Lab06-Universal Program

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

* Please upload your assignment to FTP or submit a paper version on the next class
* If there is any problem, please contact: nongeek.zv@gmail.com
* Name:_____ StudentId: _____ Email: _____

- 1. (a) Show that there is a decidable predicate Q(x, y, z) such that
 - i. $y \in E_x$ if and only if $\exists z.Q(x, y, z)$
 - ii. if $y \in E_x$ and Q(x, y, z), then $\phi_x((z)_1) = y$.
 - (b) Deduce that there is a computable function g(x, y) such that
 - i. g(x, y) is defined if and only if $y \in E_x$.
 - ii. if $y \in E_x$, then $g(x, y) \in W_x$ and $\phi_x(g(x, y)) = y$; i.e. $g(x, y) \in \phi_x^{-1}(\{y\})$.
 - (c) Deduce that if f is a computable injective function (not necessarily total or surjective) then f^{-1} is computable. (cf. exercise 2-5.4(1)).
- 2. (cf. example 3-7.1(b)) Suppose that f and g are unary computable functions; assuming that T_1 has been formally proved to be decidable, prove formally that the function h(x) defined by $h(x) = \begin{cases} 1 & \text{if } x \in Dom(f) \text{ or } x \in Dom(g), \\ \uparrow & \text{otherwise,} \end{cases}$ is computable.
- 3. Show that there is a total computable function $k(e_1, e_2)$ such that $\phi_{k(e_1, e_2)}(x)$ is the characteristic function for predicate " $M_1(x)$ and $M_2(x)$ ", where M_1 and M_2 are both decidable predicate and $\phi_{e_1} = c_{M_1}$, $\phi_{e_2} = c_{M_2}$.
- 4. Show that there is a total computable function s(x, y) such that for all $x, y, E_{s(x,y)} = W_x \cup E_y$.
- 5. Suppose that f(x) is computable; show that there is a total computable function k(x) such that for all x, $W_{k(x)} = f^{-1}(W_x)$.