decidable’ is also denoted as: ‘M(x) is recursively decidable; solv-

able; recursively solvable; computable’, ‘M(x) has recursive decision problem’.

2. Undecidable problems in computability:

(a) Theorem. The problem ‘x ∈ Wx’ is undecidable.
(b) Corollary. There is a computable function h such that both ‘x ∈ Dom(h)’ and ‘x ∈

Ran(h)’ are undecidable.
(c) Theorem. (the Halting problem) The problem ‘ϕx(y) is defined’ is undecidable.
(d) Theorem. The problem ‘ϕx = 0’ is undecidable.
(e) Corollary. The problem ‘ϕx = ϕy’ is undecidable.
(f) Theorem. Let c be any number. The followings are undecidable.

i. Acceptance Problem: ‘c ∈ Wx’,
ii. Printing Problem: ‘c ∈ Ex’.

(g) Theorem. (Rice’s theorem) ‘ϕx ∈ B’ is undecidable for ∅ ( B ( C1.

3. Partially decidable predicates:

(a) Definition. A predicate M(x) of natural numbers is partially decidable if the function

given by f(x) =

{
1, if M(x) holds,
undefined, if M(x) does not hold,

is computable.

The function is called the partial characteristic function for M .
(b) In the literature the terms partially solvable, semi-computable, and recursively enumer-

able are used with the same meaning as partially decidable.
(c) Some examples:

i. The halting problem is partially decidable. Its partial characteristic function is given

by f(x, y) =

{
1, if Px(y) ↓,
undefined, otherwise.

ii. The problem ‘x /∈ Wx’ is not partially decidable. The domain of its partial charac-
teristic function differs from the domain of every computable function.

(d) Theorem. A predicate M(x) is partially decidable iff there is a computable function
g(x) such that M(x) ⇔ x ∈ Dom(g).

8



(e) Theorem. A predicate M(x) is partially decidable iff there is a decidable predicate
R(x, y) such that M(x) ⇔ ∃y.R(x, y).

(f) Theorem. If M(x, y) is partially decidable, so is ∃y.M(x, y).
(g) Corollary. If M(x,y) is partially decidable, so is ∃y.M(x,y).
(h) Theorem. M(x) is decidable iff both M(x) and ¬M(x) are partially decidable.
(i) Corollary. The problem ‘y /∈ Wx’ is not partially decidable.
(j) Theorem. Let f(x) be a partial function. Then f is computable iff the predicate

‘f(x) ≃ y’ is partially decidable.

4. Reduction: A is reduced to B

(a) Many problems can be shown to be undecidable by showing that they are at least as
difficult as x ∈ Wx (or other known undecidable predicates). Thus we can reduce one
problem to another to prove the undecidability property.

(b) If a problem M(x) would lead to a solution to general problem x ∈ Wx, then we say
that x ∈ Wx is reduced to M(x). The decidability of M(x) implies the decidability of
x ∈ Wx, from which we can conclude the undecidability of M(x).

(c) Similar techniques can be used to prove the partial decidability of predicates.

Key Terms:

Decidability, Undecidability, Reduction, Halting problem, Rice’s theorem, Partial decidability

Practice and Sources:

1. Slide08-Undecidability; 2. Textbook page 100-120; 3. Lab07-Undecidability.

9


