Lab05-Numbering Programs

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

* Please upload your assignment to FTP or submit a paper version on the next class * If there is any problem, please contact: nongeek.zv@gmail.com * Name:_____ StudentId: _____ Email: _____

- 1. Show that there is a total computable function k such that for each n,
 - (a) k(n) is an index of the function $\lfloor \sqrt[n]{x} \rfloor$.
 - (b) $W_{k(n)}^{(m)} = \{(y_1, \dots, y_m) : y_1 + y_2 + \dots + y_m = n\} \ (m \ge 1).$
 - (c) $E_{k(n)} = W_n$.
- 2. (a) Find P_{1028} . Distinguish what are $\phi_{1028}(x)$ and $\phi_{1028}^{(n)}(x_1, \dots, x_n)$ and their corresponding $W_{1028}(x), E_{1028}(x)$ and $W_{1028}^{(n)}(x), E_{1028}^{(n)}(x)$;
 - (b) Let P be the program J(1,2,4), Z(1), S(1). Calculate $\gamma(P)$.
- 3. (a) (Cantor) Show that the set of all functions from \mathbb{N} to \mathbb{N} is not denumerable.
 - (b) Show that the set of all non-computable total functions from \mathbb{N} to \mathbb{N} is not denumerable.
- 4. Alternative Selection of π

The π function where $\pi(x, y) = 2^x(2y + 1) - 1$ can enumerate linearly all pairs of natural numbers $(x, y) \in \mathbb{N} \times \mathbb{N}$. However, it does not generate a trace in the first quadrant of the plane. Correspondingly, instead of applying this π function, we can define an alternative bijection π' , such that $\pi' : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and it grows horizontally and vertically according to the right figure. Thus we have:

 $\pi'(0,0) = 0, \ \pi'(0,1) = 1, \ \pi'(1,0) = 2, \\ \pi'(1,1) = 3, \ \pi'(0,2) = 4, \ \pi'(1,2) = 5, \\ \pi'(2,0) = 6, \ \pi'(2,1) = 7, \ \pi'(2,2) = 8, \ \text{etc.}$

Now please develop a mathematical formula for π' , (like the notation of original π), and prove the correctness of your design.