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General Remark

There are universal programs that embody all the programs.

A program is universal if upon receiving the Gödel number of a
program it simulates the program indexed by the number.
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Intuition

Consider the functionψ(x, y) defined as follows

ψ(x, y) ≃ φx(y).

In an obvious senseψ(x,_) is a universal function for the unary
funcitons

φ0, φ1, φ2, φ3, . . . .
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Universal Function

Theuniversal functionfor n-ary computable functions is the
(n + 1)-ary functionψ(n)

U defined by

ψ
(n)
U (e, x1, . . . , xn) ≃ φ

(n)
e (x1, . . . , xn).

We writeψU for ψ(1)
U .
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Universal Function

Theuniversal functionfor n-ary computable functions is the
(n + 1)-ary functionψ(n)

U defined by

ψ
(n)
U (e, x1, . . . , xn) ≃ φ

(n)
e (x1, . . . , xn).

We writeψU for ψ(1)
U .

Question: Isψ(n)
U computable?
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The Theorem

Theorem. For eachn, the universal functionψ(n)
U is computable.
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The Theorem

Theorem. For eachn, the universal functionψ(n)
U is computable.

Proof. Given a numbere, decode the number to get the programPe;
and then simulate the programPe. If the simulation ever terminates,
then return the number inR1. By Church-Turing Thesis,ψ(n)

U is
computable.
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Proof in Detail

The states of the computation of the programPe(x) can be described
by aconfigurationand aninstruction number.
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Proof in Detail

The states of the computation of the programPe(x) can be described
by aconfigurationand aninstruction number.

A statecan be coded up by the number

σ = π(c, j),

wherec is the configuration that codes up the current values in the
registers

c = 2r13r2 . . . =
∏

i≥1

pri
i ,

andj is the next instruction number.
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Step 1: Three New(n + 2)-ary functions

Define two new functionscn andjn:

cn(e, x, t) = the configuration aftert steps ofPe(x),

jn(e, x, t) = the number of the next instruction aftert steps

of Pe(x) (it is 0 if Pe(x) stops int or less steps),

If the computation ofPe(x) stops, it does so inµt(jn(e, x, t) = 0)
steps, and the final configuration iscn(e, x, µt(jn(e, x, t) = 0)).

ψ
(n)
U (e, x) ≃ (cn(e, x, µt(jn(e, x, t) = 0)))1

Let σn(e, x, t) = π(cn(e, x, t), jn(e, x, t)). If σn is primitive
recursive, thencn, jn are primitive recursive!
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Step 2: Computability ofσn(e, x, t)

The functionσn can be defined by recursion as follows:

σn(e, x,0) = π(2x13x2 . . . pxn
n ,1),

σn(e, x, t + 1) = π(config(e, σn(e, x, t)),next(e, σn(e, x, t))),

config(e, π(c, j)) =











New configuration after if 1≤ j ≤ s
jth instruction ofPe is obeyed,

c, otherwise.

next(e, π(c, j)) =











No. of next instruction after if 1≤ j ≤ s
jth instruction ofPe is obeyed onc, and it exists

0, otherwise.

If config andnext are primitive recursive, then so isσn!
CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 10/34



Universal Functions and Universal Programs
Application of the Universal Program

Effective Operations on Computable Functions

Step 3: Computability ofconfig andnext

ln(e) = the number of instructions inPe;

gn(e, j) =

{

the code ofIj in Pe, if 1 ≤ j ≤ ln(e),
0, otherwise.

ch(c, z) = the resulting configuration when the

configurationc is operated on by the

instruction with code numberz.

v(c, j, z) =



















the numberj′ of the next instruction
when the configurationc is operated ifj > 0,
on by thejth instruction with codez,

0, if j = 0.
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Step 3: Computability ofconfig andnext (2)

We can define the functionconfig(_,_) by

config(e, σ) =

{

ch(π1(σ),gn(e, π2(σ))), if 1 ≤ π2(σ) ≤ ln(e),
π1(σ), otherwise.

and the functionnext(_,_) by

next(e, σ) =

{

v(π1(σ), π2(σ),gn(e, π2(σ))), if 1 ≤ π2(σ) ≤ ln(e),
0, otherwise.

If ln, gn, ch, andv are primitive recursive, then so areconfig and
next!
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Step 4: Computability ofln, gn, ch, andv

Any numberx ∈ N has a unique expression as

(a) x =
∞
∑

i=0
αi2i, with αi = 0 or 1, all i.

(b) x = 2b1 + 2b2 + . . .+ 2bl , with 0 ≤ b1 < b2 < ... < bl andl ≥ 1.
(c) x = 2a1 + 2a1+a2+1 + . . .+ 2a1+a2+...+ak+k−1.

Defineα, ℓ, b, anda as follows:

α(i, x) = αi as in the expression (a);

ℓ(x) =

{

ℓ as in (b), if x > 0,
0 otherwise;

b(x) =

{

bi as in (b), if x > 0 and 1≤ i ≤ l,
0 otherwise;

a(i, x) =

{

ai as in (c), if x > 0 and 1≤ i ≤ l,
0 otherwise;

Each of the functionsα, ℓ, b, a is computable.
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ln andgn are primitive recursive

Both functions are primitive recursive since

ln(e) = ℓ(e + 1),

gn(e, j) = a(j, e + 1).
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Computability ofch, andv

Define primitive recursive functionsu, u1, u2, v1, v2, andv3:

u(z) = m wheneverz = β(Z(m)) or z = β(S(m)):

u(z) = qt(4, z) + 1.

u1(z) = m1 andu2(z) = m2 wheneverz = β(T(m1,m2)):

u1(z) = π1(qt(4, z)) + 1,

u2(z) = π2(qt(4, z)) + 1.

v1(z) = m1 andv2(z) = m2 andv3(z) = q if z = β(J(m1,m2, q)):

v1(z) = π1(π1(qt(4, z))) + 1,

v2(z) = π2(π1(qt(4, z))) + 1,

v3(z) = π2(qt(4, z)) + 1.
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Computability ofch, andv

Define primitive recursive functionszero, succ, andrans:

The change in the configurationc effected by instructionZ(m):

zero(c,m) = qt(p(c)m
m , c).

The change in the configurationc effected by instructionS(m):

succ(c,m) = pmc.

The change in the configurationc effected by instructionT(m, n):

tran(c,m, n) = qt(p(c)n
n , p(c)m

n c).
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ch, andv are primitive recursive

ch(c, z) =















zero(c,u(z)), if rm(4, z) = 0,
succ(c,u(z)), if rm(4, z) = 1,
tran(c,u1(z),u2(z)), if rm(4, z) = 2,
c, if rm(4, z) = 3.

v(c, j, z) =







j + 1, if rm(4, z) 6= 3,
j + 1, if rm(4, z) = 3 ∧ (c)v1(z) 6= (c)v2(z),

v3(z), if rm(4, z) = 3 ∧ (c)v1(z) = (c)v2(z).
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Conclusion

We conclude that the functionscn, jn, σn are primitive recursive.
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Further Constructions

For eachn ≥ 1, the following predicates are primitive recursive:

1. Sn(e, x, y, t)
def
= ‘Pe(x) ↓ y in t or fewer steps’.

2. Hn(e, x, t)
def
= ‘Pe(x) ↓ in t or fewer steps’.

CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 19/34



Universal Functions and Universal Programs
Application of the Universal Program

Effective Operations on Computable Functions

Further Constructions

For eachn ≥ 1, the following predicates are primitive recursive:

1. Sn(e, x, y, t)
def
= ‘Pe(x) ↓ y in t or fewer steps’.

2. Hn(e, x, t)
def
= ‘Pe(x) ↓ in t or fewer steps’.

They are defined by

Sn(e, x, y, t)
def
= jn(e, x, t) = 0∧ (cn(e, x, t))1 = y,

Hn(e, x, t)
def
= jn(e, x, t) = 0.
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Kleene’s Normal Form Theorem

Theorem. (Kleene)
There is a primitive recursive functionU(x) and for eachn ≥ 1 a
primitive recursive predicateTn(e, x, z) such that

1. φ(n)e (x) is defined if and only if∃z.Tn(e, x, z).

2. φ(n)e (x) ≃ U(µzTn(e, x, z)).
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Kleene’s Normal Form Theorem

Theorem. (Kleene)
There is a primitive recursive functionU(x) and for eachn ≥ 1 a
primitive recursive predicateTn(e, x, z) such that

1. φ(n)e (x) is defined if and only if∃z.Tn(e, x, z).

2. φ(n)e (x) ≃ U(µzTn(e, x, z)).

Proof. Let Tn(e, x, z) = Sn(e, x, (z)1, (z)2). Then (1) is clear.
For (2) letU(x) = (x)1. Then

φ
(n)
e (x) ≃ U(µz.Tn(e, x, z)).
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Every computable function can be obtained from a primitive recursive
function by using at most one application of theµ-operator in a
standard manner.
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Application: Undecidability

Theorem. The problem ‘φx is total’ is undecidable.
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Application: Undecidability

Theorem. The problem ‘φx is total’ is undecidable.

Proof. If ‘ φx is total’ were decidable, then by Church’s Thesis

f (x) =

{

ψU(x, x) + 1, if φx is total,
0, if φx is not total.

would be a total computable function that differs from everytotal
computable function.
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Application: Nonprimitive Total Computable Function

Theorem. There is a total computable function that is not primitive
recursive.
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Application: Nonprimitive Total Computable Function

Theorem. There is a total computable function that is not primitive
recursive.

Proof.
1. The primitive recursive functions are effectively denumerable.

2. Construct a coding of a primitive recursive functionf (x) one can
effectively calculatep(e) such thatφp(e)(x) ≃ f (x).

3. But theng(x) = φp(x)(x) + 1 = ψU(p(x), x) + 1 is a total
computable function that is not primitive recursive.
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Proof (1)

Sub(f ; g1, g2, · · · , gm) denotes the function obtained by substituting
g1, · · · , gm into f . (f is m-ary; gi aren-ary for somen).

Rec(f , g) denotes the function obtained fromf andg by recursion (f is
n-ary, g is (n + 2)-ary for somen).

S denotes the functionx + 1

Un
i denotes the projection functionUn

i (x1, · · · , xn) = xi.

For each primitive recursive function, we have aPlanto indicate the
basic functions used and the exact sequence of operations performed.

CSC363-Computability Theory@SJTU Xiaofeng Gao Universal Program 25/34



Universal Functions and Universal Programs
Application of the Universal Program

Effective Operations on Computable Functions

Example:f (x) = x2

g1 = Sub(S;U3
3): g1(x, y, z) = U3

3(x, y, z) + 1 = z + 1

g2 = Rec(U1
1; g1):

{

g2(x,0) = U1
1(x) = x,

g2(x, y + 1) = g1(x, y, g2(x, y)) = g2(x, y) + 1

Sog2(x, y) = x + y

g3 = Sub(g2;U3
1,U

3
3): g3(x, y, z) = g2(x, z) = x + z

g4 = Rec(0; g3):

{

g4(x,0) = 0,
g4(x, y + 1) = g3(x, y, g4(x, y)) = x + g4(x, y)

Sog4(x, y) = xy

f = Sub(g4;U1
1,U

1
1): f (x) = g4(x, x) = x2
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Effective Numbering

Now restrict our attention to plans for unary primitive recursive
functions. We can number these plans in an effective way. Define:

θn = the unary primitive recursive function

defined by plan numbern

Since every primitive recursive function is computable, there is a total
functionp such that for eachn, p(n) is the number of a program that
computesθn.

θn = φp(n).
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Computability ofp(n)

We know how to obtain a program for the functionSub(f ; g1, · · · , gm)
given programs forf , g1, · · · , gm;

We know how to obtain a program for the functionRec(f , g) given
programs forf , g;

We have explicit programs for the basic functions.

Hence, given a plan for a primitive recursive functionf involving
intermediate functionsg1, · · · , gk, we can effectively find programs
for g1, · · · , gk and finallyf .

Thus, by Church’s Thesis, there is an effectively computable function
p such thatθn = φp(n).
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Construction of Total Non-Primitive Recursive Function

For every primitive recursive functionθn, we use a diagonal
construction as follows:

g(x) = θx(x) + 1

= φp(x)(x) + 1

= ψU(p(x), x) + 1

g is a total function that is not primitive recursive, butg is
computable, by the computability ofψU andp.
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Application: Effectiveness of Function Operation

Fact. There is a total computable functions(x, y) such that
φs(x,y) = φxφy for all x, y.
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Application: Effectiveness of Function Operation

Fact. There is a total computable functions(x, y) such that
φs(x,y) = φxφy for all x, y.

Proof. Let f (x, y, z) = φx(z)φy(z) = ψU(x, z)ψU(y, z).
By S-m-n Theorem there is a total functions(x, y) such that
φs(x,y)(z) ≃ f (x, y, z).
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Application: Effectiveness of Set Operation

Fact. There is a total computable functions(x, y) such that
Ws(x,y) = Wx ∪ Wy.
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Application: Effectiveness of Set Operation

Fact. There is a total computable functions(x, y) such that
Ws(x,y) = Wx ∪ Wy.

Proof. Let

f (x, y, z) =

{

1, if z ∈ Wx or z ∈ Wy,

undefined, otherwise.

By S-m-n Theorem there is a total functions(x, y) such that
φs(x,y)(z) ≃ f (x, y, z). ClearlyWs(x,y) = Wx ∪ Wy.
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Application: Effectiveness of Inversion

Let g(x, y) be a computable function such that
(a) g(x, y) is defined iffy ∈ Ex;
(b) If y ∈ Ex, theng(x, y) ∈ Wx andφx(g(x, y)) = y. (i.e.,
g(x, y) ∈ φ−1

x ({y}))
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Application: Effectiveness of Inversion

Let g(x, y) be a computable function such that
(a) g(x, y) is defined iffy ∈ Ex;
(b) If y ∈ Ex, theng(x, y) ∈ Wx andφx(g(x, y)) = y. (i.e.,
g(x, y) ∈ φ−1

x ({y}))

By S-m-n Theorem, there is a total computable functionk such that
g(x, y) ≃ φk(x)(y). Then from (a) and (b) we have:
(a’) Wk(x) = Ex;
(b’) Ek(x) ⊆ Wx; If y ∈ Ex, thenφx(φk(x)(y)) = y.

Hence ifφx is injective, thenφk(x) = φ−1
x andEk(x) = Wx.
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Application: Effectiveness of Recursion

Considerf defined by the following recursion

f (e1, e2, x,0) ≃ φ
(n)
e1 (x) ≃ ψ

(n)
U (e1, x),

and

f (e1, e2, x, y + 1) ≃ φ
(n+2)
e2 (x, y, f (e1, e2, x, y))

≃ ψ
(n+2)
U (e2, x, y, f (e1, e2, x, y)).

By S-m-n Theorem, there is a total computable functionr(e1, e2) such
that

φ
(n+1)
r(e1,e2)

(x, y) ≃ f (e1, e2, x, y).
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