Computability Theory

Check List For Final Exam, Xiaofeng Gao's Section, 2016 Spring

Description:

This checklist covers all the contents for the final exam. It includes Chapter 6, Chapter 7, and Chapter 9.

(Note: Multiple options are available to prepare for the final exam. Reading the textbook is a must for success. Slides, assignments, and answer keys can be good supplements for all topics. For the notations, please refer to the Notations in the text book, page 241-245.)

Chapter 6. Decidability, undecidability and partial decidability

- 1. Decidability:
 - (a) **Definition**. A predicate $M(\mathbf{x})$ is decidable if its characteristic function $c_M(\mathbf{x})$ given by $c_M(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ 0, & \text{if } M(\mathbf{x}) \text{ does not hold.} \end{cases}$ is computable.
 - (b) The predicate $M(\mathbf{x})$ is undecidable if it is not decidable.
 - (c) In literature $M(\mathbf{x})$ is decidable can be described as $M(\mathbf{x})$ is recursively decidable, $M(\mathbf{x})$ has recursive decision problem, $M(\mathbf{x})$ is solvable, $M(\mathbf{x})$ is recursively solvable, or $M(\mathbf{x})$ is computable.
- 2. Undecidable problems in computability:
 - (a) **Theorem**. The problem ' $x \in W_x$ ' is undecidable.
 - (b) Corollary. There is a computable function h such that both ' $x \in Dom(h)$ ' and ' $x \in$ Ran(h)' are undecidable.
 - (c) **Theorem**. (the Halting problem) The problem ' $\phi_x(y)$ is defined' is undecidable.
 - (d) **Theorem**. The problem ' $\phi_x = \mathbf{0}$ ' is undecidable.
 - (e) **Corollary**. The problem ' $\phi_x = \phi_y$ ' is undecidable.
 - (f) **Theorem**. Let c be any number. The followings are undecidable.
 - i. Acceptance Problem: ' $c \in W_r$ ',
 - ii. Printing Problem: ' $c \in E_x$ '.
 - (g) **Theorem**. (Rice's theorem) ' $\phi_x \in \mathscr{B}$ ' is undecidable for $\emptyset \subsetneq \mathscr{B} \subsetneq \mathscr{C}_1$.
- 3. Partially decidable predicates:
 - (a) **Definition**. A predicate $M(\mathbf{x})$ of natural numbers is partially decidable if the function given by $f(\mathbf{x}) = \begin{cases} 1, & \text{if } M(\mathbf{x}) \text{ holds,} \\ \text{undefined, } \text{if } M(\mathbf{x}) \text{ does not hold,} \end{cases}$ is compared. The function is called the partial characteristic function for M. is computable.
 - (b) In the literature the terms partially solvable, semi-computable, and recursively enumerable are used with the same meaning as partially decidable.
 - (c) partially decidable predicates:
 - i. The halting problem is partially decidable. Its partial characteristic function is given by f(x, y) =

 if P_x(y) ↓, undefined, otherwise.

 ii. The problem 'x ∉ W_x' is not partially decidable. The domain of its partial characteristic function is given by f(x, y) =
 - teristic function differs from the domain of every computable function.
 - (d) **Theorem.** A predicate $M(\mathbf{x})$ is partially decidable iff there is a computable function q(x) such that $M(\mathbf{x}) \Leftrightarrow \mathbf{x} \in Dom(q)$.
 - (e) **Theorem.** A predicate $M(\mathbf{x})$ is partially decidable iff there is a decidable predicate $R(\mathbf{x}, y)$ such that $M(\mathbf{x}) \Leftrightarrow \exists y. R(\mathbf{x}, y)$.
 - (f) **Theorem.** If $M(\mathbf{x}, y)$ is partially decidable, so is $\exists y. M(\mathbf{x}, y)$.

- (g) Corollary. If $M(\mathbf{x}, \mathbf{y})$ is partially decidable, so is $\exists \mathbf{y}. M(\mathbf{x}, \mathbf{y})$.
- (h) **Theorem**. $M(\mathbf{x})$ is decidable iff both $M(\mathbf{x})$ and $\neg M(\mathbf{x})$ are partially decidable.
- (i) Corollary. The problem ' $y \notin W_x$ ' is not partially decidable.
- (j) **Theorem.** Let $f(\mathbf{x})$ be a partial function. Then f is computable iff the predicate $f(\mathbf{x}) \simeq y$ is partially decidable.

Key Terms:

Decidability, Undecidability, the Halting problem, Rice's theorem, partial decidability.

Practice and Sources:

1. Slide08-Undecidability; 2. Textbook page 100-120; 3. Lab07-Undecidability

Chapter 7. Recursive And Recursively Enumerable Sets

- 1. Recursive Sets:
 - (a) **Definition**. Let A be a subset of \mathbb{N} . The characteristic function of A is given by $c_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$ is recursive if $c_A(x)$ is computable. (b) Examples of recursive sets: (c) Examples of unsolvable problem

))	Examples of recursive sets: (c) Examples of unsolvable problems:
	i. ℕ, ℤ.	i. $K = \{x \mid x \in W_x\}, \overline{K} = \{x \mid x \notin W_x\}$
	ii. \mathbb{E} (even numbers).	ii. $Fin = \{x \mid W_x \text{ is finite}\}, Inf = \{x \mid W_x \text{ is infinite}\},\$
	iii. \mathbb{O} (odd numbers).	iii. $Cof = \{x \mid W_x \text{ is cofinite}\}, Tot = \{x \mid \phi_x \text{ is total}\},\$
	iv. \mathbb{O} (prime numbers).	iv. $Rec = \{x \mid W_x \text{ is recursive}\},\$
	v. Any finite set.	v. $Ext = \{x \mid \phi_x \text{ is extensible to total recursive function}\}$
- \		

- (d) **Fact**. Recursive Set \Leftrightarrow Solvable Problem \Leftrightarrow Decidable Predicate.
- (e) **Theorem.** If A, B are recursive sets, then so are the sets \overline{A} , $A \cap B$, $A \cup B$, $A \setminus B$.
- 2. Recursively Enumerable Sets (r.e. set):
 - (a) **Definition**. Let A be a subset of \mathbb{N} . Then A is recursively enumerable if the function f given by $f(x) = \begin{cases} 1, & \text{if } x \in A, \\ \text{undefined, } \text{if } x \notin A. \end{cases}$ is computable.

Notation 1. A is also called semi-recursive set, semi-computable set.

Notation 2. Subsets of \mathbb{N}^n can be defined as r.e. by coding to r.e. subsets of \mathbb{N} .

- (b) **Fact**. Partially Decidable Problem \Leftrightarrow Partially Decidable Predicate \Leftrightarrow R. E. Set
- (c) **Index Theorem**. A set is r.e. iff it is the domain of a unary computable function.
- (d) Normal Form Theorem. The set A is r.e. iff there is a primitive recursive predicate $R(\mathbf{x}, y)$ such that $\mathbf{x} \in A$ iff $\exists y. R(\mathbf{x}, y)$.
- (e) Quantifier Contraction Theorem. If $M(\mathbf{x}, \mathbf{y})$ is partially decidable, so is $\exists \mathbf{y}. M(\mathbf{x}, \mathbf{y})$ $(\{\mathbf{x} \mid \exists \mathbf{y}. M(\mathbf{x}, \mathbf{y})\}$ is r.e.).
- (f) **Uniformisation Theorem**. If R(x, y) is partially decidable, then there is a computable function c(x) such that $c(x) \downarrow$ iff $\exists y. R(x, y)$ and $c(x) \downarrow$ implies R(x, c(x)).
- (g) Complementation Theorem. A is recursive iff A and \overline{A} are r.e.
- (h) Graph Theorem. Let f(x) be a partial function. Then f(x) is computable iff the predicate ' $f(x) \simeq y$ ' is partially decidable iff { $\pi(x, y) \mid f(x) \simeq y$ } is r.e.
- (i) Listing Theorem. A is r.e. iff $A = \emptyset$ or A = Ran(f) for a total function $f \in \mathscr{C}_1$. **Equivalence Theorem**. Let $A \subseteq \mathbb{N}$. Then the following are equivalent: i. A is r.e.
 - ii. $A = \emptyset$ or A is the range of a unary total computable function.
 - iii. A is the range of a (partial) computable function.

Theorem. Every infinite r.e. set has an infinite recursive subset.

Theorem. An infinite set is recursive iff it is the range of a total increasing computable

function (if it can be recursively enumerated in increasing order). **Theorem**. The set $\{x \mid \phi_x \text{ is total}\}$ is not r.e.

- (j) **Closure Theorem**. The recursively enumerable sets are closed under union and intersection uniformly and effectively.
- (k) **Rice-Shapiro Theorem**. Suppose that \mathcal{A} is a set of unary computable functions such that the set $\{x \mid \phi_x \in \mathcal{A}\}$ is r.e. Then for any unary computable function $f, f \in \mathcal{A}$ iff there is a finite function $\theta \subseteq f$ with $\theta \in \mathcal{A}$.
 - **Corollary**. The sets $\{x \mid \phi_x \text{ is total}\}\$ and $\{x \mid \phi_x \text{ is not total}\}\$ are not r.e.
- (l) **Theorem**. If A and B are r.e., then so are $A \cap B$ and $A \cup B$.
- 3. Productive Sets:
 - (a) **Definition**. A set A is productive if there is a total computable function g such that whenever $W_x \subseteq A$, then $g(x) \in A \setminus W_x$. g is called a productive function for A.

Notation. A productive set is not r.e.

- (b) Examples of productive sets:
 - i. $\{x \mid \phi_x \neq \mathbf{0}\}$ is productive.
 - ii. $\{x \mid c \notin W_x\}$ is productive.
 - iii. $\{x \mid c \notin E_x\}$ is productive.

Fig. A productive set

- (c) **Reduction Theorem**. Suppose that A and B are sets such that A is productive, and there is a total computable function such that $x \in A$ iff $f(x) \in B$. Then B is productive.
- (d) **Theorem.** Suppose that \mathscr{B} is a set of unary computable functions with $f_{\varnothing} \in \mathscr{B}$ and $\mathscr{B} \neq \mathscr{C}_1$. Then the set $B = \{x \mid \phi_x \in \mathscr{B}\}$ is productive.
- 4. Creative sets:
 - (a) Definition. A set A is creative if it is r.e. and its complement A is productive.
 Example. K is creative. (The simplest example of a creative set).
 Notation. From the theorem that A is recursive ⇔ A and A are r.e. we can say that a creative set is an r.e. set that fails to be recursive in a very strong way. (Creative sets are r.e. sets having the most difficult decision problem.)
 - (b) **Theorem**. Suppose that $\mathscr{A} \subseteq \mathscr{C}_1$ and let $A = \{x \mid \phi_x \in \mathscr{A}\}$. If A is r.e. and $A \neq \emptyset$, N, then A is creative.
 - (c) **Lemma**. Suppose that g is a total computable function. Then there is a total computable function k such that for all x, $W_{k(x)} = W_x \cup \{g(x)\}$.

Subset Theorem. A productive set contains an infinite r.e. subset.

Corollary. If A is creative, then \overline{A} contains an infinite r.e. subset.

- 5. Simple Set:
 - (a) **Definition**. A set A is simple if A is r.e., \overline{A} is infinite and contains no infinite r.e. subset.
 - (b) **Theorem**. A simple set is neither recursive nor creative.
 - (c) **Theorem**. There is a simple set.

Key Terms:

Recursive Set, Recursively Enumerable Set, Productive Set, Creative Set, Simple Set.

Practice and Sources:

- 1. Slide09-RESet
- 2. Textbook page 121-142;
- 3. Lab08-Lab10.

Set	Definition	Theorem	Example	Counter Example
Recursive Set	$c_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \\ \text{is computable.} \end{cases}$	 ① Recursive Function Theorems ② Closure: A,B are r. ⇒ Ā, A∪B, A∩B are r. ③ Rice Theorem: ∅ ⊆ 𝔅 ⊆ 𝔅₁ ⇒ 'φ_x ∈ 𝔅' is undecidable. ④ Any Theorems for Decidable Predicates. 	N, Z, E, O, ℙ Any finite set	$K, \overline{K};$ Fin, Inf, Cof; Rec, Tot, Ext Any non-r.e. set
Recursively Enumerable Set (r.e. set)	$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ \uparrow, & \text{if } x \notin A. \\ \text{is computable.} \end{cases}$	 ① Index ↔ ③ Listing { 3 infinite r. ⊆ r.e. r. ⇔ ∃f ∈ 𝔅₁ ∏, Ran(f) ③ Uniformization ④ Normal Form { 3 Uniformization ④ Complementation (A is r. ⇔ A, Ā are r.e.) ③ Closure (A, B are r.e. ⇒ A ∩ B, A ∪ B are r.e.) ④ Rice-Shapiro: 𝒴 ⊆ 𝔅₁, {x φ_x ∈ 𝔅} is r.e., then ∀f ∈ 𝔅₁, f ∈ 𝔅 ⇔ ∃ finite θ ⊆ f with θ ∈ 𝔅 	all recursive set non-recursive r.e. set $\{x \mid x \in W_x\}$ $\{x \mid \psi_x \neq \emptyset\}$ $\{x \mid W_x \neq \emptyset\}$ $\{x \mid x 7's \text{ in } \pi\}$	$ \overline{K}; Fin, Inf, Cof; Tot, \overline{Tot}, Con; Rec, Ext $
Productive Set	A is productive if \exists total $g \in \mathscr{C}_1 \text{ s.t. } \forall W_x \subseteq A,$ $g(x) \in A \setminus W_x$	 ① Reduction Theorem A is productive and A ≤_m B ⇒ B is productive ② Quasi-Rice Theorem ℬ ⊊ 𝔅₁, f_𝔅 ∈ 𝔅 ⇒ {x φ_x ∈ 𝔅} is productive ③ Quasi-Listing Theorem Productive set has r.e. subset 	$ \begin{cases} x \mid \phi_x(x) \neq 0 \\ \{x \mid c \notin W_x \} \\ \{x \mid c \notin E_x \\ \{x \mid \phi_x \text{ is not total} \} \end{cases} $	① r.e. set② doesn't haver.e. subset
Creative Set	$\left\{ \begin{array}{l} A \text{ is r.e.;} \\ \overline{A} \text{ is productive.} \end{array} \right.$	① Quasi-Rice Theorem $\mathscr{A} \subseteq \mathscr{C}_1, A = \{x \mid \phi_x \in \mathscr{A}\}.$ If A is r.e., $A \neq \mathscr{O}, \mathbb{N}$, then A is creative	$ \{ \begin{array}{l} x \mid \phi_x(x) = 0 \\ \{ x \mid c \in W_x \\ \{ x \mid c \in E_x \} \end{array} $	 non-r.e. set simple set
Simple Set	$\begin{cases} \frac{A \text{ is r.e.;}}{\overline{A} \text{ is infinite;}} \\ \frac{\overline{A}}{\overline{A}} \text{ contains no infinite} \\ \text{r.e. subset.} \end{cases}$	 ① Characteristic Theorem ① A simple set is neither recursive nor creative) ② Existence Theorem (There is a simple set) 	If A , B are simple: $A \oplus B$ is simple $\underline{A \otimes B}$ is not simple $\overline{\overline{A \otimes B}}$ is simple	Any recursive set Any creative set

Table 1: Various Sets

Chapter 9. Reducibility And Degrees

- 1. Many-One Reducibility:
 - (a) Definition. The set A is many-one reducible (m-reducible) to the set B if there is a total computable function f such that x ∈ A iff f(x) ∈ B for all x. We shall write A ≤_m B or more explicitly f : A ≤_m B.
 Notation. If f is injective, then we are talking about one-one reducibility, denoted by f : A ≤₁ B.
 - (b) **Theorem**. Let A, B, C be sets.
 - i. \leq_m is reflexive: $A \leq_m A$.
 - ii. \leq_m is transitive: $A \leq_m B, B \leq_m C \Rightarrow A \leq_m C$.
 - iii. $A \leq_m B$ iff $A \leq_m B$.
 - iv. If A is recursive and $B \leq_m A$, then B is recursive.
 - v. If A is recursive and $B \neq \emptyset$, N, then $A \leq_m B$.
 - vi. If A is r.e. and $B \leq_m A$, then B is r.e.
 - vii. (i). $A \leq_m \mathbb{N}$ iff $A = \mathbb{N}$; (ii). $A \leq_m \emptyset$ iff $A = \emptyset$.
 - viii. (i). $\mathbb{N} \leq_m A$ iff $A \neq \emptyset$; (ii). $\emptyset \leq_m A$ iff $A \neq \mathbb{N}$.
 - (c) Corollary. Neither $\{x \mid \phi_x \text{ is total}\}$ nor $\{x \mid \phi_x \text{ is not total}\}$ is *m*-reducible to *K*. Corollary. If *A* is r.e. and is not recursive, then $\overline{A} \not\leq_m A$ and $A \not\leq_m \overline{A}$. Notation. It contradicts to our intuition that *A* and \overline{A} are equally difficult.
 - (d) **Theorem**. A is r.e. iff $A \leq_m K$.

Notation. K is the most difficult partially decidable problem.

2. m-Degrees:

- (a) **Definition**. Two sets A, B are many-one equivalent, notation $A \equiv_m B$ (abbreviated *m*-equivalent), if $A \leq_m B$ and $B \leq_m A$.
- (b) **Theorem**. The relation \equiv_m is an equivalence relation.
- (c) **Definition**. Let $d_m(A)$ be $\{B \mid A \equiv_m B\}$. **Definition**. An m-degree is an equivalence class of sets under the relation \equiv_m . It is any class of sets of the form $d_m(A)$ for some set A.
- (d) Definition. The set of *m*-degrees is ranged over by a, b, c,
 Definition. (Partial Order on *m*-Degree) Let a, b be *m*-degrees.
 i. a ≤_m b iff A ≤_m B for some A ∈ a and B ∈ b.
 ii. a <_m b iff a ≤_m b and b ≰_m a (a ≠ b).
 The relation ≤_m is a partial order.
 Notation. From the definition of ≡_m, a ≤_m b ⇔ ∀A ∈ a, B ∈ b, A ≤_m B.
- (e) **Theorem**. The relation $<_m$ is a partial ordering of *m*-degrees.
- (f) **Theorem**. Difficulty Class
 - i. **o** and **n** are respectively the recursive m-degrees $\{\emptyset\}$ and $\{\mathbb{N}\}$.
 - ii. The recursive m-degree $\mathbf{0}_m$ consists of all the recursive sets except \emptyset , \mathbb{N} . $\mathbf{0}_m \leq_m \mathbf{a}$ for any m-degree \mathbf{a} other than $\mathbf{0}$, \mathbf{n} .
 - iii. \forall *m*-degree **a**, **o** \leq_m **a** provided **a** \neq **n**; **n** \leq_m **a** provided **a** \neq **o**.
 - iv. An r.e. *m*-degree consists of only r.e. sets.
 - v. If $\mathbf{a} \leq_m \mathbf{b}$ and \mathbf{b} is an r.e. *m*-degree, then \mathbf{a} is also an r.e. *m*-degree.
 - vi. The maximum r.e. *m*-degree $d_m(K)$ is denoted by $\mathbf{0}'_m$.
- (g) Algebraic Structure
 - i. Theorem. *m*-degrees form an upper semi-lattice.
 - ii. Lattice: A lattice is a partially ordered set (poset) (L, \leq) in which any two elements have a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

To qualify as a lattice, the set and the operation must satisfy tow conditions: join-semilattice, meet-semilattice.

join-semilattice: $\forall a, b \in L, \{a, b\}$ has a join $a \lor b$. (the least upper bound)

meet-semilattice: $\forall a, b \in L, \{a, b\}$ has a meet $a \land b$. (the greatest lower bound)

iii. Theorem. Any pair of m-degrees \mathbf{a} , \mathbf{b} have a least upper bound; i.e. there is an m-degree \mathbf{c} such that

A. $\mathbf{a} \leq_m \mathbf{c}$ and $\mathbf{b} \leq_m \mathbf{c}$ (\mathbf{c} is an upper bound); B. $\mathbf{c} \leq_m$ any other upper bound of \mathbf{a} , \mathbf{b} .

Fig. The m-degrees

- 3. m-complete r.e. sets:
 - (a) Definition. An r.e. set is m-complete if every r.e. set is m-reducible to it.
 Notation. 0'_m, the m-degree of K is maximum among all r.e. m-degrees, and thus K is m-complete r.e. set (or just called m-complete set).
 - (b) **Theorem**. The following statements are valid.
 - i. K is m-complete.
 - ii. A is *m*-complete iff $A \equiv_m K$ iff A is r.e. and $K \leq_m A$.
 - iii. $0'_m$ consists exactly of all the *m*-complete sets.
 - (c) Myhill's Theorem. A set is m-complete iff it is creative. Corollary. If **a** is the *m*-degree of any simple set, then $\mathbf{0}_m <_m \mathbf{a} <_m \mathbf{0}'_m$ (Simple sets are not *m*-complete).
- 4. Relative Computability:
 - (a) Unlimited Register Machine with Oracle (URMO):
 - i. **Definition**. Suppose χ is a total unary function.

Informally a function f is computable relative to χ , or χ -computable, if f can be computed by an algorithm that is effective in the usual sense, except from time to time during computations f is allowed to consult the oracle function χ . Such an algorithm is called a χ -algorithm.

ii. **Definition**. A URM with oracle, URMO for short, can recognize a fifth kind of instruction, O(n), for every $n \ge 1$.

If χ is the oracle, then the effect of O(n) is to replace the content r_n of R_n by $\chi(r_n)$. P^{χ} denote the program P when used with the function χ in the oracle.

 $P^{\chi}(\mathbf{a}) \downarrow b$ means the computation $P^{\chi}(\mathbf{a})$ with initial configuration $a_1, a_2, \cdots, a_n, 0, 0, \cdots$ stops with the number b is register R_1 .

- iii. **Definition**. Let χ be a unary total function, and f a partial function from \mathbb{N}^n to \mathbb{N} .
 - A. Let P be a URMO program, then P URMO-computes f relative to χ (or f is χ -computed by P) if, for every $\mathbf{a} \in \mathbb{N}^n$ and $b \in \mathbb{N}$, $P^{\chi}(\mathbf{a}) \downarrow b$ iff $f(\mathbf{a}) \simeq b$.
 - B. The function f is URMO-computable relative to χ (or χ -computable) if there is a URMO program that URMO-computes it relative to χ .
- iv. Theorem.
 - A. $\chi \in \mathscr{C}^{\chi}$.
 - B. $\mathscr{C} \subseteq \mathscr{C}^{\chi}$.
 - C. If χ is computable, then $\mathscr{C} = \mathscr{C}^{\chi}$.
 - D. \mathscr{C}^{χ} is closed under substitution, recursion and minimalisation.
 - E. If ψ is a total unary function that is χ -computable, then $\mathscr{C}^{\psi} \subseteq \mathscr{C}^{\chi}$.
- (b) χ -partial recursive function:

- i. **Definition**. The class \mathscr{R}^{χ} of χ -partial recursive functions is the smallest class of functions such that
 - A. the basic functions are in \mathscr{R}^{χ} .
 - B. $\chi \in \mathscr{R}^{\chi}$.
 - C. \mathscr{R}^{χ} is closed under substitution, recursion, and minimalisation.
- ii. **Theorem**. For any χ , $\mathscr{R}^{\chi} = \mathscr{C}^{\chi}$.
- (c) Numbering URMO programs
 - i. Let's fix an effective enumeration of all URMO programs: Q_0, Q_1, Q_2, \ldots Let $\phi_m^{\chi,n}$ be the *n*-ary function χ -computed by Q_m . ϕ_m^{χ} is $\phi_m^{\chi,1}$. $W_m^{\chi} = Dom(\phi_m^{\chi})$ and $E_m^{\chi} = Ran(\phi_m^{\chi})$.
 - ii. The relativised s-m-n Theorem. For each $m, n \ge 1$ there is a total computable (m+1)-ary function $s_n^m(e, \mathbf{x})$ such that for any $\chi, \phi_e^{\chi, m+n}(\mathbf{x}, \mathbf{y}) \simeq \phi_{s_m^m(e, \mathbf{x})}^{\chi, n}(\mathbf{y})$.
- (d) Universal programs for relative computability:

Universal Function Theorem. For each *n*, the universal function $\psi_U^{\chi,n}$ for *n*-ary χ computable functions given by $\psi_U^{\chi,n}(e, \mathbf{x}) \simeq \phi_e^{\chi,n}(\mathbf{x})$ is χ -computable.

- (e) χ -recursive and χ -r.e. sets :
 - i. **Definition**. Let A be a set
 - A. A is χ -recursive if c_A is χ -computable.
 - B. A is χ -r.e. if its partial characteristic function $f(x) = \begin{cases} 1 & \text{if } x \in A, \\ \uparrow & \text{if } x \notin A \end{cases}$ is χ computable.
 - ii. Theorem. The following statements are valid.
 - A. For any set A, A is χ -recursive iff A and A are χ -r.e.
 - B. For any set A, the following are equivalent.
 - (1) A is χ -r.e.
 - (2) $A = W_m^{\chi}$ for some m.
 - (3) $A = E_m^{\chi}$ for some m.
 - (4) $A = \emptyset$ or A is the range of a total χ -computable function.
 - (5) For some χ -decidable predicate $R(x, y), x \in A$ iff $\exists y. R(x, y)$.

C. $K^{\chi} \stackrel{\text{def}}{=} \{x \mid x \in W_x^{\chi}\}$ is χ -r.e. but not χ -recursive.

- (f) Computability relative to set A means relative to characteristic function c_A .
- 5. Turing reducibility and Turing degrees:
 - (a) **Definition**. The set A is Turing reducible to B, notation $A \leq_T B$, if A has a B-computable characteristic function c_A .

Definition. A, B are Turing equivalent, notation $A \equiv_T B$, if $A \leq_T B$ and $B \leq_T A$.

- (b) **Theorem**.
 - i. \leq_T is reflexive and transitive.
 - ii. \equiv_T is an equivalence relation.
 - iii. If $A \leq_m B$ then $A \leq_T B$.
 - iv. $A \equiv_T \overline{A}$ for all A.
 - v. If A is recursive, then $A \leq_T B$ for all B.
 - vi. If B is recursive and $A \leq_T B$, then A is recursive.
 - vii. If A is r.e. then $A \leq_T K$.
- (c) **Definition**. A set A is T-complete if A is r.e. and $B \leq_T A$ for every r.e. set B.
- (d) **Definition**. T-Degree
 - i. The equivalence class $d_T(A) = \{B \mid A \equiv_T B\}$ is the Turing degree (T-degree) of A.
 - ii. A T-degree containing a recursive set is called a recursive T-degree.
 - iii. A T-degree containing an r.e. set is called an r.e. T-degree.

- (e) **Definition**. The set of degrees is ranged over by $\mathbf{a}, \mathbf{b}, \mathbf{c}, \dots$
 - i. $\mathbf{a} \leq \mathbf{b}$ iff $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$.

ii. $\mathbf{a} < \mathbf{b}$ iff $\mathbf{a} \le \mathbf{b}$ and $\mathbf{a} \ne \mathbf{b}$.

- Notation. The relation \leq is a partial order.
- (f) **Theorem**.
 - i. There is precisely one recursive degree **0**, which consists of all the recursive sets and is the unique minimal degree.
 - ii. Let $\mathbf{0}'$ be the degree of K. Then $\mathbf{0} < \mathbf{0}'$ and $\mathbf{0}'$ is a maximum among all r.e. degrees.
 - iii. $d_m(A) \subseteq d_T(A)$; and if $d_m(A) \leq_m d_m(B)$ then $d_T(A) \leq d_T(B)$.
- (g) **Theorem**. The jump operation:
 - i. $K^A \stackrel{\text{def}}{=} \{x \mid x \in W_x^A\}$. K^A is a T-complete A-r.e. set. Also called the completion of A, or the jump of A, and denoted as A'. $A <_T K^A$.
 - ii. If B is A-r.e., then $B \leq_T K^A$.
 - iii. If A is recursive then $K^A \equiv_T K$.
 - iv. If $A \leq_T B$ then $K^A \leq_T K^B$.
 - v. If $A \equiv_T B$ then $K^A \equiv_T K^B$.
- (h) **Definition**. The jump of **a**, denoted **a**', is the degree of K^A for any $A \in \mathbf{a}$. **Notation**. By Relativization jump is a valid definition because the degree of K^A is the same for every $A \in \mathbf{a}$. The new definition of **0**' as the jump of **0** accords with our earlier definition of **0**' as the degree of K.
- (i) **Theorem**. For any degree **a** and **b**, the following statements are valid.
 - i. **a** < **a**'.
 - ii. If $\mathbf{a} < \mathbf{b}$ then $\mathbf{a}' < \mathbf{b}'$
 - iii. If $B \in \mathbf{b}$, $A \in \mathbf{a}$ and B is A-r.e. then $\mathbf{b} \leq \mathbf{a}'$.
- (j) **Theorem**. Any degrees **a**, **b** have a unique least upper bound.
- (k) Theorem. Any non-recursive r.e. degree contains a simple set.
- (1) **Theorem.** There are r.e. sets A, B s.t. $A \not\leq_T B$ and $B \not\leq_T A$. Hence, if \mathbf{a}, \mathbf{b} are $d_T(A)$, $d_T(B)$ respectively, $\mathbf{a} \not\leq \mathbf{b}$ and $\mathbf{b} \not\leq \mathbf{a}$, and thus $\mathbf{0} < \mathbf{a} < \mathbf{0}'$ and $\mathbf{0} < \mathbf{b} < \mathbf{0}'$.
- (m) **Theorem**. For any r.e. degree $\mathbf{a} > \mathbf{0}$, there is an r.e. degree \mathbf{b} such that $\mathbf{b} \mid \mathbf{a}$.
- (n) Sack's Density Theorem. For any r.e. degrees $\mathbf{a} < \mathbf{b}$, \exists r.e. degree \mathbf{c} with $\mathbf{a} < \mathbf{c} < \mathbf{b}$.
- (o) Sack's Splitting Theorem. For any r.e. degrees $\mathbf{a} > \mathbf{0}$ there are r.e. degrees \mathbf{b} , \mathbf{c} such that $\mathbf{b} < \mathbf{a} \mathbf{c} < \mathbf{a}$ and $\mathbf{a} = \mathbf{b} \cup \mathbf{c}$ (hence $\mathbf{b} \mid \mathbf{c}$).
- (p) Lachlan, Yates Theorem.
 - i. \exists r.e. degrees $\mathbf{a}, \mathbf{b} > \mathbf{0}$ such that $\mathbf{0}$ is the greatest lower bound of \mathbf{a} and \mathbf{b} .
 - ii. \exists r.e. degrees **a**, **b** having no greatest lower bound (either among all degrees or among r.e. degrees).
- (q) Shoenfield Theorem. There is a non-r.e. degree $\mathbf{a} < \mathbf{0}'$.
- (r) Spector Theorem. There is a minimal degree. (A minimal degree is a degree m > 0 such that there is no degree a with 0 < a < m).
- (s) Corollary. For any r.e. m-degree $\mathbf{a} >_m \mathbf{0}_m$, \exists an r.e. m-degree \mathbf{b} s.t. $\mathbf{b} \mid \mathbf{a}$.

Key Terms:

Many-one Reducibility, Many-one Equivalent, m-degrees, m-complete, Relative Computability, UR-MO, χ -computable, Turing Reducibility, Turing Degrees.

Practice and Sources:

- 1. Slide10-Reducibility;
- 2. Textbook page 157-181;
- 3. Lab11, Lab12

NP, NP-Complete and NP Reduction

- 1. Decision Problem: The "Yes" or "No" questions for any input instance.
 - (a) For maximization problem: add a threshold k and determine whether there exists a solution with size/weight/measure $\geq k$.
 - (b) For *minimization* problem: add a threshold k and determine whether there exists a solution with size/weight/measure $\leq k$.
- 2. Polynomial Time Algorithm: Algorithm A runs in poly-time if for every string s, A(s) terminates in at most p(|s|) "steps", where p(.) is some polynomial.
- 3. **P** Problem: Decision problems for which there is a poly-time algorithm.
- 4. **NP** Problem: Decision problems for which there exists a poly-time certifier.
 - (a) Certifier: a polynomial time algorithm to check whether a given string is a solution.
 - (b) Certificate: a solution for a given instance.
- 5. **NP**-Completeness: a set of the hardest **NP** problems.
 - (a) P is **NP**-Complete if i) $P \in \mathbf{NP}$; and ii) $\forall Q \in \mathbf{NP}, Q \leq_m^p P$.
 - (b) P is **NP**-Hard if $\forall Q \in \mathbf{NP}, Q \leq_m^p P$.

6. Polynomial Time Reduction:

- (a) Cook Reduction: Problem X polynomial reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using polynomial number of standard computational steps, plus polynomial number of calls to oracle that solves problem Y.
- (b) Karp Reduction: Problem X polynomial transforms (Karp) to problem Y if given any input $x \in X$, we can construct an input y such that x is a yes instance of X iff y is a yes instance of Y. Here we require |y| to be of size polynomial in |x|. (Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X.)
- 7. **co-NP** Problem: The decision problems whose complements are in **NP**.
 - (a) Does NP=co-NP? Consensus opinion is "no". If $NP \neq co-NP$, then $P \neq NP$.
 - (b) Does $\mathbf{P}=\mathbf{NP}\cap\mathbf{co-NP}$? Mixed opinions.

8. Basic reduction strategies

- (a) Reduction by simple equivalence. Example: VERTEX-COVER \equiv_p INDEPENDENT-SET
- (b) Reduction from special case to general case. Example: VERTEX-COVER \leq_p SET-COVER
- (c) Reduction by encoding with gadgets. Example: 3-SAT \leq_p INDEPENDENT-SET.

9. Sequencing Problems:

- (a) HAM-CYCLE: given an undirected graph G = (V, E), does there exists a simple cycle that contains every node in V? Proof: 3-SAT \leq_p DIR-HAM-CYCLE \leq_p HAM-CYCLE.
- (b) TSP: given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$? Proof: HAM-CYCLE \leq_p TSP.

10. Partitioning Problems:

- (a) 3D-MATCHING: given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times? Proof: 3-SAT \leq_p 3D-MATCHING.
- (b) 3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color? Proof: 3-SAT \leq_p 3-COLOR
- (c) Scheduling With Release Times: Given a set of n jobs with processing time t_i , release time r_i , and deadline d_i , is it possible to schedule all jobs on a single machine such

that job *i* is processed with a contiguous slot of t_i time units in the interval $[r_i, d_i]$? Proof:SUBSET-SUM \leq_p SCHEDULE-RELEASE-TIMES.

11. Numerical Problems:

(a) SUBSET-SUM: given natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W? Proof: 3-SAT \leq_p SUBSET-SUM

Key Terms:

Polynomial-time Reduction, P, NP, co-NP, NP-Complete, NP-Hard, Certificate, Certifier, Decision Problem

Practice and Sources:

- 1. Slide11-Reduction; Slide12-NPReduction
- $2. \ Lab-12, \ Lab13$