
Computability Theory
Check List For Final Exam, Xiaofeng Gao’s Section, 2016 Spring

Description:

This checklist covers all the contents for the final exam. It includes Chapter 6, Chapter 7, and
Chapter 9.
(Note: Multiple options are available to prepare for the final exam. Reading the textbook is a must
for success. Slides, assignments, and answer keys can be good supplements for all topics. For the
notations, please refer to the Notations in the text book, page 241-245.)

Chapter 6. Decidability, undecidability and partial decidability

1. Decidability:

(a) Definition. A predicate M(x) is decidable if its characteristic function cM(x) given by

cM(x) =

{
1, if M(x) holds,
0, if M(x) does not hold.

is computable.

(b) The predicate M(x) is undecidable if it is not decidable.
(c) In literature M(x) is decidable can be described as M(x) is recursively decidable, M(x)

has recursive decision problem, M(x) is solvable, M(x) is recursively solvable, or M(x)
is computable.

2. Undecidable problems in computability:

(a) Theorem. The problem ‘x ∈ Wx’ is undecidable.
(b) Corollary. There is a computable function h such that both ‘x ∈ Dom(h)’ and ‘x ∈

Ran(h)’ are undecidable.
(c) Theorem. (the Halting problem) The problem ‘ϕx(y) is defined’ is undecidable.
(d) Theorem. The problem ‘ϕx = 0’ is undecidable.
(e) Corollary. The problem ‘ϕx = ϕy’ is undecidable.
(f) Theorem. Let c be any number. The followings are undecidable.

i. Acceptance Problem: ‘c ∈ Wx’,
ii. Printing Problem: ‘c ∈ Ex’.

(g) Theorem. (Rice’s theorem) ‘ϕx ∈ B’ is undecidable for ∅ ( B ( C1.

3. Partially decidable predicates:

(a) Definition. A predicate M(x) of natural numbers is partially decidable if the function

given by f(x) =

{
1, if M(x) holds,
undefined, if M(x) does not hold,

is computable.

The function is called the partial characteristic function for M .
(b) In the literature the terms partially solvable, semi-computable, and recursively enumer-

able are used with the same meaning as partially decidable.
(c) partially decidable predicates:

i. The halting problem is partially decidable. Its partial characteristic function is given

by f(x, y) =

{
1, if Px(y) ↓,
undefined, otherwise.

ii. The problem ‘x /∈ Wx’ is not partially decidable. The domain of its partial charac-
teristic function differs from the domain of every computable function.

(d) Theorem. A predicate M(x) is partially decidable iff there is a computable function
g(x) such that M(x) ⇔ x ∈ Dom(g).

(e) Theorem. A predicate M(x) is partially decidable iff there is a decidable predicate
R(x, y) such that M(x) ⇔ ∃y.R(x, y).

(f) Theorem. If M(x, y) is partially decidable, so is ∃y.M(x, y).
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(g) Corollary. If M(x,y) is partially decidable, so is ∃y.M(x,y).
(h) Theorem. M(x) is decidable iff both M(x) and ¬M(x) are partially decidable.
(i) Corollary. The problem ‘y /∈ Wx’ is not partially decidable.
(j) Theorem. Let f(x) be a partial function. Then f is computable iff the predicate

‘f(x) ≃ y’ is partially decidable.

Key Terms:

Decidability, Undecidability, the Halting problem, Rice’s theorem, partial decidability.

Practice and Sources:

1. Slide08-Undecidability; 2. Textbook page 100-120; 3. Lab07-Undecidability

Chapter 7. Recursive And Recursively Enumerable Sets

1. Recursive Sets:

(a) Definition. Let A be a subset of N. The characteristic function of A is given by

cA(x) =

{
1, if x ∈ A,
0, if x /∈ A.

A is recursive if cA(x) is computable.

(b) Examples of recursive sets:
i. N, Z.
ii. E (even numbers).
iii. O (odd numbers).
iv. O (prime numbers).
v. Any finite set.

(c) Examples of unsolvable problems:
i. K = {x | x ∈ Wx}, K = {x | x ̸∈ Wx}
ii. Fin = {x | Wx is finite}, Inf = {x | Wx is infinite},
iii. Cof = {x | Wx is cofinite}, Tot = {x | ϕx is total},
iv. Rec = {x | Wx is recursive},
v. Ext = {x | ϕx is extensible to total recursive function}.

(d) Fact. Recursive Set ⇔ Solvable Problem ⇔ Decidable Predicate.
(e) Theorem. If A, B are recursive sets, then so are the sets A, A ∩B, A ∪B, A\B.

2. Recursively Enumerable Sets (r.e. set):

(a) Definition. Let A be a subset of N. Then A is recursively enumerable if the function f

given by f(x) =

{
1, if x ∈ A,
undefined, if x /∈ A.

is computable.

Notation 1. A is also called semi-recursive set, semi-computable set.
Notation 2. Subsets of Nn can be defined as r.e. by coding to r.e. subsets of N.

(b) Fact. Partially Decidable Problem ⇔ Partially Decidable Predicate ⇔ R. E. Set
(c) Index Theorem. A set is r.e. iff it is the domain of a unary computable function.
(d) Normal Form Theorem. The set A is r.e. iff there is a primitive recursive predicate

R(x, y) such that x ∈ A iff ∃y.R(x, y).
(e) Quantifier Contraction Theorem. IfM(x,y) is partially decidable, so is ∃y.M(x,y)

({x | ∃y.M(x,y)} is r.e.).
(f) Uniformisation Theorem. If R(x, y) is partially decidable, then there is a computable

function c(x) such that c(x) ↓ iff ∃y.R(x, y) and c(x) ↓ implies R(x, c(x)).
(g) Complementation Theorem. A is recursive iff A and A are r.e.
(h) Graph Theorem. Let f(x) be a partial function. Then f(x) is computable iff the

predicate ‘f(x) ≃ y’ is partially decidable iff {π(x, y) | f(x) ≃ y} is r.e.
(i) Listing Theorem. A is r.e. iff A = ∅ or A = Ran(f) for a total function f ∈ C1.

Equivalence Theorem. Let A ⊆ N. Then the following are equivalent:

i. A is r.e.
ii. A = ∅ or A is the range of a unary total computable function.
iii. A is the range of a (partial) computable function.

Theorem. Every infinite r.e. set has an infinite recursive subset.
Theorem. An infinite set is recursive iff it is the range of a total increasing computable
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function (if it can be recursively enumerated in increasing order).
Theorem. The set {x | ϕx is total} is not r.e.

(j) Closure Theorem. The recursively enumerable sets are closed under union and inter-
section uniformly and effectively.

(k) Rice-Shapiro Theorem. Suppose that A is a set of unary computable functions such
that the set {x | ϕx ∈ A} is r.e. Then for any unary computable function f , f ∈ A iff
there is a finite function θ ⊆ f with θ ∈ A.
Corollary. The sets {x | ϕx is total} and {x | ϕx is not total} are not r.e.

(l) Theorem. If A and B are r.e., then so are A ∩B and A ∪B.

3. Productive Sets:

(a) Definition. A set A is productive if there is a
total computable function g such that whenever
Wx ⊆ A, then g(x) ∈ A \Wx. g is called a pro-
ductive function for A.
Notation. A productive set is not r.e.

(b) Examples of productive sets:

i. {x | ϕx ̸= 0} is productive.
ii. {x | c /∈ Wx} is productive.
iii. {x | c /∈ Ex} is productive. Fig. A productive set

(c) Reduction Theorem. Suppose that A and B are sets such that A is productive, and
there is a total computable function such that x ∈ A iff f(x) ∈ B. Then B is productive.

(d) Theorem. Suppose that B is a set of unary computable functions with f∅ ∈ B and
B ̸= C1. Then the set B = {x | ϕx ∈ B} is productive.

4. Creative sets:

(a) Definition. A set A is creative if it is r.e. and its complement A is productive.
Example. K is creative. (The simplest example of a creative set).
Notation. From the theorem that A is recursive ⇔ A and A are r.e. we can say that a
creative set is an r.e. set that fails to be recursive in a very strong way. (Creative sets
are r.e. sets having the most difficult decision problem.)

(b) Theorem. Suppose that A ⊆ C1 and let A = {x | ϕx ∈ A }. If A is r.e. and A ̸= ∅, N,
then A is creative.

(c) Lemma. Suppose that g is a total computable function. Then there is a total computable
function k such that for all x, Wk(x) =Wx ∪ {g(x)}.
Subset Theorem. A productive set contains an infinite r.e. subset.
Corollary. If A is creative, then A contains an infinite r.e. subset.

5. Simple Set:

(a) Definition. A set A is simple if A is r.e.,A is infinite and contains no infinite r.e. subset.
(b) Theorem. A simple set is neither recursive nor creative.
(c) Theorem. There is a simple set.

Key Terms:

Recursive Set, Recursively Enumerable Set, Productive Set, Creative Set, Simple Set.

Practice and Sources:

1. Slide09-RESet
2. Textbook page 121-142;
3. Lab08-Lab10.
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Chapter 9. Reducibility And Degrees

1. Many-One Reducibility:

(a) Definition. The set A is many-one reducible (m-reducible) to the set B if there is a
total computable function f such that x ∈ A iff f(x) ∈ B for all x.
We shall write A ≤m B or more explicitly f : A ≤m B.
Notation. If f is injective, then we are talking about one-one reducibility, denoted by
f : A ≤1 B.

(b) Theorem. Let A, B, C be sets.

i. ≤m is reflexive: A ≤m A.
ii. ≤m is transitive: A ≤m B, B ≤m C ⇒ A ≤m C.
iii. A ≤m B iff A ≤m B.
iv. If A is recursive and B ≤m A, then B is recursive.
v. If A is recursive and B ̸= ∅,N, then A ≤m B.
vi. If A is r.e. and B ≤m A, then B is r.e.
vii. (i). A ≤m N iff A = N; (ii). A ≤m ∅ iff A = ∅.
viii. (i). N ≤m A iff A ̸= ∅; (ii). ∅ ≤m A iff A ̸= N.

(c) Corollary. Neither {x | ϕx is total} nor {x | ϕx is not total} is m-reducible to K.
Corollary. If A is r.e. and is not recursive, then A ̸≤m A and A ̸≤m A.
Notation. It contradicts to our intuition that A and A are equally difficult.

(d) Theorem. A is r.e. iff A ≤m K.
Notation. K is the most difficult partially decidable problem.

2. m-Degrees:

(a) Definition. Two sets A,B are many-one equivalent, notation A ≡m B (abbreviated
m-equivalent), if A ≤m B and B ≤m A.

(b) Theorem. The relation ≡m is an equivalence relation.
(c) Definition. Let dm(A) be {B | A ≡m B}.

Definition. An m-degree is an equivalence class of sets under the relation ≡m. It is any
class of sets of the form dm(A) for some set A.

(d) Definition. The set of m-degrees is ranged over by a,b, c, . . ..
Definition. (Partial Order on m-Degree) Let a, b be m-degrees.

i. a ≤m b iff A ≤m B for some A ∈ a and B ∈ b.
ii. a <m b iff a ≤m b and b ̸≤m a (a ̸= b).

The relation ≤m is a partial order.
Notation. From the definition of ≡m, a ≤m b ⇔ ∀A ∈ a, B ∈ b, A ≤m B.

(e) Theorem. The relation <m is a partial ordering of m-degrees.
(f) Theorem. Difficulty Class

i. o and n are respectively the recursive m-degrees {∅} and {N}.
ii. The recursive m-degree 0m consists of all the recursive sets except ∅,N. 0m ≤m a

for any m-degree a other than o, n.
iii. ∀ m-degree a, o ≤m a provided a ̸= n; n ≤m a provided a ̸= o.
iv. An r.e. m-degree consists of only r.e. sets.
v. If a ≤m b and b is an r.e. m-degree, then a is also an r.e. m-degree.
vi. The maximum r.e. m-degree dm(K) is denoted by 0′

m.

(g) Algebraic Structure

i. Theorem. m-degrees form an upper semi-lattice.
ii. Lattice: A lattice is a partially ordered set (poset) (L,≤) in which any two elements

have a unique supremum (also called a least upper bound or join) and a unique
infimum (also called a greatest lower bound or meet).
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To qualify as a lattice, the set and the opera-
tion must satisfy tow conditions: join-semilattice,
meet-semilattice.
join-semilattice: ∀a, b ∈ L, {a, b} has a join a ∨ b.
(the least upper bound)
meet-semilattice: ∀a, b ∈ L, {a, b} has a meet a∧b.
(the greatest lower bound)

iii. Theorem. Any pair of m-degrees a, b have a
least upper bound; i.e. there is an m-degree c
such that

A. a ≤m c and b ≤m c (c is an upper bound);
B. c ≤m any other upper bound of a, b.

Fig. The m-degrees

3. m-complete r.e. sets:

(a) Definition. An r.e. set is m-complete if every r.e. set is m-reducible to it.
Notation. 0′

m, the m-degree of K is maximum among all r.e. m-degrees, and thus K is
m-complete r.e. set (or just called m-complete set).

(b) Theorem. The following statements are valid.

i. K is m-complete.
ii. A is m-complete iff A ≡m K iff A is r.e. and K ≤m A.
iii. 0′m consists exactly of all the m-complete sets.

(c) Myhill’s Theorem. A set is m-complete iff it is creative.
Corollary. If a is the m-degree of any simple set, then 0m <m a <m 0′

m (Simple sets
are not m-complete).

4. Relative Computability:

(a) Unlimited Register Machine with Oracle (URMO):

i. Definition. Suppose χ is a total unary function.
Informally a function f is computable relative to χ, or χ-computable, if f can be
computed by an algorithm that is effective in the usual sense, except from time to
time during computations f is allowed to consult the oracle function χ.
Such an algorithm is called a χ-algorithm.

ii. Definition. A URM with oracle, URMO for short, can recognize a fifth kind of
instruction,O(n), for every n ≥ 1.
If χ is the oracle, then the effect of O(n) is to replace the content rn of Rn by χ(rn).
P χ denote the program P when used with the function χ in the oracle.
P χ(a) ↓ bmeans the computation P χ(a) with initial configuration a1, a2, · · · , an, 0, 0, · · ·
stops with the number b is register R1.

iii. Definition. Let χ be a unary total function, and f a partial function from Nn to N.
A. Let P be a URMO program, then P URMO-computes f relative to χ (or f is

χ-computed by P ) if, for every a ∈ Nn and b ∈ N, P χ(a) ↓ b iff f(a) ≃ b.
B. The function f is URMO-computable relative to χ (or χ-computable) if there is

a URMO program that URMO-computes it relative to χ.

iv. Theorem.

A. χ ∈ C χ.
B. C ⊆ C χ.
C. If χ is computable, then C = C χ.
D. C χ is closed under substitution, recursion and minimalisation.
E. If ψ is a total unary function that is χ-computable, then C ψ ⊆ C χ.

(b) χ-partial recursive function:
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i. Definition. The class Rχ of χ-partial recursive functions is the smallest class of
functions such that

A. the basic functions are in Rχ.
B. χ ∈ Rχ.
C. Rχ is closed under substitution, recursion, and minimalisation.

ii. Theorem. For any χ, Rχ = C χ.

(c) Numbering URMO programs

i. Let’s fix an effective enumeration of all URMO programs: Q0, Q1, Q2, . . .. Let ϕχ,nm
be the n-ary function χ-computed by Qm.
ϕχm is ϕχ,1m . W χ

m = Dom(ϕχm) and E
χ
m = Ran(ϕχm).

ii. The relativised s-m-n Theorem. For each m,n ≥ 1 there is a total computable
(m+ 1)-ary function smn (e,x) such that for any χ, ϕχ,m+n

e (x,y) ≃ ϕχ,nsmn (e,x)(y).

(d) Universal programs for relative computability:
Universal Function Theorem. For each n, the universal function ψχ,nU for n-ary χ-
computable functions given by ψχ,nU (e,x) ≃ ϕχ,ne (x) is χ-computable.

(e) χ-recursive and χ-r.e. sets :

i. Definition. Let A be a set

A. A is χ-recursive if cA is χ-computable.

B. A is χ-r.e. if its partial characteristic function f(x) =

{
1 if x ∈ A,
↑ if x ̸∈ A

is χ-

computable.

ii. Theorem. The following statements are valid.

A. For any set A, A is χ-recursive iff A and A are χ-r.e.
B. For any set A, the following are equivalent.

(1) A is χ-r.e.
(2) A = W χ

m for some m.
(3) A = Eχ

m for some m.
(4) A = ∅ or A is the range of a total χ-computable function.
(5) For some χ-decidable predicate R(x, y), x ∈ A iff ∃y.R(x, y).

C. Kχ def
= {x | x ∈ W χ

x } is χ-r.e. but not χ-recursive.

(f) Computability relative to set A means relative to characteristic function cA.

5. Turing reducibility and Turing degrees:

(a) Definition. The set A is Turing reducible to B, notation A ≤T B, if A has a B-
computable characteristic function cA.
Definition. A, B are Turing equivalent, notation A ≡T B, if A ≤T B and B ≤T A.

(b) Theorem.

i. ≤T is reflexive and transitive.
ii. ≡T is an equivalence relation.
iii. If A ≤m B then A ≤T B.
iv. A ≡T A for all A.
v. If A is recursive, then A ≤T B for all B.
vi. If B is recursive and A ≤T B, then A is recursive.
vii. If A is r.e. then A ≤T K.

(c) Definition. A set A is T-complete if A is r.e. and B ≤T A for every r.e. set B.
(d) Definition. T-Degree

i. The equivalence class dT (A) = {B | A ≡T B} is the Turing degree (T-degree) of A.
ii. A T-degree containing a recursive set is called a recursive T-degree.
iii. A T-degree containing an r.e. set is called an r.e. T-degree.
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(e) Definition. The set of degrees is ranged over by a,b, c, . . ..

i. a ≤ b iff A ≤T B for all A ∈ a and B ∈ b.
ii. a < b iff a ≤ b and a ̸= b.

Notation. The relation ≤ is a partial order.
(f) Theorem.

i. There is precisely one recursive degree 0, which consists of all the recursive sets and
is the unique minimal degree.

ii. Let 0′ be the degree of K. Then 0 < 0′ and 0′ is a maximum among all r.e. degrees.
iii. dm(A) ⊆ dT (A); and if dm(A) ≤m dm(B) then dT (A) ≤ dT (B).

(g) Theorem. The jump operation:

i. KA def
= {x | x ∈ WA

x }. KA is a T-complete A-r.e. set. Also called the completion of
A, or the jump of A, and denoted as A′. A <T K

A.
ii. If B is A-r.e., then B ≤T K

A.
iii. If A is recursive then KA ≡T K.
iv. If A ≤T B then KA ≤T K

B.
v. If A ≡T B then KA ≡T K

B.

(h) Definition. The jump of a, denoted a′, is the degree of KA for any A ∈ a.
Notation. By Relativization jump is a valid definition because the degree of KA is the
same for every A ∈ a. The new definition of 0′ as the jump of 0 accords with our earlier
definition of 0′ as the degree of K.

(i) Theorem. For any degree a and b, the following statements are valid.

i. a < a′.
ii. If a < b then a′ < b′

iii. If B ∈ b, A ∈ a and B is A-r.e. then b ≤ a′.

(j) Theorem. Any degrees a,b have a unique least upper bound.
(k) Theorem. Any non-recursive r.e. degree contains a simple set.
(l) Theorem. There are r.e. sets A, B s.t. A ̸≤T B and B ̸≤T A. Hence, if a, b are dT (A),

dT (B) respectively, a ̸≤ b and b ̸≤ a, and thus 0 < a < 0′ and 0 < b < 0′.
(m) Theorem. For any r.e. degree a > 0, there is an r.e. degree b such that b | a.
(n) Sack’s Density Theorem. For any r.e. degrees a < b, ∃ r.e. degree c with a < c < b.
(o) Sack’s Splitting Theorem. For any r.e. degrees a > 0 there are r.e. degrees b, c such

that b < a c < a and a = b ∪ c (hence b | c).
(p) Lachlan, Yates Theorem.

i. ∃ r.e. degrees a, b > 0 such that 0 is the greatest lower bound of a and b.
ii. ∃ r.e. degrees a, b having no greatest lower bound (either among all degrees or

among r.e. degrees).

(q) Shoenfield Theorem. There is a non-r.e. degree a < 0′.
(r) Spector Theorem. There is a minimal degree. (A minimal degree is a degree m > 0

such that there is no degree a with 0 < a <m).
(s) Corollary. For any r.e. m-degree a >m 0m, ∃ an r.e. m-degree b s.t. b | a.

Key Terms:

Many-one Reducibility, Many-one Equivalent, m-degrees, m-complete, Relative Computability, UR-
MO, χ-computable, Turing Reducibility, Turing Degrees.

Practice and Sources:

1. Slide10-Reducibility;
2. Textbook page 157-181;
3. Lab11, Lab12
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NP, NP-Complete and NP Reduction

1. Decision Problem: The “Yes” or “No” questions for any input instance.

(a) For maximization problem: add a threshold k and determine whether there exists a
solution with size/weight/measure ≥ k.

(b) For minimization problem: add a threshold k and determine whether there exists a
solution with size/weight/measure ≤ k.

2. Polynomial Time Algorithm: Algorithm A runs in poly-time if for every string s, A(s)
terminates in at most p(|s|) “steps”, where p(.) is some polynomial.

3. P Problem: Decision problems for which there is a poly-time algorithm.
4. NP Problem: Decision problems for which there exists a poly-time certifier.

(a) Certifier: a polynomial time algorithm to check whether a given string is a solution.
(b) Certificate: a solution for a given instance.

5. NP-Completeness: a set of the hardest NP problems.

(a) P is NP-Complete if i) P ∈ NP; and ii) ∀Q ∈ NP, Q ≤p
m P .

(b) P is NP-Hard if ∀Q ∈ NP, Q ≤p
m P .

6. Polynomial Time Reduction:

(a) Cook Reduction: Problem X polynomial reduces (Cook) to problem Y if arbitrary in-
stances of problem X can be solved using polynomial number of standard computational
steps, plus polynomial number of calls to oracle that solves problem Y .

(b) Karp Reduction: Problem X polynomial transforms (Karp) to problem Y if given any
input x ∈ X, we can construct an input y such that x is a yes instance of X iff y is
a yes instance of Y . Here we require |y| to be of size polynomial in |x|. (Polynomial
transformation is polynomial reduction with just one call to oracle for Y , exactly at the
end of the algorithm for X.)

7. co-NP Problem: The decision problems whose complements are in NP.

(a) Does NP=co-NP? Consensus opinion is “no”. If NP ̸=co-NP, then P ̸=NP.
(b) Does P=NP∩co-NP? Mixed opinions.

8. Basic reduction strategies

(a) Reduction by simple equivalence. Example: VERTEX-COVER ≡p INDEPENDENT-
SET

(b) Reduction from special case to general case. Example: VERTEX-COVER ≤p SET-
COVER

(c) Reduction by encoding with gadgets. Example: 3-SAT ≤p INDEPENDENT-SET.

9. Sequencing Problems:

(a) HAM-CYCLE: given an undirected graph G = (V,E), does there exists a simple cycle
that contains every node in V ? Proof: 3-SAT ≤p DIR-HAM-CYCLE ≤p HAM-CYCLE.

(b) TSP: given a set of n cities and a pairwise distance function d(u, v), is there a tour of
length ≤ D? Proof: HAM-CYCLE ≤p TSP.

10. Partitioning Problems:

(a) 3D-MATCHING: given n instructors, n courses, and n times, and a list of the possible
courses and times each instructor is willing to teach, is it possible to make an assignment
so that all courses are taught at different times? Proof: 3-SAT ≤p 3D-MATCHING.

(b) 3-COLOR: Given an undirected graph G does there exists a way to color the nodes
red, green, and blue so that no adjacent nodes have the same color? Proof: 3-SAT ≤p

3-COLOR
(c) Scheduling With Release Times: Given a set of n jobs with processing time ti, release

time ri, and deadline di, is it possible to schedule all jobs on a single machine such
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that job i is processed with a contiguous slot of ti time units in the interval [ri, di]?
Proof:SUBSET-SUM ≤p SCHEDULE-RELEASE-TIMES.

11. Numerical Problems:

(a) SUBSET-SUM: given natural numbers w1, . . . , wn and an integer W , is there a subset
that adds up to exactly W? Proof: 3-SAT ≤p SUBSET-SUM

Key Terms:

Polynomial-time Reduction, P, NP, co-NP, NP-Complete, NP-Hard, Certificate, Certifier, Decision
Problem

Practice and Sources:

1. Slide11-Reduction; Slide12-NPReduction
2. Lab-12, Lab13
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