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Decision Problem, Predicate, Number Set

The following emphasizes the importance of the subsets ofN:

Decision Problems⇔ Predicates on Number

⇔ Sets of Numbers

A central theme of recursion theory is to look for sensible
classification of number sets.

Classification is often done with the help of reduction.
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Recursive Set

Let A be a subset ofN. The characteristic function ofA is given by

cA(x) =

{

1, if x ∈ A,
0, if x /∈ A.

A is recursiveif cA(x) is computable.
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Solvable Problem

A recursive set is (the domain of) asolvableproblem.

It is important to know if a problem is solvable.
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Examples

The following sets are recursive.

(a)N.

(b) E (the even numbers).

(c) Any finite set.

(d) The set of prime numbers.
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Unsolvable Problem

Here are some importantunsolvableproblems:

K = {x | x ∈ Wx},

Fin = {x | Wx is finite},

Inf = {x | Wx is infinite},

Cof = {x | Wx is cofinite},

Rec = {x | Wx is recursive},

Tot = {x | φx is total},

Ext = {x | φx is extensible to a total recursive function}.
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Cofinite

Cof = {x | Wx is cofinite} means the set whose complement is finite.
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Cofinite

Cof = {x | Wx is cofinite} means the set whose complement is finite.

Example 1: {x | x ≥ 5} is cofinite.
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Cofinite

Cof = {x | Wx is cofinite} means the set whose complement is finite.

Example 1: {x | x ≥ 5} is cofinite.

Not every infinite set is cofinite.
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Cofinite

Cof = {x | Wx is cofinite} means the set whose complement is finite.

Example 1: {x | x ≥ 5} is cofinite.

Not every infinite set is cofinite.

Example 2: E, O are not cofinite.
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Extensible Functions

Ext = {x | φx is extensible to a total recursive function}.
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Extensible Functions

Ext = {x | φx is extensible to a total recursive function}.

Example: f (x) = φx(x) + 1 is not extensible.
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Extensible Functions

Ext = {x | φx is extensible to a total recursive function}.

Example: f (x) = φx(x) + 1 is not extensible.

Proof: Assumef (x) is extensible, then define total recursive function

g(x) =

{

ψU(x, x) + 1 if ψU(x, x) is defined.
z otherwise

(1)

Let φm be the Gödel coding ofg(x), thenφm is a total recursive
function.

Whenx = m, φm(m) = ψU(m,m) by universal problem.

However,φm(m) = g(m) = ψU(m,m) + 1 by equation (1). A
contradiction. 2
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Extensible Functions

Ext = {x | φx is extensible to a total recursive function}.

Example: f (x) = φx(x) + 1 is not extensible.

Proof: Assumef (x) is extensible, then define total recursive function

g(x) =

{

ψU(x, x) + 1 if ψU(x, x) is defined.
z otherwise

(1)

Let φm be the Gödel coding ofg(x), thenφm is a total recursive
function.

Whenx = m, φm(m) = ψU(m,m) by universal problem.

However,φm(m) = g(m) = ψU(m,m) + 1 by equation (1). A
contradiction. 2

Comment: Not every partial recursive function can be obtained by
restricting a total recursive function.
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Decidable Predicate

A predicateM(x) is decidableif its characteristic functioncM(x)
given by

cM(x) =
{

1, if M(x) holds,
0, if M(x) does not hold.

is computable.

The predicateM(x) is undecidableif it is not decidable.

Recursive Set⇔ Solvable Problem⇔ Decidable Predicate.
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Algebra of Decidability

Theorem. If A, B are recursive sets, then so are the setsA, A ∩ B,
A ∪ B, andA\B.
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Algebra of Decidability

Theorem. If A, B are recursive sets, then so are the setsA, A ∩ B,
A ∪ B, andA\B.

Proof.
cA = 1−̇cA.

cA∩B = cA · cB.

cA∪B = max(cA, cB).

cA\B = cA · cB.
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Reduction between Problems

A reduction is a way of defining a solution of a problem with thehelp
of the solutions of another problem.

In recursion theory we are only interested in reductions that are
computable.

There are several ways of reducing a problem to another.

The differences between different reductions fromA to B consists in
the manner and extent to which information aboutB is allowed to
settle questions aboutA.
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Many-One Reduction

The setA is many-one reducible, or m-reducible, to the setB if there
is atotal computable functionf such that

x ∈ A iff f (x) ∈ B

for all x.

We shall writeA ≤m B or more explicitlyf : A ≤m B.

If f is injective, then it is aone-one reducibility, denoted by≤1.
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Many-One Reduction

1. ≤m is reflexive and transitive.

2. A ≤m B iff A ≤m B.

3. A ≤m N iff A = N; A ≤m ∅ iff A = ∅.

4. N ≤m A iff A 6= ∅; ∅ ≤m A iff A 6= N.
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Non-Recursive Set

Proposition. K = {x | x ∈ Wx} is not recursive.
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Non-Recursive Set

Proposition. K = {x | x ∈ Wx} is not recursive.

Proof. If K were recursive, then the characteristic function

c(x) =

{

1, if x ∈ Wx,
0, if x /∈ Wx,

would be computable.
Then the functiong(x) defined by

g(x) =

{

0, if c(x) = 0,
undefined, if c(x) = 1.

would also be computable.
Let m be an index forg. Then

m ∈ Wm iff c(m) = 0 iff m /∈ Wm.
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Non-Recursive Set

Proposition. NeitherTot = {x | φx is total} nor{x | φx ≃ 0} is
recursive.
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Non-Recursive Set

Proposition. NeitherTot = {x | φx is total} nor{x | φx ≃ 0} is
recursive.

Proof. Consider the functionf defined by

f (x, y) =

{

0, if x ∈ Wx,
undefined, if x /∈ Wx.

By S-m-n Theorem there is a primitive recursive functionk(x) such
thatφk(x)(y) ≃ f (x, y).

It is clear thatk : K ≤m Tot andk : K ≤m {x | φx ≃ 0}.
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Rice Theorem

Henry Rice.

Classes of Recursively Enumerable Sets and their Decision Problems.
Transactions of the American mathematical Society,77:358-366,
1953.
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Rice Theorem

Rice Theorem. (1953)

If ∅ ( B ( C1, then{x | φx ∈ B} is not recursive.
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Rice Theorem

Rice Theorem. (1953)

If ∅ ( B ( C1, then{x | φx ∈ B} is not recursive.

Proof. Supposef∅ 6∈ B andg ∈ B. Let the functionf be defined by

f (x, y) =

{

g(y), if x ∈ Wx,
undefined, if x /∈ Wx.

By S-m-n Theorem there is some primitive recursive functionk(x)
such thatφk(x)(y) ≃ f (x, y).

It is clear thatk is a many-one reduction fromK to {x | φx ∈ B}.
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Applying Rice Theorem

According to Rice Theorem the following sets are non-recursive:

Fin = {x | Wx is finite},

Inf = {x | Wx is infinite},

Cof = {x | Wx is cofinite},

Rec = {x | Wx is recursive},

Tot = {x | φx is total}
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Remark on Rice Theorem

Rice Theorem deals with programme independent properties.

It talks about classes of computable functions rather than classes of
programmes.

All non-trivial semantic problems are algorithmically undecidable.

It is of no help to a proof that the set of all polynomial time Turing
Machines is undecidable.
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Recursively Enumerable Set

Thepartial characteristic functionof a setA is given by

χA(x) =

{

1, if x ∈ A,
undefined, if x /∈ A.

A is recursively enumerableif χA(x) is computable.

Notation 1: A is also calledsemi-recursiveset,semi-computableset.

Notation 2: subsets ofNn can be defined asr.e. by coding to r.e.
subsets ofN.
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Partially Decidable Predicate

A predicateM(x) of natural number ispartially decidableif its partial
characteristic function

χM(x) =
{

1, if M(x) holds,
undefined, if M(x) does not hold,

is computable.
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Partially Decidable Problem

A problemf : N → {0,1} is partially decidableif dom(f ) is r.e.
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Partially Decidable Problem⇔ Partially Decidable Predicate

⇔ Recursively Enumerable Set
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Quick Review

Theorem. A predicateM(x) is partially decidable iff there is a
computable functiong(x) such thatM(x) ⇔ x ∈ Dom(g).

Theorem. A predicateM(x) is partially decidable iff there is a
decidable predicateR(x, y) such thatM(x) ⇔ ∃y.R(x, y).

Theorem. If M(x, y) is partially decidable, so is∃y.M(x, y).

Corollary . If M(x, y) is partially decidable, so is∃y.M(x, y).

Theorem. M(x) is decidable iff bothM(x) and¬M(x) are partially
decidable.

Theorem. Let f (x) be a partial function. Thenf is computable iff the
predicate ‘f (x) ≃ y’ is partially decidable.
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Some Important Decidable Predicates

For eachn ≥ 1, the following predicates are primitive recursive:

1. Sn(e, x, y, t)
def
= ‘Pe(x) ↓ y in t or fewer steps’.

2. Hn(e, x, t)
def
= ‘Pe(x) ↓ in t or fewer steps’.
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Some Important Decidable Predicates

For eachn ≥ 1, the following predicates are primitive recursive:

1. Sn(e, x, y, t)
def
= ‘Pe(x) ↓ y in t or fewer steps’.

2. Hn(e, x, t)
def
= ‘Pe(x) ↓ in t or fewer steps’.

They are defined by

Sn(e, x, y, t)
def
= jn(e, x, t) = 0∧ (cn(e, x, t))1 = y,

Hn(e, x, t)
def
= jn(e, x, t) = 0.
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Example

1. The halting problem is partially decidable. Its partial characteristic
function is given by

χH(x, y) =

{

1, if Px(y) ↓,
undefined, otherwise.
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Example

1. The halting problem is partially decidable. Its partial characteristic
function is given by

χH(x, y) =

{

1, if Px(y) ↓,
undefined, otherwise.

2. K = {x | x ∈ Wx} is r.e., but not recursive.

Proof: χK(x) = 1(ψU(x, x)).
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Example

1. The halting problem is partially decidable. Its partial characteristic
function is given by

χH(x, y) =

{

1, if Px(y) ↓,
undefined, otherwise.

2. K = {x | x ∈ Wx} is r.e., but not recursive.

Proof: χK(x) = 1(ψU(x, x)).

3. K = {x | x 6∈ Wx} is not r.e., (also not recursive).

Proof: If yes, then definef (x) =

{

1 if x 6∈ Wx

↑ if x ∈ Wx

Thenx ∈ Dom(f ) ⇔ x 6∈ Wx. f is computable whileDom(f ) doesn’t
equal to any computable function. Contradiction!
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Example (Cont.)

4. Any recursive set is r.e.
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Example (Cont.)

4. Any recursive set is r.e.

5. {x | Wx 6= ∅} is r.e.

Proof: Wx 6= ∅ ⇔ ∃y∃t(Px(y) ↓ in t steps).
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Example (Cont.)

4. Any recursive set is r.e.

5. {x | Wx 6= ∅} is r.e.

Proof: Wx 6= ∅ ⇔ ∃y∃t(Px(y) ↓ in t steps).

6. If f is a computable function, thenRan(f ) is r.e.

Proof: Let φm be the Gödel coding off .

x ∈ Em ⇔ ∃y∃t(Pm(y) ↓ x in t steps).

x ∈ Em is partial decidable⇔ Ran(f ) is r.e.
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Index Theorem

Theorem. A set is r.e.iff it is the domain of a unary computable
function.
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Index Theorem

Theorem. A set is r.e.iff it is the domain of a unary computable
function.

Proof:

“⇒": A is r.e.⇒ χA is computable⇒ “x ∈ A ⇔ x ∈ χA".

ThusA is the domain of unary computable functionχA.

“⇐": If f is a unary computable function, letA = Dom(f ).

ThenχA = 1(f (x)), which is computable.
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Index Theorem

Theorem. A set is r.e.iff it is the domain of a unary computable
function.

Proof:

“⇒": A is r.e.⇒ χA is computable⇒ “x ∈ A ⇔ x ∈ χA".

ThusA is the domain of unary computable functionχA.

“⇐": If f is a unary computable function, letA = Dom(f ).

ThenχA = 1(f (x)), which is computable.

Notation (Index for Recursively Enumerable Set):W0,W1,W2, . . . is
a repetitive enumeration of all r.e. sets.e is an index ofA if A = We,
end every r.e. set has an infinite number of indexes.
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Normal Form Theorem

Theorem. The setA is r.e. iff there is a primitive recursive predicate
R(x, y) such thatx ∈ A iff ∃y.R(x, y).
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Normal Form Theorem

Theorem. The setA is r.e. iff there is a primitive recursive predicate
R(x, y) such thatx ∈ A iff ∃y.R(x, y).

Proof. “⇐": If R(x, y) is primitive recursive andx ∈ A ⇔ ∃y.R(x, y),
then defineg(x) = µyR(x, y).

Theng(x) is computable andx ∈ A ⇔ x ∈ Dom(g).
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Normal Form Theorem

Theorem. The setA is r.e. iff there is a primitive recursive predicate
R(x, y) such thatx ∈ A iff ∃y.R(x, y).

Proof. “⇐": If R(x, y) is primitive recursive andx ∈ A ⇔ ∃y.R(x, y),
then defineg(x) = µyR(x, y).

Theng(x) is computable andx ∈ A ⇔ x ∈ Dom(g).

“⇒": supposeA is r.e., thenχA is computable. LetP be program to
computeχA andR(x, y) be

P(x) ↓ in y steps.

ThenR(x, y) is primitive recursive (decidable) and
x ∈ A ⇔ ∃y.R(x, y).
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Quantifier Contraction Theorem

Theorem (Applying the Normal Form Theorem). IfM(x, y) is
partially decidable, so is∃y.M(x, y) ({x | ∃y.M(x, y)} is r.e.).
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Quantifier Contraction Theorem

Theorem (Applying the Normal Form Theorem). IfM(x, y) is
partially decidable, so is∃y.M(x, y) ({x | ∃y.M(x, y)} is r.e.).

Proof. Let R(x, y, z) be a primitive recursive predicate such that

M(x, y) ⇔ ∃z.R(x, y, z).

Then∃y.M(x, y) ⇔ ∃y.∃z.R(x, y, z) ⇔ ∃u.R(x, (u)0, · · · , (u)m+1).

(u = 2y13y2 · · · pym
m , pz

m+1, if y = (y1, · · · , ym)).

By Normal Form Theorem,∃y.M(x, y) is partially decidable, and
{x | ∃y.M(x, y)} is r.e.
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Theorems

Uniformisation Theorem

Theorem (Applying the Normal Form Theorem). IfR(x, y) is
partially decidable, then there is a computable functionc(x) such that
c(x) ↓ iff ∃y.R(x, y) andc(x) ↓ impliesR(x, c(x)).
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Partial Decidable Predicates
Theorems

Uniformisation Theorem

Theorem (Applying the Normal Form Theorem). IfR(x, y) is
partially decidable, then there is a computable functionc(x) such that
c(x) ↓ iff ∃y.R(x, y) andc(x) ↓ impliesR(x, c(x)).

We may think ofc(x) as a choice function forR(x, y). The theorem
states that the choice function is computable.
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Complementation Theorem

Theorem. A is recursive iffA andA are r.e.
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Complementation Theorem

Theorem. A is recursive iffA andA are r.e.

Proof. “⇒": If A is recursive, thenχA andχA are computable.
Thus⇒ A andA are r.e.
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Complementation Theorem

Theorem. A is recursive iffA andA are r.e.

Proof. “⇒": If A is recursive, thenχA andχA are computable.
Thus⇒ A andA are r.e.

“⇐": SupposeA andA are r.e. Then some primitive recursive
predicatesR(x, y), S(x, y) exist such that

x ∈ A ⇔ ∃yR(x, y),

x ∈ A ⇔ ∃yS(x, y).

Now let f (x) = µy(R(x, y) ∨ S(x, y)).

Since eitherx ∈ A or x ∈ A holds,f (x) is total and computable, and
x ∈ A ⇔ R(x, f (x)). Thusx ∈ A is decidable⇒ A is recursive.
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The Hardest Recursively Enumerable Set

Fact. If A ≤m B andB is r.e. thenA is r.e..
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The Hardest Recursively Enumerable Set

Fact. If A ≤m B andB is r.e. thenA is r.e..

Theorem. A is r.e. iff A ≤m K.
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The Hardest Recursively Enumerable Set

Fact. If A ≤m B andB is r.e. thenA is r.e..

Theorem. A is r.e. iff A ≤m K.

Proof. SupposeA is r.e. Letf (x, y) be defined by

f (x, y) =

{

1, if x ∈ A,
undefined, if x /∈ A.

By S-m-n Theorem there is a total computable functions(x) such that
f (x, y) = φs(x)(y). It is clear thatx ∈ A iff s(x) ∈ K.
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The Hardest Recursively Enumerable Set

Fact. If A ≤m B andB is r.e. thenA is r.e..

Theorem. A is r.e. iff A ≤m K.

Proof. SupposeA is r.e. Letf (x, y) be defined by

f (x, y) =

{

1, if x ∈ A,
undefined, if x /∈ A.

By S-m-n Theorem there is a total computable functions(x) such that
f (x, y) = φs(x)(y). It is clear thatx ∈ A iff s(x) ∈ K.

No r.e. set is more difficult thanK.
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Applying Complementation Theorem

Proposition. If A is r.e. but not recursive, thenA 6≤m A 6≤m A.
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Applying Complementation Theorem

Proposition. If A is r.e. but not recursive, thenA 6≤m A 6≤m A.

It contradicts to our intuition thatA andA are equally difficult.
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Graph Theorem

Theorem. Let f (x) be a partial function. Thenf (x) is computable iff
the predicate ‘f (x) ≃ y’ is partially decidable iff{π(x, y) | f (x) ≃ y}
is r.e.
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Partial Decidable Predicates
Theorems

Graph Theorem

Theorem. Let f (x) be a partial function. Thenf (x) is computable iff
the predicate ‘f (x) ≃ y’ is partially decidable iff{π(x, y) | f (x) ≃ y}
is r.e.

Proof. If f (x) is computable byP(x), then

f (x) ≃ y ⇔ ∃t.(P(x) ↓ y in t steps).

The predicate ‘P(x) ↓ y in t steps’ is primitive recursive.
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Graph Theorem

Theorem. Let f (x) be a partial function. Thenf (x) is computable iff
the predicate ‘f (x) ≃ y’ is partially decidable iff{π(x, y) | f (x) ≃ y}
is r.e.

Proof. If f (x) is computable byP(x), then

f (x) ≃ y ⇔ ∃t.(P(x) ↓ y in t steps).

The predicate ‘P(x) ↓ y in t steps’ is primitive recursive.

Conversely letR(x, y, t) be such that

f (x) ≃ y ⇔ ∃t.R(x, y, t).

Now f (x) = µy.R(x, y, µt.R(x, y, t)).
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Listing Theorem

Listing Theorem. A is r.e. iff eitherA = ∅ or A is the range of a
unarytotal computable function.
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Theorems

Listing Theorem

Listing Theorem. A is r.e. iff eitherA = ∅ or A is the range of a
unarytotal computable function.

Proof. SupposeA is nonempty and its partial characteristic function is
computed byP. Let a be a member ofA. The total functiong(x, t)
given by

g(x, t) =

{

x, if P(x) ↓ in t steps,
a, if otherwise.

is computable. ClearlyA is the range ofh(z) = g((z)1, (z)2).
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Partial Decidable Predicates
Theorems

Listing Theorem

Listing Theorem. A is r.e. iff eitherA = ∅ or A is the range of a
unarytotal computable function.

Proof. SupposeA is nonempty and its partial characteristic function is
computed byP. Let a be a member ofA. The total functiong(x, t)
given by

g(x, t) =

{

x, if P(x) ↓ in t steps,
a, if otherwise.

is computable. ClearlyA is the range ofh(z) = g((z)1, (z)2).

The converse follows from Graph Theorem.
SupposeA = Ran(h), then

x ∈ A ⇔ ∃y(h(y) ≃ x) ⇔ ∃y∃t(P(y) ↓ x in t steps)
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Listing Theorem

It gives rise to the terminologyrecursively enumerable.

The elements of a r.e. set can be effectively generated. E.g., A can be
enumerated asA = {h(0), h(1), · · · , h(n), · · · }, whereh is a primitive
recursive function.

{E0,E1, · · · ,En, · · · } is another enumeration of all r.e. sets.

R.e. set areeffectively generatedsets, which is a list compiled by an
informal effective procedure (may go on ad infinitum).
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An Example

The set{x | if there is a run of exactlyx consecutive 7’s in the decimal
expansion ofπ} is r.e.
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Special Sets

Partial Decidable Predicates
Theorems

An Example

The set{x | if there is a run of exactlyx consecutive 7’s in the decimal
expansion ofπ} is r.e.

Proof. Run an algorithm that computes successive digits in the
decimal expansion ofπ. Each time a run of 7s appears, count the
number of consecutive 7s in the run and add this number to the list.
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Applying Listing Theorem

A set is r.e. iff it is the range of a computable function.
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Applying Listing Theorem

A set is r.e. iff it is the range of a computable function.

Equivalence Theorem.Let A ⊆ N. Then the following are
equivalent:
(a). A is r.e.
(b). A = ∅ or A is the range of a unary total computable function.
(c). A is the range of a (partial) computable function.
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Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 43/72



Recursive Sets
Recursively Enumerable Set

Special Sets

Partial Decidable Predicates
Theorems

Applying Listing Theorem

Theorem. Every infinite r.e. set has an infinite recursive subset.

Proof. SupposeA = Ran(f ) wheref is a total computable function.
An infinite recursive subset is enumerated by the total increasing
computable functiong given by

g(0) = f (0),

g(n + 1) = f (µy(f (y) > g(n))).

(g is total sinceA = Ran(f ) is infinite. g is computable by
minimalisation and recursion).
Ran(g) is an infinite recursive subset ofA.
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Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total
increasing computable function (if it can be recursively enumerated in
increasing order).
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Theorems

Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total
increasing computable function (if it can be recursively enumerated in
increasing order).

Proof.“⇒" SupposeA is recursive and infinite. ThenA is enumerated
by the increasing functionf given by

f (0) = µy(y ∈ A),

f (n + 1) = µy(y ∈ A ∧ y > f (n)).

f is total sinceA is infinite. f is computable by minimalisation and
recursion.Ran(g) is an infinite recursive subset ofA.
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Applying Listing Theorem

Theorem. An infinite set is recursive iff it is the range of a total
increasing computable function (if it can be recursively enumerated in
increasing order).

Proof.“⇒" SupposeA is recursive and infinite. ThenA is enumerated
by the increasing functionf given by

f (0) = µy(y ∈ A),

f (n + 1) = µy(y ∈ A ∧ y > f (n)).

f is total sinceA is infinite. f is computable by minimalisation and
recursion.Ran(g) is an infinite recursive subset ofA.

“⇐": SupposeA is the range of the computable total increasing
function f ; i.e., f (0) < f (1) < f (2) < · · · It is clear that ify = f (n)
thenn ≤ y. Hence

y ∈ A ⇔ y ∈ Ran(f ) ⇔ ∃n ≤ y(f (n) = y)

and the predicate on the right is decidable. HenceA is recursive.
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Applying Listing Theorem

Theorem. The set{x | φx is total} is not r.e.
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Applying Listing Theorem

Theorem. The set{x | φx is total} is not r.e.

Proof. If {x | φx is total} were a r.e. set, then there would be a total
computable functionf whose range is the r.e. set.

The functiong(x) given byg(x) = φf (x)(x) + 1 would be total and
computable.
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An Alternative Proof

Let f (x, y) =
{

1 if Px(x) does not converge iny or fewer steps,
undefined otherwise.

Sincef (x, y) is computable by Church’s Thesis, from s-m-n theorem,
there is a total computable functionk(x), such thatφk(x)(y) ≃ f (x, y).

From the definition off , we have

{

x ∈ Wx ⇒ (∃y)(Px(x) converges iny steps) ⇒ φk(x) is not total
x 6∈ Wx ⇒ (∀y)(Px(x) does not converge iny steps) ⇒ φk(x) is total

Therefore, ‘x 6∈ Wx’ iff. ‘φk(x) is total’. We have ‘φx is total’ is not
partially computable.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 46/72



Recursive Sets
Recursively Enumerable Set

Special Sets

Partial Decidable Predicates
Theorems

Closure Theorem

Theorem. The recursively enumerable sets are closed under union
and intersection uniformly and effectively.
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Closure Theorem

Theorem. The recursively enumerable sets are closed under union
and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive
functionsr(x, y), s(x, y) such that

Wr(x,y) = Wx ∪ Wy,

Ws(x,y) = Wx ∩ Wy.
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Closure Theorem

Theorem. The recursively enumerable sets are closed under union
and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive
functionsr(x, y), s(x, y) such that

Wr(x,y) = Wx ∪ Wy,

Ws(x,y) = Wx ∩ Wy.
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Rice-Shapiro Theorem

Rice-Shapiro Theorem. Suppose thatA is a set of unary
computable functions such that the set{x | φx ∈ A } is r.e. Then for
any unary computable functionf , f ∈ A iff there is a finite function
θ ⊆ f with θ ∈ A .
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Proof of Rice-Shapiro Theorem

SupposeA = {x | φx ∈ A } is r.e.
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Proof of Rice-Shapiro Theorem

SupposeA = {x | φx ∈ A } is r.e.

Supposef ∈ A but∀ finite θ ⊆ f .θ /∈ A .
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Proof of Rice-Shapiro Theorem

SupposeA = {x | φx ∈ A } is r.e.

Supposef ∈ A but∀ finite θ ⊆ f .θ /∈ A .

Let P be a partial characteristic function ofK.
Define the computable functiong(z, t) by

g(z, t) ≃

{

f (t), if P(z) 6↓ in t steps,
↑, otherwise.

According to S-m-n Theorem, there is a primitive recursive function
s(z) such thatg(z, t) ≃ φs(z)(t).
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Proof of Rice-Shapiro Theorem

SupposeA = {x | φx ∈ A } is r.e.

Supposef ∈ A but∀ finite θ ⊆ f .θ /∈ A .

Let P be a partial characteristic function ofK.
Define the computable functiong(z, t) by

g(z, t) ≃

{

f (t), if P(z) 6↓ in t steps,
↑, otherwise.

According to S-m-n Theorem, there is a primitive recursive function
s(z) such thatg(z, t) ≃ φs(z)(t).

By constructionφs(z) ⊆ f for all z.
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Proof of Rice-Shapiro Theorem

SupposeA = {x | φx ∈ A } is r.e.

Supposef ∈ A but∀ finite θ ⊆ f .θ /∈ A .

Let P be a partial characteristic function ofK.
Define the computable functiong(z, t) by

g(z, t) ≃

{

f (t), if P(z) 6↓ in t steps,
↑, otherwise.

According to S-m-n Theorem, there is a primitive recursive function
s(z) such thatg(z, t) ≃ φs(z)(t).

By constructionφs(z) ⊆ f for all z.

z ∈ K ⇒ φs(z) is finite⇒ s(z) /∈ A;
z /∈ K ⇒ φs(z) = f ⇒ s(z) ∈ A.
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Proof of Rice-Shapiro Theorem

Supposef is a computable function and there is a finiteθ ∈ A such
thatθ ⊆ f andf /∈ A .
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Proof of Rice-Shapiro Theorem

Supposef is a computable function and there is a finiteθ ∈ A such
thatθ ⊆ f andf /∈ A .

Define the computable functiong(z, t) by

g(z, t) ≃

{

f (t), if t ∈ Dom(θ) ∨ z ∈ K,
↑, otherwise.

According to S-m-n Theorem, there is a primitive recursive function
s(z) such thatg(z, t) ≃ φs(z)(t).
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Proof of Rice-Shapiro Theorem

Supposef is a computable function and there is a finiteθ ∈ A such
thatθ ⊆ f andf /∈ A .

Define the computable functiong(z, t) by

g(z, t) ≃

{

f (t), if t ∈ Dom(θ) ∨ z ∈ K,
↑, otherwise.

According to S-m-n Theorem, there is a primitive recursive function
s(z) such thatg(z, t) ≃ φs(z)(t).

z ∈ K ⇒ φs(z) = f ⇒ s(z) /∈ A;
z /∈ K ⇒ φs(z) = θ⇒ s(z) ∈ A.
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Reversing Rice-Shapiro Theorem

{x | φx ∈ A } is r.e. if the following hold:

(1) Θ = {g(θ) | θ ∈ A andθ is finite} is r.e., whereg is a canonical
encoding of the finite functions.

(2) ∀f ∈ A , ∃ finite θ ∈ A , θ ⊆ f .
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Corollary

The sets{x | φx is total} and{x | φx is not total} are not r.e.
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Corollary

The sets{x | φx is total} and{x | φx is not total} are not r.e.

Proof. Consider the setA = {f | f ∈ C1 ∧ f is total}. For nof ∈ A

is there a finiteθ ⊆ f with θ ∈ A . Hence{x | φx is total} is not r.e.
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Corollary

The sets{x | φx is total} and{x | φx is not total} are not r.e.

Proof. Consider the setA = {f | f ∈ C1 ∧ f is total}. For nof ∈ A

is there a finiteθ ⊆ f with θ ∈ A . Hence{x | φx is total} is not r.e.

Consider the setB = {f | f ∈ C1 ∧ f is not total}. Then if f is any
total computable function,f 6∈ B; but every finite functionθ ⊆ f is in
B. Hence{x | φx is not total} is not r.e. by Rice-Shapiro theorem.
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Applying Rice-Shapiro Theorem

The following sets are not recursively enumerable:

Fin = {x | Wx is finite},

Inf = {x | Wx is infinite},

Cof = {x | Wx is cofinite},

Rec = {x | Wx is recursive},

Tot = {x | φx is total},

Con = {x | φx is total and constant},

Ext = {x | φx is extensible to a total recursive function}.
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Outline

1 Recursive Sets
Decidable Predicate
Reduction
Rice Theorem

2 Recursively Enumerable Set
Partial Decidable Predicates
Theorems

3 Special Sets
Productive Sets
Creative Set
Simple Sets
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Non-r.e. Sets

Target. We consider non-r.e. sets to formcreative sets. SupposeA is
any non-r.e. set, then ifWx is an r.e. set contained inA, there must be
a numbery ∈ A\Wx. This numbery is a witness ofA 6= Wx.
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Non-r.e. Sets

Target. We consider non-r.e. sets to formcreative sets. SupposeA is
any non-r.e. set, then ifWx is an r.e. set contained inA, there must be
a numbery ∈ A\Wx. This numbery is a witness ofA 6= Wx.

Example. ConsiderK = {x | x 6∈ Wx}
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Target. We consider non-r.e. sets to formcreative sets. SupposeA is
any non-r.e. set, then ifWx is an r.e. set contained inA, there must be
a numbery ∈ A\Wx. This numbery is a witness ofA 6= Wx.

Example. ConsiderK = {x | x 6∈ Wx}

SupposeWx ⊆ K. Thenx ∈ K \ Wx. Sox is a witness that the
inclusionWx ⊆ K is strict.
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Non-r.e. Sets

Target. We consider non-r.e. sets to formcreative sets. SupposeA is
any non-r.e. set, then ifWx is an r.e. set contained inA, there must be
a numbery ∈ A\Wx. This numbery is a witness ofA 6= Wx.

Example. ConsiderK = {x | x 6∈ Wx}

SupposeWx ⊆ K. Thenx ∈ K \ Wx. Sox is a witness that the
inclusionWx ⊆ K is strict.

We callK productive.
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Definition. A set A is productive if
there is a total computable function
g such that wheneverWx ⊆ A, then
g(x) ∈ A \ Wx.

The function is called aproductive
functionfor A.
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Definition. A set A is productive if
there is a total computable function
g such that wheneverWx ⊆ A, then
g(x) ∈ A \ Wx.

The function is called aproductive
functionfor A.

Notation. A productive set is not r.e.
Fig. A productive set
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Productive Sets

Definition. A set A is productive if
there is a total computable function
g such that wheneverWx ⊆ A, then
g(x) ∈ A \ Wx.

The function is called aproductive
functionfor A.

Notation. A productive set is not r.e.
Fig. A productive set

Example. K is productive with productive functiong(x) = x.
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Reduction Theorem

Theorem. Suppose thatA andB are sets such thatA is productive,
and there is a total computable function such thatx ∈ A iff f (x) ∈ B.
ThenB is productive.
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Reduction Theorem

Theorem. Suppose thatA andB are sets such thatA is productive,
and there is a total computable function such thatx ∈ A iff f (x) ∈ B.
ThenB is productive.

Proof. SupposeWx ⊆ B. ThenWz = f−1(Wx) ⊆ f−1(B) = A for
somez.
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Theorem. Suppose thatA andB are sets such thatA is productive,
and there is a total computable function such thatx ∈ A iff f (x) ∈ B.
ThenB is productive.

Proof. SupposeWx ⊆ B. ThenWz = f−1(Wx) ⊆ f−1(B) = A for
somez.

Moreover,f−1(Wx) is r.e. (by substitution), so there is az such that
f−1(Wx) = Wz. Now Wz ⊆ A, andg(z) ∈ A \ Wz. Hence
f (g(z)) ∈ B \ Wx.
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and there is a total computable function such thatx ∈ A iff f (x) ∈ B.
ThenB is productive.

Proof. SupposeWx ⊆ B. ThenWz = f−1(Wx) ⊆ f−1(B) = A for
somez.

Moreover,f−1(Wx) is r.e. (by substitution), so there is az such that
f−1(Wx) = Wz. Now Wz ⊆ A, andg(z) ∈ A \ Wz. Hence
f (g(z)) ∈ B \ Wx.

f (g(z)) is a witness to the fact thatWx 6= B.
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Reduction Theorem

Theorem. Suppose thatA andB are sets such thatA is productive,
and there is a total computable function such thatx ∈ A iff f (x) ∈ B.
ThenB is productive.

Proof. SupposeWx ⊆ B. ThenWz = f−1(Wx) ⊆ f−1(B) = A for
somez.

Moreover,f−1(Wx) is r.e. (by substitution), so there is az such that
f−1(Wx) = Wz. Now Wz ⊆ A, andg(z) ∈ A \ Wz. Hence
f (g(z)) ∈ B \ Wx.

f (g(z)) is a witness to the fact thatWx 6= B.

We now need to obtain the witnessf (g(z)) effectively fromx. Apply
the s-m-n theorem toφx(f (y)), one gets a total computable function
k(x) such thatφk(x)(y) = φx(f (y)). ThenWk(x) = f−1(Wx). It follows
that f (g(k(x))) ∈ B \ Wx.
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Examples

1. {x | φx 6= 0} is productive.
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Examples

1. {x | φx 6= 0} is productive.

Proof. f (x, y) =

{

0 if x ∈ Wx

↑ if x 6∈ Wx
. Reduce fromK.
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Proof. f (x, y) =

{

0 if x ∈ Wx
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1. {x | φx 6= 0} is productive.

Proof. f (x, y) =

{

0 if x ∈ Wx

↑ if x 6∈ Wx
. Reduce fromK.

2. {x | c /∈ Wx} is productive.

Proof. f (x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx
. Reduce fromK.
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Examples

1. {x | φx 6= 0} is productive.

Proof. f (x, y) =

{

0 if x ∈ Wx

↑ if x 6∈ Wx
. Reduce fromK.

2. {x | c /∈ Wx} is productive.

Proof. f (x, y) =

{

y if x ∈ Wx

↑ if x 6∈ Wx
. Reduce fromK.

3. {x | c /∈ Ex} is productive.
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Application of Rich’s Theorem

Theorem. Suppose thatB is a set of unary computable functions with
f∅ ∈ B andB 6= C1. Then the setB = {x | φx ∈ B} is productive.
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Application of Rich’s Theorem

Theorem. Suppose thatB is a set of unary computable functions with
f∅ ∈ B andB 6= C1. Then the setB = {x | φx ∈ B} is productive.

Proof. Choose a computable functiong /∈ B. Consider functionf
defined by

f (x, y) =

{

g(y), if x ∈ Wx,
↑, if x /∈ Wx.
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Application of Rich’s Theorem

Theorem. Suppose thatB is a set of unary computable functions with
f∅ ∈ B andB 6= C1. Then the setB = {x | φx ∈ B} is productive.

Proof. Choose a computable functiong /∈ B. Consider functionf
defined by

f (x, y) =

{

g(y), if x ∈ Wx,
↑, if x /∈ Wx.

By s-m-n theorem there is some total computable functionk(x) such
thatφk(x)(y) ≃ f (x, y).
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Application of Rich’s Theorem

Theorem. Suppose thatB is a set of unary computable functions with
f∅ ∈ B andB 6= C1. Then the setB = {x | φx ∈ B} is productive.

Proof. Choose a computable functiong /∈ B. Consider functionf
defined by

f (x, y) =

{

g(y), if x ∈ Wx,
↑, if x /∈ Wx.

By s-m-n theorem there is some total computable functionk(x) such
thatφk(x)(y) ≃ f (x, y).

It is clear thatx ∈ Wx iff φk(x) = g iff φk(x) /∈ B. Thusx ∈ K iff
k(x) ∈ B.
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Application of Rich’s Theorem

Theorem. Suppose thatB is a set of unary computable functions with
f∅ ∈ B andB 6= C1. Then the setB = {x | φx ∈ B} is productive.

Proof. Choose a computable functiong /∈ B. Consider functionf
defined by

f (x, y) =

{

g(y), if x ∈ Wx,
↑, if x /∈ Wx.

By s-m-n theorem there is some total computable functionk(x) such
thatφk(x)(y) ≃ f (x, y).

It is clear thatx ∈ Wx iff φk(x) = g iff φk(x) /∈ B. Thusx ∈ K iff
k(x) ∈ B.

Example. {x | φx is not total} is productive.

(B = {f | f ∈ C1 ∧ f is not total}.)
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Creative Sets

Definition. A setA is creativeif it is r.e. and its complementA is
productive.
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Creative Sets

Definition. A setA is creativeif it is r.e. and its complementA is
productive.

Example. K is creative. (The simplest example of a creative set).

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 61/72



Recursive Sets
Recursively Enumerable Set

Special Sets

Productive Sets
Creative Set
Simple Sets

Creative Sets

Definition. A setA is creativeif it is r.e. and its complementA is
productive.

Example. K is creative. (The simplest example of a creative set).

Notation. From the theorem thatA is recursive⇔ A andA are r.e.we
can say that a creative set is an r.e. set that fails to be recursive in a
very strong way. (Creative sets are r.e. sets having the mostdifficult
decision problem.)
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Examples

1. {x | c ∈ Wx} is creative.
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Examples

1. {x | c ∈ Wx} is creative.

2. {x | c ∈ Ex} is creative.
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Special Sets
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Simple Sets

Examples

1. {x | c ∈ Wx} is creative.

2. {x | c ∈ Ex} is creative.

3. A = {x | φx(x) = 0} is creative.
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Examples

1. {x | c ∈ Wx} is creative.

2. {x | c ∈ Ex} is creative.

3. A = {x | φx(x) = 0} is creative.

Proof. A is r.e.
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Examples

1. {x | c ∈ Wx} is creative.

2. {x | c ∈ Ex} is creative.

3. A = {x | φx(x) = 0} is creative.

Proof. A is r.e.

To obtain a productive function forA, by s-m-n theorem one gets a
total computable functiong(x) such thatφg(x)(y) = 0 ⇔ φx(y) is
defined.

Theng(x) ∈ A ⇔ g(x) ∈ Wx. So if Wx ⊆ A we must have
g(x) ∈ A \ Wx.

Thusg is a productive function forA.
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Application of Rice’s Theorem

Theorem. Suppose thatA ⊆ C1 and letA = {x | φx ∈ A }. If A is
r.e. andA 6= ∅,N, thenA is creative.
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Application of Rice’s Theorem

Theorem. Suppose thatA ⊆ C1 and letA = {x | φx ∈ A }. If A is
r.e. andA 6= ∅,N, thenA is creative.

Proof. SupposeA is r.e. andA 6= ∅, N.

If f∅ ∈ A , thenA is productive by the previous theorem. This is a
contradiction.

Thusf∅ 6∈ A . A is productive by the same theorem. HenceA is
creative.
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Examples

1. A = {x | c ∈ Wx} is creative. It corresponds to
A = {f ∈ C1 | f (c) ↓}.
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Examples

1. A = {x | c ∈ Wx} is creative. It corresponds to
A = {f ∈ C1 | f (c) ↓}.

2. A = {x | c ∈ Ex} is creative. It corresponds to
A = {f ∈ C1 | ∃x(f (x) ↓ c)}.
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Simple Sets

Examples

1. A = {x | c ∈ Wx} is creative. It corresponds to
A = {f ∈ C1 | f (c) ↓}.

2. A = {x | c ∈ Ex} is creative. It corresponds to
A = {f ∈ C1 | ∃x(f (x) ↓ c)}.

3. A = {x | Wx 6= ∅} is creative. It corresponds to
A = {f ∈ C1 | f 6= f∅}.
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Discussion

Question. Are all non-recursive r.e. sets creative?
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Discussion

Question. Are all non-recursive r.e. sets creative?

The answer is negative. By a special construction we can obtain
r.e.sets that are neither recursive nor creative.
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Subset Theorem

Lemma. Suppose thatg is a total computable function. Then there is
a total computable functionk such that for allx, Wk(x) = Wx ∪ {g(x)}.
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Subset Theorem

Lemma. Suppose thatg is a total computable function. Then there is
a total computable functionk such that for allx, Wk(x) = Wx ∪ {g(x)}.

Proof. Using the s-m-n theorem, takek(x) to be a total computable
function such that

φk(x)(y) =

{

1, if y ∈ Wx ∨ y = g(x),
↑,otherwise

.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functiong. The idea
is to enumerate a non-repetitive infinite setB = {y0, y1, · · · } ⊆ A.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive and Recursively Enumerable Set 67/72



Recursive Sets
Recursively Enumerable Set

Special Sets

Productive Sets
Creative Set
Simple Sets

Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functiong. The idea
is to enumerate a non-repetitive infinite setB = {y0, y1, · · · } ⊆ A.

Takee0 to be some index forWe0 = ∅. SinceWe0 ⊆ A, g(e0) ∈ A.
Puty0 = g(e0) ∈ A.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functiong. The idea
is to enumerate a non-repetitive infinite setB = {y0, y1, · · · } ⊆ A.

Takee0 to be some index forWe0 = ∅. SinceWe0 ⊆ A, g(e0) ∈ A.
Puty0 = g(e0) ∈ A.

For n ≥ 0, assume{y0, · · · , yn} ⊆ A. Find anen+1 s.t.
{y0, · · · , yn} = Wen+1 ⊆ A. Theng(en+1) ∈ A\Wen+1. Thus if we put
yn+1 = g(en+1), we haveyn+1 ∈ A andyn+1 6= y0, · · · , yn.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functiong. The idea
is to enumerate a non-repetitive infinite setB = {y0, y1, · · · } ⊆ A.

Takee0 to be some index forWe0 = ∅. SinceWe0 ⊆ A, g(e0) ∈ A.
Puty0 = g(e0) ∈ A.

For n ≥ 0, assume{y0, · · · , yn} ⊆ A. Find anen+1 s.t.
{y0, · · · , yn} = Wen+1 ⊆ A. Theng(en+1) ∈ A\Wen+1. Thus if we put
yn+1 = g(en+1), we haveyn+1 ∈ A andyn+1 6= y0, · · · , yn.

By the Lemma there is some total computable functionk such that for
all x, Wk(x) = Wx ∪ {g(x)}. So the infinite set{e0, . . . , kn(e0), . . .} is
r.e.
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Subset Theorem

Theorem. A productive set contains an infinite r.e. subset.

Proof. Let A be a productive set with productive functiong. The idea
is to enumerate a non-repetitive infinite setB = {y0, y1, · · · } ⊆ A.

Takee0 to be some index forWe0 = ∅. SinceWe0 ⊆ A, g(e0) ∈ A.
Puty0 = g(e0) ∈ A.

For n ≥ 0, assume{y0, · · · , yn} ⊆ A. Find anen+1 s.t.
{y0, · · · , yn} = Wen+1 ⊆ A. Theng(en+1) ∈ A\Wen+1. Thus if we put
yn+1 = g(en+1), we haveyn+1 ∈ A andyn+1 6= y0, · · · , yn.

By the Lemma there is some total computable functionk such that for
all x, Wk(x) = Wx ∪ {g(x)}. So the infinite set{e0, . . . , kn(e0), . . .} is
r.e.

It follows that the infinite set{g(e0), . . . , g(kn(e0)), . . .} is a r.e.
subset ofA.
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Illumination
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Corollary

If A is creative, thenA contains an infinite r.e. subset.
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Simple Sets

Definition. A setA is simpleif

(i) A is r.e.,

(ii) A is infinite,

(iii) A contains no infinite r.e. subset.
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Simple Sets

Theorem. A simple set is neither recursive nor creative.
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Simple Sets

Theorem. A simple set is neither recursive nor creative.

Proof. SinceA can not be r.e.,A can not be recursive.
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Simple Sets

Theorem. A simple set is neither recursive nor creative.

Proof. SinceA can not be r.e.,A can not be recursive.

(iii) implies thatA can not be creative.
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Theorem. There is a simple set.

Proof. Definef (x) = φx(µz(φx(z) > 2x)). Let A beRan(f ).
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Theorem. There is a simple set.

Proof. Definef (x) = φx(µz(φx(z) > 2x)). Let A beRan(f ).

(i) A is r.e.
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Theorem. There is a simple set.

Proof. Definef (x) = φx(µz(φx(z) > 2x)). Let A beRan(f ).

(i) A is r.e.

(ii) A is infinite. This is becauseA ∩ {0,1, . . . ,2n} contains at most
the elements{f (0), f (1), . . . , f (n − 1)}.
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Theorem. There is a simple set.

Proof. Definef (x) = φx(µz(φx(z) > 2x)). Let A beRan(f ).

(i) A is r.e.

(ii) A is infinite. This is becauseA ∩ {0,1, . . . ,2n} contains at most
the elements{f (0), f (1), . . . , f (n − 1)}.

(iii) SupposeB is an infinite r.e. set. Then there is atotal computable
functionφb such thatB = Eb. Sinceφb is total,f (b) is definedand
f (b) ∈ A. HenceB 6⊆ A.
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