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ABSTRACT
Hashing is used to learn binary-code representation for data with
expectation of preserving the neighborhood structure in the origi-
nal feature space. Due to its fast query speed and reduced storage
cost, hashing has been widely used for efficient nearest neighbor
search in a large variety of applications like text and image re-
trieval. Most existing hashing methods adopt Hamming distance to
measure the similarity (neighborhood) between points in the hash-
code space. However, one problem with Hamming distance is that
it may destroy the neighborhood structure in the original feature
space, which violates the essential goal of hashing. In this paper,
Manhattan hashing (MH), which is based on Manhattan distance, is
proposed to solve the problem of Hamming distance based hashing.
The basic idea of MH is to encode each projected dimension with
multiple bits of natural binary code (NBC), based on which the
Manhattan distance between points in the hashcode space is calcu-
lated for nearest neighbor search. MH can effectively preserve the
neighborhood structure in the data to achieve the goal of hashing.
To the best of our knowledge, this is the first work to adopt Manhat-
tan distance with NBC for hashing. Experiments on several large-
scale image data sets containing up to one million points show that
our MH method can significantly outperform other state-of-the-art
methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms
Algorithms, Measurement

Keywords
Hashing, Image Retrieval, Approximate Nearest Neighbor Search,
Hamming Distance, Manhattan Distance

1. INTRODUCTION
Nearest neighbor (NN) search [28] has been widely used in ma-

chine learning and related application areas, such as information
retrieval, data mining, and computer vision. Recently, with the ex-
plosive growth of data on the Internet, there has been increasing
interest in NN search in massive (large-scale) data sets. Traditional
brute force NN search requires scanning all the points in a data
set whose time complexity is linear to the sample size. Hence, it
is computationally prohibitive to adopt brute force NN search for
massive data sets which might contain millions or even billions of
points. Another challenge faced by NN search in massive data sets
is the excessive storage cost which is typically unacceptable if tra-
ditional data formats are used.

To solve these problems, researchers have proposed to use hash-
ing techniques for efficient approximate nearest neighbor (ANN)
search [1, 5, 7, 19, 30, 38, 39, 41]. The goal of hashing is to learn
binary-code representation for data which can preserve the neigh-
borhood (similarity) structure in the original feature space. More
specifically, each data point will be encoded as a compact binary
string in the hashcode space, and similar points in the original fea-
ture space should be mapped to close points in the hashcode space.
By using hashing codes, we can achieve constant or sub-linear search
time complexity [32]. Moreover, the storage needed to store the bi-
nary codes will be dramatically reduced. For example, if each point
is represented by a vector of 1024 bytes in the original space, a
data set of 1 million points will cost 1GB memory. On the con-
trary, if we hash each point into a vector of 128 bits, the memory
needed to store the data set of 1 million points will be reduced to
16MB. Therefore, hashing provides a very effective way to achieve
fast query speed with low storage cost, which makes it a popular
candidate for efficient ANN search in massive data sets [1].

To avoid the NP-hard solution which directly computes the best
binary codes for a given data set [36], most existing hashing meth-
ods adopt a learning strategy containing two stages: projection stage
and quantization stage. In the projection stage, several projected
dimensions of real values are generated. In the quantization stage,
the real values generated from the projection stage are quantized
into binary codes by thresholding. For example, the widely used
single-bit quantization (SBQ) strategy adopts one single bit to quan-
tize each projected dimension. More specifically, given a point x
from the original space, each projected dimension i will be asso-
ciated with a real-valued projection function fi(x). The ith hash
bit of x will be 1 if fi(x) ≥ θ. Otherwise, it will be 0. Here, θ is
a threshold, which is typically set to 0 if the data have been nor-
malized to have zero mean. Although a lot of projection methods
have been proposed for hashing, there exist only two quantization
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methods. One is the SBQ method stated above, and the other is
the hierarchical quantization (HQ) method in anchor graph hashing
(AGH) [18]. Rather than using one bit, HQ divides each dimension
into four regions with three thresholds and uses two bits to encode
each region. Hence, HQ will associate each projected dimension
with two bits. Figure 1 (a) and Figure 1 (b) illustrate the results of
SBQ and HQ for one projected dimension, respectively. Till now,
only one hashing method, AGH in [18], adopts HQ for quantiza-
tion. All the other hashing methods adopt SBQ for quantization.

Currently, almost all hashing methods adopt Hamming distance
to measure the similarity (neighborhood) between points in the
hashcode space. The Hamming distance between two strings of
equal length is the number of positions at which the corresponding
symbols are different 1. As will be stated below in Section 3.1, nei-
ther SBQ nor HQ can effectively preserve the neighborhood struc-
ture under the constraint of Hamming distance. Hence, although
the projection functions in the projection stage can preserve the
neighborhood structure, the whole hashing procedure will still de-
stroy the neighborhood structure in the original feature space due
to the limitation of Hamming distance. This will violate the goal of
hashing and consequently satisfactory performance cannot be eas-
ily achieved by traditional Hamming distance based hashing meth-
ods.

In this paper, we propose to use Manhattan distance for hashing
to solve the problem of existing hashing methods. The result is our
novel hashing method called Manhattan hashing (MH). The main
contributions of this paper are briefly outlined as follows:

• Although a lot of hashing methods have been proposed, most
of them focus on the projection stage while ignoring the quan-
tization stage. This work will systematically study the ef-
fect of quantization. We find that the quantization stage is
at least as important as the projection stage. A good quanti-
zation strategy combined with a bad projection strategy may
achieve better performance than a bad quantization strategy
combined with a good projection strategy. This finding is
very interesting, which might stimulate other researchers to
move their attention from the projection stage to the quanti-
zation stage, and finally propose better methods simultane-
ously taking both stages into consideration.

• MH encodes each projected dimension with multiple bits of
natural binary code (NBC), based on which the Manhattan
distance between points in the hashcode space is calculated
for nearest neighbor search. MH can effectively preserve the
neighborhood structure in the data to achieve the goal of
hashing. To the best of our knowledge, this is the first work
to adopt Manhattan distance with NBC for hashing.

• Experiments on several large-scale image data sets contain-
ing up to one million points show that our MH method can
significantly outperform other state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we
introduce the related work of our method. Section 3 describes the
details of our MH method. Experimental results are presented in
Section 4. Finally, we conclude the whole paper in Section 5.

2. RELATED WORK
Due to the promising performance in terms of either speed or

storage, hashing has been widely used for efficient ANN search
in a large variety of applications with massive data sets, such as

1http://en.wikipedia.org/wiki/Hamming_
distance

text retrieval [33, 39], image retrieval [6, 20], audio retrieval [2],
and near-duplicate video retrieval [29]. As a consequence, many
hashing methods have been proposed by researchers. In general, the
existing methods can be roughly divided into two main classes [6,
39]: data-independent methods and data-dependent methods 2.

The representative data-independent methods include locality-
sensitive hashing (LSH) [1, 5] and its extensions [3, 16, 17, 21,
24]. The hash functions of these methods are just some simple ran-
dom projections which are independent of the training data. Shift
invariant kernel hashing (SIKH) [24] adopts projection functions
which are similar to those of LSH, but SIKH applies a shifted co-
sine function to generate hash values. Many applications, such as
image retrieval [24] and cross-language information retrieval [38],
have adopted these data-independent hashing methods for ANN.
Generally, data-independent methods need longer codes than data-
dependent methods to achieve satisfactory performance [6]. Longer
codes means higher storage and computational cost. Hence, the
data-independent methods are less efficient than the data-dependent
methods.

Recently, data-dependent methods, which try to learn the hash
functions from the training data, have attracted more and more at-
tentions by researchers. Semantic hashing [25, 26] adopts a deep
generative model based on restricted Boltzmann machine (RBM) [9]
to learn the hash functions. Experiments on text retrieval demon-
strate that semantic hashing can achieve better performance than
the original TF-IDF representation [27] and LSH. AdaBoost [4] is
adopted by [2] to learn hash functions from weakly labeled pos-
itive samples. The resulting hashing method achieves better per-
formance than LSH for audio retrieval. Spectral hashing (SH) [36]
uses spectral graph partitioning strategy for hash function learn-
ing where the graph is constructed based on the similarity between
data points. To learn the hash functions, binary reconstruction em-
bedding (BRE) [15] explicitly minimizes the reconstruction error
between the distances in the original feature space and the Ham-
ming distances of the corresponding binary codes. Semi-supervised
hashing (SSH) [34, 35] exploits both labeled data and unlabeled
data for hash function learning. Self-taught hashing [39] uses some
self-labeled data to facilitate the supervised hash function learn-
ing. Complementary hashing [37] exploits multiple complementary
hash tables learned sequentially in a boosting manner to effectively
balance the precision and recall. Composite hashing [38] combines
multiple information sources into the hash function learning proce-
dure. Minimal loss hashing (MLH) [22] tries to formulate the hash-
ing problem as a structured prediction problem based on the latent
structural SVM framework. SPICA [8] tries to find independent
projections by jointly optimizing both accuracy and time. Hyper-
graph hashing [42] extends SH to hypergraph to model the high-
order relationships between social images. Active hashing [40] is
proposed to actively select the most informative labels for hash
function learning. Iterative quantization (ITQ) [6] tries to learn an
orthogonal rotation matrix to refine the initial projection matrix
learned by principal component analysis (PCA) [13]. Experimen-
tal results show that ITQ can achieve better performance than most
state-of-the-art methods.

Few of the existing methods discussed above have studied the
effect of quantization. Because existing quantization strategies can
not effectively preserve the neighborhood structure under the con-
straint of Hamming distance, most existing hashing methods still
can not achieve satisfactory performance even though a large num-
ber of sophisticated projection functions have been designed by

2In [39], data-independent is called data-oblivious while data-
dependent is called data-aware. It is obvious that they have the same
meaning.
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Figure 1: Different quantization methods: (a) single-bit quan-
tization (SBQ); (b) hierarchical quantization (HQ); (c) 2-bit
Manhattan quantization (2-MQ); (d) 3-bit Manhattan quanti-
zation (3-MQ).

researchers. The work in this paper tries to study these important
factors which have been ignored by existing works.

3. MANHATTAN HASHING
This section describes the details of our Manhattan hashing (MH)

method. First, we will introduce the motivation of MH. Then, the
Manhattan distance driven quantization strategy will be proposed.
After that, the whole learning procedure for MH will be summa-
rized. Finally, we will do some qualitative analysis about the per-
formance of MH.

3.1 Motivation
Given a point x from the original feature space R

d, hashing
tries to encode it with a binary string of c bits via the mapping
h : Rd → {0, 1}c. As said in Section 1, most hashing methods adopt
a two-stage strategy to learn h because directly learning h is an NP-
hard problem. Let’s first take SBQ based hashing as an example for
illustration. In the projection stage, c real-valued projection func-
tions {fk(x)}ck=1 are learned and each function can generate one
real value. Hence, we have c projected dimensions each of which
corresponds to one projection function. In the quantization stage,
the real-values are quantized into a binary string by thresholding.
More specifically, hk(x) = 1 if fk(x) ≥ θ. Otherwise, hk(x) = 0.
Here, we assume h(x) = [h1(x), h2(x), · · · , hc(x)]

T , and θ is
a threshold which is typically set to 0 if the data have been nor-
malized to have zero mean. Figure 1 (a) illustrates the result of
SBQ for one projected dimension. Currently, most hashing meth-
ods adopt SBQ for the quantization stage. Hence, the difference
between these methods lies in the different projection functions.

Till now, only two quantization methods have been proposed for
hashing. One is SBQ just discussed above, and the other is HQ
which is adopted by only one hashing method AGH [18]. Rather
than using one bit, HQ divides each projected dimension into four
regions with three thresholds and uses two bits to encode each re-
gion. Hence, to get a c-bit code, HQ based hashing need only c/2
projection functions. Figure 1 (b) illustrates the result of HQ for
one projected dimension.

To achieve satisfactory performance for ANN, one important re-
quirement of hashing is to preserve the neighborhood structure in
the original space. More specifically, close points in the original
space R

d should be mapped to similar binary codes in the code
space {0, 1}c.

We can easily find that with Hamming distance, both SBQ and

00 01 

11 10 

(a) Hamming distance

00 01 11 10 
(b) Decimal distance with NBC

Figure 2: Hamming distance and Decimal distance between
2-bit codes. The distance between two points (i.e., nodes in the
graph) is the length of the shortest path between them.

HQ will destroy the neighborhood structure in the data. As illus-
trated in Figure 1 (a), point ‘C’ and point ‘D’ will be quantized into
0 and 1 respectively although they are very close to each other in
the real-valued space. On the contrary, point ‘D’ and point ‘F’ will
be quantized into the same code 1 although they are far away from
each other. Hence, in the code space of this dimension, the Ham-
ming distance between ‘F’ and ‘D’ is smaller than that between
‘C’ and ‘D’, which obviously indicates that SBQ can destroy the
neighborhood structure in the original space.

HQ can also destroy the neighborhood structure of data. Let
dh(x, y) denote the Hamming distance between binary codes x
and y. From Figure 1 (b), we can get dh(A,F ) = dh(A,B) =
dh(C,D) = dh(D,F ) = 1, and dh(A,D) = dh(C,F ) = 2.
Hence, we can find that the Hamming distance between the two
farthest points ‘A’ and ‘F’ is the same as that between two rela-
tively close points such as ‘A’ and ‘B’. The even worse case is that
dh(A,F ) < dh(A,D), which is obviously very unreasonable.

The problem of HQ is inevitable under the constraint of Ham-
ming distance. Figure 2 (a) shows the Hamming distance between
different 2-bit codes, where the distance between two points (i.e.,
nodes in the graph) is equivalent to the length of the shortest path
between them. We can see that the largest Hamming distance be-
tween 2-bit codes is 2. However, to keep the relative distances be-
tween 4 different points (or regions), the largest distance between
two different 2-bit codes should be at least 3. Hence, no matter how
we permute the 2-bit codes for the four regions in Figure 1 (b), we
cannot get any neighborhood-preserving result under the constraint
of Hamming distance. One choice to overcome this problem of HQ
is to design a new distance measurement.

3.2 Manhattan Distance Driven Quantization
As stated above, the problem that HQ cannot preserve the neigh-

borhood structure in the data is essentially from the Hamming dis-
tance. Here, we will show that Manhattan distance with natural bi-
nary code (NBC) can solve the problem of HQ.

The Manhattan distance between two points is the sum of the
differences on their dimensions. Let x = [x1, x2, · · · , xd]

T , y =
[y1, y2, · · · , yd]T , the Manhattan distance between x and y is de-
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fined as follows:

dm(x,y) =
d∑

i=1

|xi − yi|, (1)

where |x| denotes the absolute value of x.
To adapt Manhattan distance for hashing, we adopt a q-bit quan-

tization scheme. More specifically, after we have learned the real-
valued projection functions, we divide each projected dimension
into 2q regions and then use q bits of natural binary code (NBC) to
encode the index of each region. For example, if q = 2, each pro-
jected dimension is divided into 4 regions, and the indices of these
regions are {0, 1, 2, 3}, the NBC codes of which are {00, 01, 10, 11}.
If q = 3, the indices of regions are {0, 1, 2, 3, 4, 5, 6, 7}, and the
NBC codes are {000, 001, 010, 011, 100, 101, 110, 111}. Figure 1 (c)
shows the quantization result with q = 2 and Figure 1 (d) shows the
quantization result with q = 3. Because this quantization scheme
is driven by Manhattan distance, we call it Manhattan quantiza-
tion (MQ). The MQ with q bits is denoted as q-MQ.

Another issue for MQ is about threshold learning. Badly learned
thresholds will deteriorate the quantization performance. To achieve
the neighborhood-preserving goal, we need to make the points in
each region as similar as possible. In this paper, we use k-means
clustering algorithm [14] to learn the thresholds from the training
data. More specifically, if we need to quantize each projected di-
mension into q bits, we use k-means to cluster the real values of
each projected dimension into 2q clusters, and the midpoint of the
line joining neighboring cluster centers will be used as thresholds.

In our MH, we use the decimal distance rather than the Ham-
ming distance to measure the distances between the q-bit codes
for each projected dimension. The decimal distance is defined to
be the difference between the decimal values of the correspond-
ing NBC codes. For example, let dd(x,y) denote the decimal dis-
tance between x and y, then dd(10, 00) = |2 − 0| = 2 and
dd(010, 110) = |2 − 6| = 4. Figure 2 (b) shows the decimal dis-
tances between different 2-bit codes, where the distance between
two points (i.e., nodes in the graph) is equivalent to the length of
the shortest path between them. We can see that the largest decimal
distance between 2-bit codes is 3, which is enough to effectively
preserve the relative distances between 4 different points (or re-
gions). Figure 1 (c) shows one of the encoding results which can
preserve the relative distances between the regions. Figure 1 (d) is
the results with q = 3. It is obvious that the relative distances be-
tween the regions are also preserved. In fact, it is not hard to prove
that this nice property will be satisfied for any positive integer q.
Hence, our MQ strategy with q ≥ 2 provides a more effective way
to preserve the neighborhood structure than SBQ and HQ.

Given two binary codes x and y generated by MH, the Manhat-
tan distance between them is computed from (1), where xi and yi
correspond to the ith projected dimension which should contain q
bits. Furthermore, the difference between two q-bit codes of each
dimension should be measured with decimal distance. For example,
if q = 2,

dm(000100, 110000) = dd(00, 11) + dd(01, 00) + dd(00, 00)

= 3 + 1 + 0

= 4.

If q = 3,

dm(000100, 110000) = dd(000, 110) + dd(100, 000)

= 6 + 4

= 10.

It is easy to see that when q = 1, the results computed with
Manhattan distance are equivalent to those with Hamming distance,
and consequently our MH method degenerates to the traditional
SBQ-based hashing methods.

3.3 Summary of MH Learning
Given a training set, the whole learning procedure of MH, in-

cluding both projection and quantization stages, can be summarized
as follows:

• Choose a positive integer q, which is 2 in default;

• Choose an existing projection method or design a new pro-
jection method, and then learn � c

q
� projection functions;

• Use k-means to learn 2q clusters, and compute 2q−1 thresh-
olds based on the centers of the learned clusters;

• Use MQ in Section 3.2 to quantize each projected dimension
into q bits of NBC code based on the learned thresholds;

• Concatenate the q-bit codes of all the � c
q
� projected dimen-

sions into one long code to represent each point.

One important property of our MH learning procedure is that
MH can choose an existing projection method for the projection
stage, which means that the novel part of MH is mainly from the
quantization stage which has been ignored by most existing hash-
ing methods. By combining different projection functions with our
MQ strategy, we can get different versions of MH. For example, if
PCA is used for projection, we can get ‘PCA-MQ’. If the random
projection functions in LSH are used for projection, we can get
‘LSH-MQ’. Both PCA-MQ and LSH-MQ can be seen as variants
of MH. Similarly, we can design other versions of MH.

3.4 Discussion
Because the MQ for MH can better preserve the neighborhood

structure between points, it is expected that with the same projec-
tion functions, MH will generally outperform SBQ or HQ based
hashing methods. This will be verified by our experiments in Sec-
tion 4.

The total training time contains two parts: one part is for pro-
jection, and the other is for quantization. Compared with SBQ,
although MQ need extra O(n) time for k-means learning, the to-
tal time complexity of MH is still the same as that of SBQ based
methods because the projection time is at least O(n). Here n is
the number of training points. Similarly, we can prove that with the
same projection functions, MH has the same time complexity as
HQ based methods.

It is not easy to compare the absolute training time between MH
and traditional SBQ based methods. Although extra training time is
needed for MH to perform k-means learning, the number of projec-
tion functions will be decreased to � c

q
� while SBQ based methods

need c projection functions. Hence, whether MH is faster or not de-
pends on the specific projection functions. If the projection stage is
very time-consuming, MH might be faster than SBQ based meth-
ods. But for other cases, SBQ based methods can be faster than
MH. The absolute training time of HQ based methods is about the
same as that of MH with q = 2 because HQ also need to learn
the thresholds for quantization. For q ≥ 3, whether MH is faster
than HQ base methods or not depends on the specific projection
functions because MH need fewer projection functions but larger
number of thresholds.

As for query procedure, the speed of computing hashcode for
query in MH is expected to be faster than SBQ based methods be-
cause the number of projection operations for MH with q ≥ 2 is
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only � c
q
� of that for SBQ. The query speed of MH with q = 2 is

the same as that of HQ based methods. When q ≥ 3, the speed of
computing hashcode of MH will be faster than HQ based methods
due to the smaller number of projection operations.

4. EXPERIMENT

4.1 Data Sets
To evaluate the effectiveness of our MH method, we use three

publicly available image sets, LabelMe [32]3, TinyImage [31]4, and
ANN_SIFT1M [12] 5.

The first data set is 22K LabelMe used in [22, 32]. LabelMe is
a web-based tool designed to facilitate image annotation. With the
help of this annotation tool, the current LabelMe data set contains
as large as 200,790 images which span a wide variety of object
categories. Most images in LabelMe contain multiple objects. 22K
LabelMe contains 22,019 images sampled from the large LabelMe
data set. As in [32], we scale the images to have the size of 32x32
pixels, and represent each image with 512-dimensional GIST de-
scriptors [23].

The second data set is 100K TinyImage containing 100,000 im-
ages randomly sampled from the original 80 million Tiny Images [31].
TinyImage data set aims to present a visualization of all the nouns
in the English language arranged by semantic meaning. A total
number of 79,302,017 images were collected by Google’s image
search engine and other search engines. The original images have
the size of 32x32 pixels. As in [31], we represent them with 384-
dimensional GIST descriptors [23].

The third data set is ANN_SIFT1M introduced in [10, 11, 12]. It
consists of 1,000,000 images each represented as 128-dimensional
SIFT descriptors. ANN_SIFT1M contains three vector subsets: sub-
set for learning, subset for database, and subset for query. The
learning subset is retrieved from Flickr images and the database and
query subsets are from the INRIA Holidays images [11]. We con-
duct our experiments only on the database subset, which consists
of 1,000,000 images each represented as 128-dimensional SIFT de-
scriptors.

Figure 3 shows some representative images sampled from La-
belMe and TinyImage data sets. Please note that the authors of
ANN_SIFT1M provide only the extracted features without any orig-
inal images of their data. From Figure 3, it is easy to see that La-
belMe and TinyImage have different characteristics. The LabelMe
data set contains high-resolution photos, in fact most of which are
street view photos. On the contrary, the images in TinyImage data
set have low-resolution.

4.2 Baselines
As stated in Section 3.3, MQ can be combined with different

projection functions to get different variants of MH. In this pa-
per, the most representative methods, ITQ [6], SIKH [24], LSH [1],
SH [36], and PCA [6, 13], are chosen to evaluate the effectiveness
of our MQ strategy. ITQ, SH, and PCA are data-dependent meth-
ods, while SIKH and LSH are data-independent methods. These
chosen methods are briefly introduced as follows:

• ITQ: ITQ uses an iteration method to find an orthogonal ro-
tation matrix to refine the initial projection matrix learned by
PCA so that the quantization error of mapping the data to the

3http://labelme.csail.mit.edu/
4http://groups.csail.mit.edu/vision/
TinyImages/.
5http://corpus-texmex.irisa.fr/.

vertices of binary hypercube is minimized. Experimental re-
sults in [6] show that it can achieve better performance than
most state-of-the-art methods. In our experiment, we set the
iteration number of ITQ to be 100.

• SIKH: SIKH uses random projections to approximate the
shift-invariant kernels. As in [6, 24], we use a Gaussian ker-
nel whose bandwidth is set to the average distance to the 50th
nearest neighbor.

• LSH: LSH uses a Gaussian random matrix to perform ran-
dom projection.

• SH: SH uses the eigenfunctions computed from the data sim-
ilarity graph for projection.

• PCA: PCA uses the eigenvectors corresponding to the largest
eigenvalues of the covariance matrix for projection.

All the above hashing methods can be used to provide projection
functions. By adopting different quantization strategies, we can get
different variants of a specific hashing method. Let’s take PCA as
an example. ‘PCA-SBQ’ denotes the original PCA hashing method
with single-bit quantization, ‘PCA-HQ’ denotes the combination of
PCA projection with HQ quantization [18], and ‘PCA-MQ’ denotes
one variant of MH combining the PCA projection with Manhattan
quantization (MQ). Because the threshold optimization techniques
for HQ in [18] can not be used for the above five methods, we use
the same thresholds as those in MQ. All experiments are conducted
on our workstation with Intel(R) Xeon(R) CPU X7560@2.27GHz
and 64G memory.

4.3 Evaluation Metrics
We adopt the scheme widely used in recent papers [6, 24, 36] to

evaluate our method. More specifically, we define the ground truth
to be the Euclidean neighbors in the original feature space. The av-
erage distance to the 50th nearest neighbors is used as a threshold
to find whether a point is a true positive or not. All the experimen-
tal results are averaged over 10 random training/test partitions. For
each partition, we randomly select 1000 points as queries, and leave
the rest as training set to learn the hash functions.

Based on the Euclidean ground truth, we can compute the pre-
cision, recall and the mean average precision (mAP) [6, 18] which
are defined as follows:

Precision =
the number of retrieved relevant points

the number of all retrieved points
,

Recall =
the number of retrieved relevent points

the number of all relevent points
,

mAP =
1

|Q|
|Q|∑

i=1

1

ni

ni∑

k=1

Precision(Rik),

where qi ∈ Q is a query, ni is the number of points relevant to qi in
the data set, the relevant points are ordered as {x1, x2, · · · , xni},
Rik is the set of ranked retrieval results from the top result until
you get to point xk.

4.4 Results
The mAP values for different methods with different code sizes

on 22K LabelMe, 100K TinyImage, and ANN_SIFT1M are shown
in Table 1, Table 2, and Table 3, respectively. The value of each
entry in the tables is the mAP of a combination of a projection
function with a quantization method under a specific code size.
The best mAP among SBQ, HQ and MQ under the same setting
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(a) LabelMe

(b) TinyImage

Figure 3: Sample images from LabelMe and TinyImage data sets.

is shown in bold face. To study the effect of q which is the length
of NBC for each projected dimension, we evaluate our MH meth-
ods on 22K LabelMe and 100K TinyImage by setting the q to three
different values (2, 3, and 4). From Table 1 and Table 2, we find
that q = 2 (2-MQ) achieves the best performance for most cases.
Hence, unless otherwise stated, q = 2 is a default setting.

From Table 1, Table 2, and Table 3, it is easy to find that our MQ
method achieves the best performance under most settings, which
means that our MQ with Manhattan distance does be very effective.
Furthermore, we can also find that HQ achieves better performance
than SBQ under most settings. Because both HQ and our MQ meth-
ods adopt more than one bit to encode each projected dimension, it
may imply that using multiple bits to encode each projected dimen-
sion can be better than using just one single bit. This phenomenon
has also been observed by the authors of AGH [18]. The essential
difference between HQ and 2-MQ lies in the difference between
Hamming distance and Manhattan distance. Hence, the better per-
formance of MQ (compared with HQ) shows that Manhattan dis-
tance is a better choice (compared with Hamming distance) to pre-
serve the neighborhood (similarity) structure in the data.

Figure 4 and Figure 5 show the precision-recall curves on 22K
LabelMe and ANN_SIFT1M data sets, respectively. Once again,
we can easily find that our MQ based MH variants significantly
outperform other state-of-the-art methods under most settings.

5. CONCLUSION
Most existing hashing methods focus on the projection stage

while ignoring the quantization stage. This work systematically
studies the effect of quantization. We find that the quantization
stage is at least as important as the projection stage. This work
might stimulate other researchers to move their attention from the
projection stage to the quantization stage, and finally propose better
methods simultaneously taking both stages into consideration.

The existing quantization methods, such as SBQ and HQ, will
destroy the neighborhood structure in the original space, which vi-
olates the goal of hashing. In this paper, we propose a novel quan-
tization strategy called Manhattan quantization (MQ) to effectively
preserve the neighborhood structure among data. The MQ based
hashing method, call Manhattan hashing (MH), encodes each pro-
jected dimension with multiple bits of natural binary code (NBC),
based on which the Manhattan distance between points in the hash-
code space is calculated for nearest neighbor search. MH can effec-
tively preserve the neighborhood structure in the data to achieve the
goal of hashing. To the best of our knowledge, this is the first work
to adopt Manhattan distance with NBC for hashing. The effective-
ness of our MH method is successfully verified by experiments on
several large-scale real-world image data sets.
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Table 1: mAP on 22K LabelMe data set. The best mAP among SBQ, HQ, 2-MQ, 3-MQ and 4-MQ under the same setting is shown in bold face.
# bits 32 64

SBQ HQ 2-MQ 3-MQ 4-MQ SBQ HQ 2-MQ 3-MQ 4-MQ

ITQ 0.2771 0.3166 0.3537 0.2860 0.2700 0.3283 0.4303 0.4881 0.5163 0.4803

SIKH 0.0487 0.0512 0.0722 0.0457 0.0339 0.1175 0.1024 0.1700 0.1242 0.0906

LSH 0.1563 0.1210 0.1382 0.0961 0.0684 0.2577 0.2507 0.2833 0.2514 0.1998

SH 0.0802 0.1540 0.2207 0.2103 0.2026 0.0988 0.1960 0.3237 0.3440 0.3441
PCA 0.0503 0.1414 0.1913 0.2064 0.2092 0.0388 0.1585 0.2233 0.3177 0.3303
# bits 128 256

SBQ HQ 2-MQ 3-MQ 4-MQ SBQ HQ 2-MQ 3-MQ 4-MQ

ITQ 0.3559 0.5203 0.5905 0.6968 0.6758 0.3731 0.5862 0.6496 0.8053 0.8062
SIKH 0.2673 0.2125 0.3669 0.2736 0.2274 0.4109 0.3994 0.5704 0.4984 0.4139

LSH 0.3310 0.4360 0.4596 0.4423 0.3863 0.3955 0.5768 0.6115 0.6321 0.5833

SH 0.1644 0.2553 0.4367 0.4627 0.4747 0.2027 0.2671 0.4418 0.5563 0.5520

PCA 0.0298 0.1669 0.2114 0.3221 0.3653 0.0226 0.1549 0.1710 0.2288 0.2814

Table 2: mAP on 100K TinyImage data set. The best mAP among SBQ, HQ, 2-MQ, 3-MQ and 4-MQ under the same setting is shown in bold face.
# bits 32 64

SBQ HQ 2-MQ 3-MQ 4-MQ SBQ HQ 2-MQ 3-MQ 4-MQ

ITQ 0.4936 0.3963 0.4279 0.3185 0.3746 0.5811 0.5513 0.5908 0.4859 0.5109

SIKH 0.1354 0.1388 0.2209 0.1419 0.0868 0.3041 0.2789 0.4037 0.3197 0.2023

LSH 0.3612 0.3010 0.3396 0.2266 0.2161 0.4843 0.4747 0.5183 0.4445 0.4059

SH 0.1173 0.1870 0.2372 0.2271 0.1749 0.1934 0.3330 0.4463 0.4416 0.3445

PCA 0.0459 0.2124 0.2569 0.2566 0.1924 0.0405 0.3316 0.3845 0.4196 0.3139

# bits 128 256

SBQ HQ 2-MQ 3-MQ 4-MQ SBQ HQ 2-MQ 3-MQ 4-MQ

ITQ 0.6227 0.6882 0.7346 0.6853 0.6671 0.6404 0.7877 0.8270 0.8472 0.8153

SIKH 0.5077 0.4239 0.6311 0.5139 0.3884 0.6625 0.6342 0.7643 0.6954 0.5892

LSH 0.5663 0.6421 0.6856 0.6474 0.5799 0.6145 0.7678 0.7855 0.7854 0.7219

SH 0.3044 0.4610 0.5664 0.5620 0.5062 0.4069 0.5643 0.6568 0.6573 0.5399

PCA 0.0360 0.4608 0.4896 0.5137 0.4533 0.0325 0.5267 0.5348 0.5382 0.5157
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Figure 4: Precision-recall curve on 22K LabelMe data set
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Figure 5: Precision-recall curve on ANN_SIFT1M data set
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