Prologue and Notation

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

February 23, 2016

Image: A matrix and a matrix

Outline

1 Set

- Basic Concepts
- Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- 3 Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Basic Concepts Set Operations

Outline

1 Set

Basic Concepts

Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- **3** Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Basic Concepts Set Operations

Definition

- A set is an unordered collection of elements. \rightarrow No duplications.
- Examples and notations:
 - $\{a, b, c\}$
 - $\{x \mid x \text{ is an even integer}\} \rightarrow \{0, 2, 4, 6, \cdots\}$
 - ϕ : empty set
 - $\mathbb{N} = \{0, 1, 2, ...\}$: natural numbers (nonnegative integers)
 - $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$: integers
 - ℝ: real numbers
 - E: even numbers
 - \mathbb{O} : odd numbers

• □ > • □ > • □ > •

Basic Concepts

Definition (2)

- Cardinality of a set: $|S| \rightarrow$ number of distinct elements
- Set Equality: $S = T \rightarrow x \in S$ iff $x \in T$
- Subset: A set S is a subset of T, $S \subseteq T$, if every element of S is an element of T
- Proper subset: a subset of T is a subset other than the empty set \emptyset or T itself (Use of word proper, proper subsequence or proper substring)
- Strict Subset: S is a strict subset, $S \subset T$, if not equal to T

Basic Concepts Set Operations

Outline

1 Set

Basic Concepts

Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- **3** Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Basic Concepts Set Operations

 $\cup, \cap, \rightarrow, \overline{S}$

• Union: $S \cup T \rightarrow$ the set of elements that are either in S or in T.

•
$$S \cup T = \{s \mid s \in S \text{ or } s \in T\}$$

- $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- $|S \cup T| \leq |S| + |T|$
- Intersection: $S \cap T$

•
$$S \cap T = \{s \mid s \in S \text{ and } s \in T\}$$

•
$$\{a, b, c\} \cap \{c, d, e\} = \{c\}$$

• Difference: $S - T \rightarrow \text{set of all elements in } S$ not in T

•
$$S - T = \{s \mid s \in S \text{ but not in } T\} = S \cap \overline{T}$$

•
$$\{1,2,3\} - \{1,4,5\} = \{2,3\}$$

• Complement:

- Need universal set U
- $\overline{S} = \{s \mid s \in U \text{ but not in } S\}$

Basic Concepts Set Operations

• Cartesian Product

- $S \times T = \{(s,t) \mid s \in S, t \in T\}$
- In a graph G = (V, E), the edge set E is the subset of Cartesian product of vertex set V. E ⊆ V × V.

• Power Set

 $\times, 2^{S}$

- 2^{*S*} set of all subsets of *S*
- Note: notation $|2^{S}| = 2^{|S|}$, meaning 2^{S} is a good representation for power set.
- $S = \{a, b, c\}$, then $2^S = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Indicator Vector: Use a zero/one vector to represent the elements in power set.

Basic Concepts Set Operations

Ordered Pair

- (x, y): ordered pair of elements x and y; $(x, y) \neq (y, x)$.
- (x_1, \cdots, x_n) : ordered *n*-tuple \rightarrow boldfaced **x**.
- $A_1 \times A_2 \times \cdots \times A_n = \{(x_1, \cdots, x_n) \mid x_1 \in A_1, \cdots, x_n \in A_n\}.$
- $A \times A \times \cdots \times A = A^n$.
- $A^1 = A$.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basic Concepts Functions of Natural Numbers

Outline

Set

Basic Concepts

Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- 3 Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Basic Concepts Functions of Natural Numbers

Definition

- f is a set of ordered pairs s.t. if $(x, y) \in f$ and $(x, z) \in f$, then y = z, and f(x) = y.
- Dom(f): Domain of f, $\{x : f(x) \text{ is defined}\}$.
- f(x) is undefined if $x \notin Dom(f)$.
- Ran(f): Range of f, $\{f(x) : x \in Dom(f)\}$.
- *f* is a function from *A* to *B*: $Dom(f) \subseteq A$ and $Ran(f) \subseteq B$.
- $f : A \to B$: f is a function from A to B with Dom(f) = A.

• □ ▶ • • □ ▶ • □ ▶

Basic Concepts Functions of Natural Numbers

Mapping

- Injective: if $x, y \in Dom(f), x \neq y$, then $f(x) \neq f(y)$.
- Inverse f^{-1} : the unique function g s.t. Dom(g) = Ran(f), and g(f(x)) = x.
- Surjective: if Ran(f) = B.
- Bijective: both injective and surjective.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basic Concepts Functions of Natural Numbers

Operation

- f|X: Restriction of f to X. Domain $X \cap Dom(f)$. Write f(X) for Ran(f|X).
- ② $f^{-1}(Y) = \{x : f(x) \in Y\}$: inverse image of *Y* under *f*.
- *f* ⊆ *g*: *g* extends *f*, *f* = *g*|*Dom*(*f*).
 Dom(*f*) ⊆ *Dom*(*g*) and $\forall x \in Dom(f), f(x) = g(x).$
- $f \circ g$: composition of f and g. Domain $\{x : x \in Dom(g) \text{ and } g(x) \in Dom(f)\}$, value f(g(x)).
- *f*_∅: function defined nowhere. *Dom*(*f*_∅) = *Ran*(*f*_∅) = ∅.
 *f*_∅ = *g* |∅ for any function *g*.

4 日 2 4 同 2 4 回 2 4 0

Basic Concepts Functions of Natural Numbers

\simeq : similar-or-equal-to

Suppose $\alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ are expressions involving $\mathbf{x} = (x_1, \dots, x_n)$, then $\alpha(\mathbf{x}) \simeq \beta(\mathbf{x})$ means $\forall \mathbf{x}, \alpha(\mathbf{x})$ and $\beta(\mathbf{x})$ are either bother defined, or both undefined, and if defined they are equal.

•
$$f(x) \simeq g(x)$$
 means $f = g$

• $f(x) \simeq y$ means f(x) is defined and f(x) = y.

< ロ > < 同 > < 回 >

Basic Concepts Functions of Natural Numbers

Outline

Set

Basic Concepts

Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- **3** Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Basic Concepts Functions of Natural Numbers

Partial and Total Function

- *n*-ary function: $f(\mathbf{x}), f(x_1, \cdots, x_n), f: \mathbb{N}^n \to \mathbb{N}$.
- Partial function: Dom(f) is not necessarily the whole \mathbb{N}^n . (In our class function means partial function)
- Total function: $Dom(f) = \mathbb{N}^n$.
- Zero function: 0 from \mathbb{N} to \mathbb{N} .
- Symbol function: **m** from \mathbb{N} to \mathbb{N} .

Basic Concepts Logical Notation

Outline

Set

Basic Concepts

Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- 3 Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Relation

If *A* is a set, a property $M(x_1, \dots, x_n)$ that holds for some *n*-tuple from A^n and does not hold for all other *n*-tuples from A^n is called an *n*-ary relation or predicate on *A*.

• Property x < y. 2 < 5, 6 < 4.

• f from \mathbb{N}^n to \mathbb{N} gives rise to predicate $M(\mathbf{x}, y)$ by: $M(x_1, \cdots, x_n, y)$ iff $f(x_1, \cdots, x_n) \simeq y$.

< ロ > < 同 > < 回 >

Basic Concepts

Equivalence Relation

- A binary relation R on A is called equivalence relation if
 - $\begin{array}{ll} \text{reflexivity} & \forall x \text{ in } A & R(x, x) \\ \text{symmetry} & R(x, y) \Rightarrow R(y, x) \\ \text{transitivity} & R(x, y), R(y, z) \Rightarrow R(x, z) \end{array} \right\} \text{ equivalence}$
- A binary relation R on A is called a partial order if

irreflexivity not R(x, x)transitivity $R(x, y), R(y, z) \Rightarrow R(x, z)$ partial order

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

reflexive symmetric transitive <</pre>

Basic Concepts Logical Notation

Example

	reflexive	symmetric	transitive
<	No	No	Yes
\leq			

1

(日) (四) (日) (日)

Basic Concepts Logical Notation

Example

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of			

1

(日) (四) (日) (日)

Basic Concepts Logical Notation

Example

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of	No	No	No
=			

1

(日) (四) (日) (日)

Basic Concepts Logical Notation

Example

	reflexive	symmetric	transitive
<	No	No	Yes
\leq	Yes	No	Yes
Parent of	No	No	No
=	Yes	Yes	Yes

æ

Basic Concepts Logical Notation

Outline

Set

Basic Concepts

Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- 3 Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Basic Concepts Logical Notation

Hand Writing

- Small letters for elements and functions.
 - *a*, *b*, *c* for elements,
 - f, g for functions,
 - *i*, *j*, *k* for integer indices,
 - *x*, *y*, *z* for variables,
- Capital letters for sets. A, B, S. $A = \{a_1, \dots, a_n\}$
- Bold small letters for vectors. **x**, **y**. $\mathbf{v} = \{v_1, \cdots, v_m\}$
- Bold capital letters for collections. A, B. $S = \{S_1, \dots, S_n\}$
- Blackboard bold capitals for domains (standard symbols). \mathbb{N}, \mathbb{R} .
- German script for collection of functions. $\mathscr{C}, \mathscr{S}, \mathscr{T}$.
- Greek letters for parameters or coefficients. α , β , γ .
- Double strike handwriting for bold letters.

• □ ▶ • • □ ▶ • □ ▶

Definition Categories Peano Axioms

Outline

Set

- Basic Concepts
- Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- **3** Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Definition Categories Peano Axioms

A proof of a statement is essentially a convincing argument that the statement is true. A typical step in a proof is to derive statements from

- assumptions or hypotheses.
- statements that have already been derived.
- other generally accepted facts, using general principles of logical reasoning.

Definition Categories Peano Axioms

Outline

Set

- Basic Concepts
- Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- **3** Relations and Predicates
 - Basic Concepts
 - Logical Notation

- Definition
- Categories
- Peano Axioms

Definition Categories Peano Axioms

Types of Proof

- Proof by Construction
- Proof by Contrapositive
 - Proof by Contradiction
 - Proof by Counterexample
- Proof by Cases
- Proof by Mathematical Induction
 - The Principle of Mathematical Induction
 - Minimal Counterexample Principle
 - The Strong Principle of Mathematical Induction

• • • • • • • • •

Definition Categories Peano Axioms

Proof by Construction ($\forall x, P(x)$ holds)

Example: For any integers *a* and *b*, if *a* and *b* are odd, then *ab* is odd.

イロト イポト イヨト イヨ

Definition Categories Peano Axioms

Proof by Construction ($\forall x, P(x)$ holds)

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition Categories Peano Axioms

Proof by Construction ($\forall x, P(x)$ holds)

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer *z* so that ab = 2z + 1. Let us therefore consider *ab*.

Definition Categories Peano Axioms

Proof by Construction ($\forall x, P(x)$ holds)

а

Example: For any integers *a* and *b*, if *a* and *b* are odd, then *ab* is odd.

Proof: Since *a* and *b* are odd, there exist integers *x* and *y* such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer *z* so that ab = 2z + 1. Let us therefore consider *ab*.

$$b = (2x + 1)(2y + 1)$$

= 4xy + 2x + 2y + 1
= 2(2xy + x + y) + 1

Categories

<u>Proof by Construction ($\forall x, P(x)$ holds)</u>

Example: For any integers a and b, if a and b are odd, then ab is odd.

Proof: Since a and b are odd, there exist integers x and y such that a = 2x + 1, b = 2y + 1. We wish to show that there is an integer z so that ab = 2z + 1. Let us therefore consider ab.

$$ab = (2x+1)(2y+1) = 4xy + 2x + 2y + 1 = 2(2xy + x + y) + 1$$

Thus if we let z = 2xy + x + y, then ab = 2z + 1, which implies that ab is odd.

• • • • • • • • •

Definition Categories Peano Axioms

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \le \sqrt{n}$ or $j \le \sqrt{n}$.
Definition Categories Peano Axioms

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \le \sqrt{n}$ or $j \le \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$.

• □ > • □ > • □ > •

Definition Categories Peano Axioms

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \le \sqrt{n}$ or $j \le \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i \times j \neq n$. If it is not true that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$.

イロト イポト イヨト イヨト

Categories

Proof by Contrapositive $(p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$

Example: $\forall i, j, n \in \mathbb{N}$, if $i \times j = n$, then either $i \le \sqrt{n}$ or $j \le \sqrt{n}$.

Proof: We change this statement by its logically equivalence: $\forall i, j, n \in \mathbb{N}$, if it is not the case that $i < \sqrt{n}$ or $j < \sqrt{n}$, then $i \times j \neq n$. If it is not true that $i \leq \sqrt{n}$ or $j \leq \sqrt{n}$, then $i > \sqrt{n}$ and $j > \sqrt{n}$. Since i > 0, $\sqrt{n} > 0$, we have

$$i > \sqrt{n} \Rightarrow i \times j > \sqrt{n} \times j \ge \sqrt{n} \times \sqrt{n} = n.$$

It follows that $i \times j \neq n$. The original statement is true.

Definition Categories Peano Axioms

Proof by Contradiction (*p* is true $\Leftrightarrow \neg p \rightarrow false$ is true)

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

< ロト < 同ト < ヨト < ヨ

Definition Categories Peano Axioms

Proof by Contradiction (*p* is true $\Leftrightarrow \neg p \rightarrow false$ is true)

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

(日)

Definition Categories Peano Axioms

Proof by Contradiction (*p* is true $\Leftrightarrow \neg p \rightarrow false$ is true)

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists *x* with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Definition Categories Peano Axioms

Proof by Contradiction (*p* is true $\Leftrightarrow \neg p \rightarrow false$ is true)

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists *x* with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Proof by Contradiction (*p* is true $\Leftrightarrow \neg p \rightarrow false$ is true)

Example: For any sets *A*, *B*, and *C*, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C = \emptyset$.

Proof: Assume $A \cap B = \emptyset$, $C \subseteq B$, and $A \cap C \neq \emptyset$.

Then there exists *x* with $x \in A \cap C$, so that $x \in A$ and $x \in C$.

Since $C \subseteq B$ and $x \in C$, it follows that $x \in B$.

Therefore $x \in A \cap B$, which contradicts the assumption that $A \cap B = \emptyset$.

Definition Categories Peano Axioms

Proof by Contradiction (2)

Example: $\sqrt{2}$ is irrational. (A real number *x* is *rational* if there are two integers *m* and *n* so that x = m/n.)

Image: A matrix and a matrix

Definition Categories Peano Axioms

Proof by Contradiction (2)

Example: $\sqrt{2}$ is irrational. (A real number *x* is *rational* if there are two integers *m* and *n* so that x = m/n.)

Proof: Suppose on the contrary $\sqrt{2}$ is rational.

• • • • • • • • •

Definition Categories Peano Axioms

Proof by Contradiction (2)

Example: $\sqrt{2}$ is irrational. (A real number *x* is *rational* if there are two integers *m* and *n* so that x = m/n.)

Proof: Suppose on the contrary $\sqrt{2}$ is rational.

Then there are integers m' and n' with $\sqrt{2} = \frac{m'}{n'}$.

By dividing both m' and n' by all the factors that are common to both, we obtain $\sqrt{2} = \frac{m}{n}$, for some integers *m* and *n* having no common factors.

Since $\frac{m}{n} = \sqrt{2}$, we can have $m^2 = 2n^2$, therefore m^2 is even, and *m* is also even.

イロン イロン イヨン イヨン

Categories

Proof by Contradiction (Cont.)

Let m = 2k. Therefore, $(2k)^2 = 2n^2$.

Simplifying this we obtain $2k^2 = n^2$, which means *n* is also a even number.

We have shown that *m* and *n* are both even numbers and divisible by 2. This contradicts the previous statement *m* and *n* have no common factors. Therefore, $\sqrt{2}$ is irrational.

Definition Categories Peano Axioms

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Definition Categories Peano Axioms

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: *n* is even and *n* is odd.

Definition Categories Peano Axioms

Proof by Cases (Divide domain into distinct subsets)

Example: Prove that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Proof: Let $n \in \mathbb{N}$. We can consider two cases: *n* is even and *n* is odd. Case 1. *n* is even. Let n = 2k, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k)^{2} + 2k + 14$$

= $12k^{2} + 2k + 14$
= $2(6k^{2} + k + 7)$

Since $6k^2 + k + 7$ is an integer, $3n^2 + n + 14$ is even if *n* is even.

Relations and Predicates Proof Categories

Proof by Cases (Cont.)

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$

= 3(4k² + 4k + 1) + (2k + 1) + 14
= 12k² + 12k + 3 + 2k + 1 + 14
= 12k² + 14k + 18 = 2(6k² + 7k + 9)

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd.

Image: A matrix of the second seco

Definition Categories Peano Axioms

Proof by Cases (Cont.)

Case 2. *n* is odd. Let n = 2k + 1, where $k \in \mathbb{N}$. Then

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$

= 3(4k² + 4k + 1) + (2k + 1) + 14
= 12k² + 12k + 3 + 2k + 1 + 14
= 12k² + 14k + 18 = 2(6k² + 7k + 9)

Since $6k^2 + 7k + 9$ is an integer, $3n^2 + n + 14$ is even if *n* is odd. Since in both cases $3n^2 + n + 14$ is even, it follows that if $n \in \mathbb{N}$, then $3n^2 + n + 14$ is even.

Definition Categories Peano Axioms

The Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer *n*. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any $k \ge n_0$, if P(k) is true, then P(k+1) is true.

Categories

An Example for Mathematical Induction

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every n > 0.

イロト イポト イヨト イ

Definition Categories Peano Axioms

An Example for Mathematical Induction

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

• □ ▶ • • □ ▶ • □ ▶

Definition Categories Peano Axioms

An Example for Mathematical Induction

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0 + 1)/2, and it is obviously true.

(日)

Definition Categories Peano Axioms

An Example for Mathematical Induction

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \ge 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition Categories Peano Axioms

An Example for Mathematical Induction

Example: Let P(n) be the statement $\sum_{i=0}^{n} i = n(n+1)/2$. Prove that P(n) is true for every $n \ge 0$.

Proof: We prove P(n) is true for $n \ge 0$ by induction.

Basis step. P(0) is 0 = 0(0+1)/2, and it is obviously true.

Induction Hypothesis. Assume P(k) is true for some $k \ge 0$. Then $0 + 1 + 2 + \cdots + k = k(k+1)/2$.

Proof of Induction Step. Now let us prove that P(k + 1) is true.

$$0 + 1 + 2 + \dots + k + (k + 1) = k(k + 1)/2 + (k + 1)$$

= $(k + 1)(k/2 + 1)$
= $(k + 1)(k + 2)/2$

(日)

Definition Categories Peano Axioms

An Example for Mathematical Induction (2)

Example: For any $x \in \{0, 1\}^*$, if *x* begins with 0 and ends with 1 (i.e., x = 0y1 for some string *y*), then *x* must contain the substring 01. (Note that * is the *Kleene star*. $\{0, 1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)

Definition Categories Peano Axioms

An Example for Mathematical Induction (2)

Example: For any $x \in \{0, 1\}^*$, if *x* begins with 0 and ends with 1 (i.e., x = 0y1 for some string *y*), then *x* must contain the substring 01. (Note that * is the *Kleene star*. $\{0, 1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)

Proof: Consider the statement P(n): If |x| = n and x = 0y1 for some string $y \in \{0, 1\}^*$, then *x* contains the substring 01. If we can prove that P(n) is true for every $n \ge 2$, it will follow that the original statement is true. We prove it by induction.

Categories

An Example for Mathematical Induction (2)

Example: For any $x \in \{0, 1\}^*$, if x begins with 0 and ends with 1 (i.e., x = 0y1 for some string y), then x must contain the substring 01. (Note that * is the *Kleene star*. $\{0, 1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)

Proof: Consider the statement P(n): If |x| = n and x = 0y1 for some string $y \in \{0, 1\}^*$, then x contains the substring 01. If we can prove that P(n) is true for every $n \ge 2$, it will follow that the original statement is true. We prove it by induction.

Basis step. P(2) is true.

Induction hypothesis. P(k) for $k \ge 2$.

(日)

Definition Categories Peano Axioms

An Example for Mathematical Induction (2)

Proof of induction step. Let's prove P(k + 1).

Since |x| = k + 1 and x = 0y1, |y1| = k.

If y begins with 1 then x begins with the substring 01. If y begins with 0, then y1 begins with 0 and ends with 1;

by the induction hypothesis, y contains the substring 01, therefore x does else.

П

4 日 2 4 同 2 4 回 2 4 0

Definition Categories Peano Axioms

The Minimal Counterexample Principle

Example: Prove $\forall n \in \mathbb{N}$, $5^n - 2^n$ is divisible by 3.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Categories

The Minimal Counterexample Principle

Example: Prove $\forall n \in \mathbb{N}, 5^n - 2^n$ is divisible by 3.

Proof: If $P(n) = 5^n - 2^n$ is not true for every $n \ge 0$, then there are values of *n* for which P(n) is false, and there must be a smallest such value, say n = k.

Since $P(0) = 5^0 - 2^0 = 0$, which is divisible by 3, we have k > 1, and k - 1 > 0.

Since *k* is the smallest value for which P(k) false, P(k-1) is true. Thus $5^{k-1} - 2^{k-1}$ is a multiple of 3, say 3*j*.

Categories

The Minimal Counterexample Principle (Cont.)

However, we have

$$5^{k} - 2^{k} = 5 \times 5^{k-1} - 2 \times 2^{k-1}$$

= 5 × (5^{k-1} - 2^{k-1}) + 3 × 2^{k-1}
= 5 × 3j + 3 × 2^{k-1}

This expression is divisible by 3. We have derived a contradiction, which allows us to conclude that our original assumption is false.

Definition Categories Peano Axioms

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Definition Categories Peano Axioms

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Definition Categories Peano Axioms

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Definition Categories Peano Axioms

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Definition Categories Peano Axioms

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k + 1) is not a prime, then we should prove that $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

Definition Categories Peano Axioms

An Example for the Weakness of Mathematical Induction

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Proof: Define P(n) be the statement that "*n* is either prime or the product of two or more primes". We will try to prove that P(n) is true for every $n \ge 2$.

Basis step. P(2) is true, since 2 is a prime. \checkmark

Induction hypothesis. P(k) for $k \ge 2$. (as usual process)

Proof of induction step. Let's prove P(k + 1).

If P(k+1) is prime, \checkmark

If P(k + 1) is not a prime, then we should prove that $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

However, from P(k) we know nothing about r and $s \longrightarrow ???$

□▶★□▶★□▶
Definition Categories Peano Axioms

The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer *n*. Then to prove that P(n) is true for every $n \ge n_0$, it is sufficient to show these two things:

- $P(n_0)$ is true.
- For any k ≥ n₀, if P(n) is true for every n satisfying n₀ ≤ n ≤ k, then P(k + 1) is true.

Also called the principle of complete induction, or course-of-values induction.

Definition Categories Peano Axioms

To Complete the Example

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

• □ > • □ > • □ > •

-

Definition Categories Peano Axioms

To Complete the Example

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Image: A matrix of the second seco

Definition Categories Peano Axioms

To Complete the Example

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k + 1).

If P(k + 1) is prime, \checkmark If P(k + 1) is not a prime, by definition of a prime, $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

• □ > • □ > • □ > •

Definition Categories Peano Axioms

To Complete the Example

Example: Prove that $\forall n \in \mathbb{N}$ with $n \ge 2$, it has prime factorizations.

Continue the Proof:

Induction hypothesis. For $k \ge 2$ and $2 \le n \le k$, P(n) is true. (Strong Principle)

Proof of induction step. Let's prove P(k + 1).

If P(k + 1) is prime, \checkmark If P(k + 1) is not a prime, by definition of a prime, $k + 1 = r \times s$, where *r* and *s* are positive integers greater than 1 and less than k + 1.

It follows that $2 \le r \le k$ and $2 \le s \le k$. Thus by induction hypothesis, both *r* and *s* are either prime or the product of two or more primes. Then their product k + 1 is the product of two or more primes. P(k + 1) is true.

Definition Categories Peano Axioms

Outline

Set

- Basic Concepts
- Set Operations

2 Function

- Basic Concepts
- Functions of Natural Numbers
- **3** Relations and Predicates
 - Basic Concepts
 - Logical Notation

4 Proof

- Definition
- Categories
- Peano Axioms

Definition Categories Peano Axioms

Giuseppe Peano (1858-1932)

- In 1889, Peano published the first set of axioms.
- Build a rigorous system of arithmetic, number theory, and algebra.
- A simple but solid foundation to construct the edifice of modern mathematics.
- The fifth axiom deserves special comment. It is the first formal statement of what we now call the "induction axiom" or "the principle of mathematical induction".

Definition Categories Peano Axioms

Peano Five Axioms

- Axiom 1. 0 is a number.
- Axiom 2. The successor of any number is a number.
- Axiom 3. If *a* and *b* are numbers and if their successors are equal, then *a* and *b* are equal.
- Axiom 4. 0 is not the successor of any number.
- Axiom 5. If *S* is a set of numbers containing 0 and if the successor of any number in *S* is also in *S*, then *S* contains all the numbers.

Definition Categories Peano Axioms

Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement about $n \in \mathbb{N}$. Suppose

- S(1) is true, and
- **2** S(t+1) is true whenever S(t) is true for $t \ge 1$.

Then S(n) is true for all $n \in \mathbb{N}$.

Let $A = \{n \in \mathbb{N} \mid S(n) \text{ is false}\}$. It suffices to show that $A = \emptyset$.

If $A \neq \emptyset$, A would contain a smallest positive integer, say $n_0 \in \mathbb{N}$, s.t. $n_0 \leq n, n \in A$.

Thus, the statement $S(n_0)$ is false and because of hypothesis (1), $n_0 > 1.$

Since n_0 is the smallest element of A, the statement $S(n_0 - 1)$ is true. Thus, by hypothesis (2), $S(n_0 - 1)$ is true which implies that $S(n_0)$ is true, a contradiction which implies that $A = \emptyset$.