
Automatic Parallelization and Optimization for Irregular Scientific Applications ∗

Minyi Guo
Dept. of Computer Software, The University of Aizu
Aizu-Wakamatsu City, Fukushima, 965-8580, Japan

Abstract

In this paper, some automatic parallelization and opti-
mization techniques for irregular scientific computing are
proposed. These techniques include communication cost
reduction for irregular loop partitioning, interprocedural
optimization techniques for communication preprocessing
when the irregular code has the procedure call, global vs.
local indirection arrays remapping methods, and OpenMP
directive extension for irregular computing.

Keywords Parallelizing compilers, Irregular scientific
application, Communication optimization, Loop transfor-
mation, Loop partitioning, Interprocedural optimization,
OpenMP.

1 Introduction

Many codes in scientific and engineering computing in-
volve sparse and unstructured problems in which array ac-
cesses are made through a level of indirection or nonlinear
array subscript expressions. This means that the data arrays
are indexed either through the values in other arrays, which
are called indirection arrays/index arrays, or through non-
affine subscripts. The use of indirect/nonlinear indexing
causes the data access patterns, i.e. the indices of the data
arrays being accessed, to be highly irregular. Such a prob-
lem is called irregular problem, in which the dependency
structure is determined by variable causes known only at
runtime. Irregular applications are found in unstructured
computational fluid dynamic (CFD) solvers, molecular dy-
namics codes, diagonal or polynomial preconditioned itera-
tive linear solvers, n-body solvers, and so forth.

Exploiting parallelism for irregular problems becomes
very difficult due to their irregular data access pattern. A
typical example is shown below. Here, elements are moved
across the columns of a 2D array based on the informa-
tion provided in the indirection arrays prev_elem and

∗This research was supported in part by the Grant-in-Aid for Scientific
Research (C)(2) 14580386.

next_elem. The elements of array cell are shuffled and
stored in array new_cell.

DO 100 i = 1, rows
C size(i) is the number of ele-
ments in the i-th row

DO 200 j = 1, size(i)
prev_elem(i,j) = new_elem(0,i,j)
next_elem(i,j) = new_elem(1,i,j)
new_cell(i, prev_elem(i,j)) = &

f(cell(i,j))
new_cell(i, next_elem(i,j)) = &

g(cell(i,j))
200 CONTINUE
100 CONTINUE

Figure 1. A typical irregular loop

In this paper, we propose automatic parallelization and
optimization techniques for irregular parallel code. These
techniques include reducing communication cost for indi-
rection array loop partitioning, global-local array transfor-
mation and index array remapping, inter-procedural com-
munication optimization for irregular loops, and OpenMP
directive extension if an irregular code uses OpenMP for its
parallelization. These methods can experimentally achieve
better performance.

2 Reducing Communication cost for Indirec-
tion Array Loop Partitioning

In this section, we propose a communication cost reduc-
tion technique for indirection array loop partitioning. In the
following discussion, we assume that the indirection array
loop body has only loop-independent dependence, but no
loop-carried dependence (it is very difficult to test irregular
loop-carried dependence since dependence testing methods

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

for linear subscripts are completely disabled), because most
of practical irregular scientific applications have this kind
of loops.

Generally, in distributed memory compilation, loop iter-
ations are partitioned to processors according to the owner
computes rule [1]. This rule specifies that, on a single-
statement loop, each iteration will be executed by the pro-
cessor which owns the left hand side array reference of the
assignment for that iteration.

However, owner computes rule is often not best suited
for irregular codes. This is because use of indirection in
accessing left hand side array makes it difficult to partition
the loop iterations according to the owner computers rule.
Therefore, in CHAOS library, Ponnusamy et al. [13, 14]
proposed a heuristic method for irregular loop partitioning
called almost owner computes rule, in which an iteration is
executed on the processor that is the owner of the largest
number of distributed array references in the iteration.

Some HPF compilers employ this scheme by using
EXECUTE-ON-HOME clause [15]. However, when we
parallelize a fluid dynamics solver ZEUS-2D code by us-
ing almost owner computes rule, we find that the almost
owner computes rule is not optimal manner in minimizing
communication cost — either communication steps or ele-
ments to be communicated. Another drawback is that it is
not straightforward to choose optimal owner if several pro-
cessors own the same number of array references.

We propose a more efficient computes rule for irregular
loop partition [8]. This approach partitions iterations on a
particular processor such that executing the iteration on that
processor ensures

• the communication steps is minimum, and

• the total number of data to be communicated is mini-
mum

In our approach, neither owner computes rule nor al-
most owner computes rule is used in parallel execution of
a loop iteration for irregular computation. A communi-
cation cost reduction computes rule, called least commu-
nication computes rule, is proposed. For a given irreg-
ular loop, we first investigate for all processors Pk, 0 ≤
k ≤ m (m is the number of processors) in which two sets
FanIn(Pk) and FanOut(Pk) for each processor Pk are
defined. FanIn(Pk) is a set of processors which have to
send data to processor Pk before the iteration is executed,
and FanOut(Pk) is a set of processors which have to send
data from processor Pk after the iteration is executed. Ac-
cording to these knowledge we partition the loop iteration
to a processor on which the minimal communication is en-
sured when executing that iteration. Then, after all itera-
tions are partitioned into various processors. Please refer to
[8] for details.

3 Global-local Array Transformation and In-
dex Array Remapping

There are two approaches to generating SPMD irregular
codes after loop partitioning. One is receiving required data
in an iteration every time before the iteration is executed,
and send the changed values (which are resident in other
processors originally) to other processors after the iteration
is executed. Another is gather all remote data from other
processors for all iterations executed on this processor and
scatter all changed remote values to other processors after
all iterations are executed. Because message aggregation is
a main communication optimization means, obviously the
later one is better for communication performance. In or-
der to perform communication aggregation, this section dis-
cusses redistribution of indirection arrays.

3.1 Index Array Redistribution

After loop partitioning analysis, all iterations have
been assigned to various processors: iter(P0) =
{i0,1, i0,2, . . . , i0,α0}, . . ., iter(Pm−1) = {im−1,1, im−1,2,
. . . , im−1,αm−1}. If an iteration ir is partitioned to pro-
cessor Pk, the index array elements ix(ir), iy(ir), · · · may
not be certainly resident in Pk. Therefore, we need
to redistribute all index arrays so that for iter(Pk) =
{ik,1, ik,2, . . . , ik,αk} and every index array ix, elements
ix(ik,1), . . . , ix(ik,αk) are local accessible.

As mentioned above, The source BLOCK partition
scheme for processor Pk is src iter(Pk) = {� g

m
� ∗ k +

1..(� g
m
� + 1) ∗ k}, where g is the number of iterations of

the loop. Then in a redistribution, the elements of an in-
dex array need to communicate from Pk to P ′

k can be in-
dicated by src iter(Pk) ∩ iter(P ′

k). Back to the Example
1, same as Example 3, let the size of data array and index
arrays be 12, after loop partitioning analysis, we can ob-
tain iter(P0) = {1, 5, 8, 9, 10}, iter(P1) = {2, 3, 4}, and
iter(P2) = {6, 7, 11, 12}. The index array elements to be
redistributed are shown in Figure 2.

3.2 Scheduling in Redistribution Proce-
dure

A redistribution routine can be divided into two part:
subscript computation and interprocessor communication.
If there is no communication scheduling in a redistribution
routine, communication contention may occur, which in-
creases the communication waiting time. Clearly in each
communication step, there are some processors sending
messages to the same destination processor. This leads to
node contention. Node contention will result in overall per-
formance degradation.[5, 6] The scheduling can avoid this
contention.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

P0 P1 P2

P0 P0 P0 P0 P0P1 P1 P1 P2 P2 P2 P2iter

src_iter

P1 P0 = {5, 8} P2 P0 = {9, 10}

P0 P1 = {2, 3, 4} P2 P1 = {}

P0 P2 = {} P1 P2 = {6, 7}

1 5 8 9 10 2 3 4 6 7 1112

5 1 4 6 8 7 9 11 2 4 1012

4 1 10 2 4 4 3 3 6 9 6 8

4 8 2 1 3 5 6 7 10 12 9 11

P0 P1 P2

i
ix
iy
iz

P0 P1 P2

P0 P0 P0 P0 P0P1 P1 P1 P2 P2 P2 P2iter

src_iter

P1 P0 = {5, 8} P2 P0 = {9, 10}

P0 P1 = {2, 3, 4} P2 P1 = {}

P0 P2 = {} P1 P2 = {6, 7}

1 5 8 9 10 2 3 4 6 7 1112

5 1 4 6 8 7 9 11 2 4 1012

4 1 10 2 4 4 3 3 6 9 6 8

4 8 2 1 3 5 6 7 10 12 9 11

P0 P1 P2

i
ix
iy
iz

Figure 2. Subscript computations of index array re-
distribution in Example 1.

Another consideration is to align messages so that the
size of messages as near as possible in a step, since the cost
of a step is likely to be dictated by the length of the longest
message exchanged during the step. We use a sparse ma-
trix M to represent the communication pattern between the
source and target processor sets where M(i, j) = M ex-
presses a sending processor Pi should send an M size mes-
sage to a receiving processor Qj . The following matrix de-
scribes a redistribution pattern and a scheduling pattern.

M =

0 3 0 10 3
10 0 2 1 2
2 2 0 3 9
10 0 2 0 0
0 4 3 3 0

, CS =

1 4 3
4 2 0 3
0 3 4 1

0 2
3 1 2

We have proposed an algorithm that accepts M as input
and generates a communication scheduling table CS to ex-
press the scheduling result where CS(i, k) = j means that
a sending processor Pi sends message to a receiving proces-
sor Qj at a communication step k. The scheduling satisfies:

• there is no node contention in each communication
step; and

• the sum of longest message length in each step is min-
imum.

4 Inter-procedural Communication Opti-
mization for Irregular Loops

In some irregular scientific codes, an important opti-
mization required is communication preprocessing among

procedure calls. In this section, we extend a classical data
flow optimization technique – Partial Redundancy Elimina-
tion – to an Interprocedural Partial Redundancy Elimina-
tion as a basis for performing interprocedural communica-
tion optimization [2]. Partial Redundancy Elimination en-
compasses traditional optimizations like loop invariant code
motion and redundant computation elimination.

For irregular code with procedure call, initial intraproce-
dural analysis (see [8]) inserts pre-communicating call (in-
cluding one buffering and one gathering routine) and post-
communicating (buffering and scattering routine) call for
each of the two data parallel loops in two subroutines. After
interprocedural analysis, loop invariants and can be hoisted
outside the loop.

Here, data arrays and index arrays are the same in loop
bodies of two subroutines. While some communication
statement may not be redundant, there may be some other
communication statement, which may be gathering at least
a subset of the values gathered in this statement.

In some situations, the same data array A is accessed us-
ing an indirection array IA in one subroutine SUB1 and
using another indirection array IB in another subroutine
SUB2. Further, none of the indirection arrays or the data
array A is modified between flow control from first loop to
the second loop. There will be at least some overlap be-
tween required communication data elements made in these
two loops. Another case is that the data array and indirec-
tion array is the same but the loop bound is different. In this
case, the first loop can be viewed as a part of the second
loop.

We divide two kinds of communication routines for such
situations. A common communication routine takes more
than one indirection array, or takes common part of two in-
direction arrays. A common communication routine will
take in arrays IA and IB producing a single buffering. In-
cremental preprocessing routine will take in indirection ar-
ray IA and IB, and will determine the off-processor refer-
ences made uniquely through indirection array IB and not
through indirection array IA. While executing the second
loop, communication using an incremental schedule can be
done, to gather only the data elements which were not gath-
ered during the first loop.

5 OpenMP Extensions for Irregular Applica-
tions

OpenMP’s programming model uses fork-join paral-
lelism: master thread spawns a team of threads as needed.
Parallelism is added incrementally: i.e. the sequential pro-
gram evolves into a parallel program. Hence, we do not
have to parallelize the whole program at once. OpenMP is
usually used to parallelize loops. A user finds his most time

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

consuming loops in his code, and split them up between
threads.

OpenMP is a model for programming any parallel ar-
chitecture that provides the abstraction of a shared address
space to the programmer. The purpose of OpenMP is to ease
the development of portable parallel code, by enabling in-
cremental construction of parallel programs and hiding the
detail of the underlying hardware/software interface from
the programmer. A parallel OpenMP program can be ob-
tained directly from its sequential counterpart, by adding
parallelization directives.

If the loop shown in Fig. 1 is split across OpenMP
threads then, although threads will always have distinct val-
ues of j, the values of prev_elam and next_elem may
simultaneously have the same values on different threads.
As a result, there is a potential problem with updating the
value of new_cell. There are some simple solutions to
this problem, which include making all the updates atomic,
or having each thread compute temporary results which are
then combined across threads. However, for the extremely
common situation of sparse array access neither of these ap-
proaches is particularly efficient.

5.1 Directive Extension for Irregular
Loops

This section provides the new extensions to OpenMP, the
irregular directive. The irregular directive could
be applied to the parallel do directive in one of the
following situations:

• When the parallel region is recognized as an irregular
loop: in this case the compiler will invoke a runtime
library which partitions irregular loop according to a
special computes rule.

• When an ordered clause is recognized in the paral-
lel region where the loop is irregular: in this case the
compiler will treat this loop as a partial ordered; that is,
some iterations are executed sequentially while some
others may be executed in parallel.

• When an reduction clause is recognized in the par-
allel region where the loop is irregular: in this case the
compiler will invoke an inspector/executor routines to
perform irregular reduction in parallel.

The irregular directives in extended OpenMP version
may have the following patterns:

$!omp parallel do sched-
ule(irregular, [irarray1,...,irarrayN])

This case designates that the compiler will encounter
an irregular loop, where irarray1,...,irarrayN are
possible indirection arrays, or

$!omp parallel do re-
duction|ordered irregu-
lar([expr1,...,exprN])

This case designates that the compiler will encounter a
special irregular reduction or irregular ordered loop where
expr1, ..., exprN are expressions such as loop in-
dex variables.

5.2 Partially Ordered Loops

A special case for the example in Fig. 1 occurs when the
shared updates need not only to be performed in mutual ex-
clusion, but also in an ordered way. The use of the irreg-
ular clause in this case tells the compiler that for those
iterations which may update the same data in the different
threads, they need to be executed in an ordered way. Other
iterations are still executed in parallel. An example of code
using the indirect clause in this manner is the following:

Example 1

$!omp parallel do ordered irregu-
lar(x, y)
do i = 1, n

x[i] = indirect(1,i)
y[i] = indirect(2,i)

$!omp ordered
a(x[i]) = a(y[i])

$!omp end ordered
end do
$!omp end parallel do

6 Conclusions

The efficiency of loop partitioning influences perfor-
mance of parallel program considerably. For automatically
parallelizing irregular scientific codes, the owner computes
rule is not suitable for partitioning irregular loops. In this
paper, we have presented an efficient loop partitioning ap-
proach to reduce communication cost for a kind of irregular
loop with nonlinear array subscripts. In our approach, run-
time preprocessing is used to determine the communication
required between the processors. We have developed the
algorithms for performing these communication optimiza-
tion. We have also presented how interprocedural commu-
nication optimization can be achieved. Furthermore, if ir-
regular codes are parallelized in OpenMP, we also proposed
to extend OpenMP directives to be suitable for compiling
and executing such codes. We have done a preliminary im-
plementation of the schemes presented in this paper. The
experimental results demonstrate efficacy of our schemes.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

References

[1] R. Allen and K. Kennedy. Optimizing compilers for
Modern Architectures. Morgan Kaufmann Publishers,
2001.

[2] G. Agrawal and J. Saltz. Interprocedural compilation
of Irregular Applilcations for Distributed memory ma-
chines. Language and Compilers for Parallel Comput-
ing, pp. 1-16, August 1994.

[3] R. Das, M. Uysal, J. Saltz, and Y-S. Hwang. Commu-
nication optimizations for irregular scientific compu-
tations on distributed memory architectures. Journal
of Parallel and Distributed Computing, 22(3):462–
479, September 1994.

[4] C. Ding and K. Kennedy. Improving cache perfor-
mance of dynamic applications with computation and
data layout transformations. In Proceedings of the
SIGPLAN’99 Conference on Programming Language
Design and Implementation, Atlanta, GA, May, 1999.

[5] M. Guo, I, Nakata, and Y. Yamashita. Contention-
free communication scheduling for array redistribu-
tion. Parallel Computing, 26(2000), pp. 1325-1343,
2000.

[6] M. Guo and I. Nakata. A framework for efficient array
redistribution on distributed memory machines. The
Journal of Supercomputing, Vol. 20, No. 3, pp. 253-
265, 2001.

[7] M. Guo, Y. Pan, and C. Liu. Symbolic Communication
Set generation for irregular parallel applications. To
appear in The Journal of Supercomputing, 2002.

[8] M. Guo, Z. Liu, C. Liu, L. Li. Reducing Communica-
tion cost for Parallelizing Irregular Scientific Codes.
In Proceedings of The 6th International Conference
on Applied Parallel Computing, Finland, June 2002.

[9] E. Gutierrez, R. Asenjo, O. Plata, and E.L. Zapata. Au-
tomatic parallelization of irregular applications. Paral-
lel Computing, 26(2000), pp. 1709-1738, 2000.

[10] Y.-S Hwang, B. Moon, S. D. Sharma, R. Ponnusamy,
R. Das, and J. Saltz. Runtime and language support for
compiling adaptive irregular programs on distributed
memory machines. Software-Practivce and Experi-
ence, Vol.25(6), pp. 597-621,1995.

[11] J.M. Stone and M. Norman. ZEUS-2D: A radiation
magnetohydrodynamics code for astrophysical flows
in two space dimensions: The hydrodynamic algo-
rithms and tests. Astrophysical Journal Supplement
Series, Vol. 80, pp. 753-790, 1992.

[12] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang,
R. Roloff, A. Sameh, E. Clementi, S. Chin, D. Schnei-
der, G. Fox, P. Messina, D. Walker, C. Hsiung, J.
Schwarzmeier, K. Lue, S. Orzag, F. Seidl, O. Johnson,
G. Swanson, R. Goodrum, and J. Martin. The PER-
FECT club benchmarks: effective performance evalu-
ation of supercomputers. International Journal of Su-
percomputing Applications, pp. 3(3):5-40, 1989.

[13] R. Ponnusamy, Y-S. Hwang, R. Das, J. Saltz, A.
Choudhary, G. Fox. Supporting irregular distributions
in Fortran D/HPF compilers. Technical report CS-TR-
3268, University of Maryland, Department of Com-
puter Science, 1994

[14] R. Ponnusamy, J. Saltz, A. Choudhary, S. Hwang,
and G. Fox. Runtime support and compilation meth-
ods for user-specified data distributions. IEEE Trans-
actions on Parallel and Distributed Systems, 6(8), pp.
815-831, 1995.

[15] M. Ujaldon, E.L. Zapata, B.M. Chapman, and H.P.
Zima. Vienna-Fortran/HPF extensions for sparse and
irregular problems and their compilation. IEEE Trans-
actions on Parallel and Distributed Systems. 8(10),
Oct. 1997. pp. 1068 -1083.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

