Lab03-Recursive Function CS363-Computability Theory, Xiaofeng Gao, Spring 2016

- * Please upload your assignment to FTP or submit a paper version on the next class
 - * If there is any problem, please contact: nongeek.zv@gmail.com * Name:_____ StudentId: _____ Email: _____
- 1. Show that the following functions are primitive recursive:

(a)
$$half(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even,} \\ \frac{n-1}{2}, & \text{if } n \text{ is odd.} \end{cases}$$

- (b) $\max\{x_1, x_2, \dots, x_n\} = \text{the maximum of } x_1, x_2, \dots, x_n.$
- (c) f(x) = the sum of all prime divisors of x.
- (d) $g(x) = x^x$.

2. Show the computability of the following functions by minimalisation.

- (a) $f^{-1}(x)$, if f(x) is a total injective computable function.
- (b) $f(a) = \begin{cases} \text{the least non-negative integral root of } p(x) a \ (a \in \mathbb{N}), \\ \text{undefined if there's no such root,} \end{cases}$

where p(x) is a polynomial with integer coefficients.

(c)
$$f(x,y) = \begin{cases} x/y & \text{if } y \neq 0 \text{ and } y|x \\ \text{undefined otherwise.} \end{cases}$$

- 3. Let $\pi(x, y) = 2^x(2y+1) 1$. Show that π is a computable bijection from \mathbb{N}^2 to \mathbb{N} , and that the functions π_1, π_2 such that $\pi(\pi_1(z), \pi_2(z)) = z$ for all z are computable.
- 4. Show that the following function is primitive recursive (with the help of $\pi(x, y)$, perhaps):

$$f(0) = 1, f(1) = 1, f(n+2) = f(n) + f(n+1).$$

5. Coding Technology.

Any number $x \in \mathbb{N}$ has a unique expression as

(1) $x = \sum_{i=0}^{\infty} \alpha_i 2^i$, with $\alpha_i = 0$ or 1, for all *i*.

Hence, if x > 0, there are unique expressions for x in the forms

(2) $x = 2^{b_1} + 2^{b_2} + \ldots + 2^{b_l}$, with $0 \le b_1 < b_2 < \ldots < b_l$ and $l \ge 1$, and

(3) $x = 2^{a_1} + 2^{a_1+a_2+1} + \ldots + 2^{a_1+a_2+\ldots+a_k+k-1}$. (The expression (3) is a way of regarding x as coding the sequence (a_1, a_2, \ldots, a_l) of numbers)

Show that each of the functions α , l, b, a defined below is computable.

(a)
$$\alpha(i, x) = \alpha_i$$
 as in the expression (1);
(b) $l(x) = \begin{cases} l \text{ as in } (2), & \text{if } x > 0, \\ 0 & \text{otherwise;} \end{cases}$
(c) $b(x) = \begin{cases} b_i \text{ as in } (2), & \text{if } x > 0 \text{ and } 1 \le i \le l, \\ 0 & \text{otherwise;} \end{cases}$
(d) $a(i, x) = \begin{cases} a_i \text{ as in } (3), & \text{if } x > 0 \text{ and } 1 \le i \le l, \\ 0 & \text{otherwise;} \end{cases}$