
AgileRegulator: A Hybrid Voltage Regulator Scheme Redeeming Dark

Silicon for Power Efficiency in a Multicore Architecture

Guihai Yan†, Yingmin Li, Yinhe Han†, Xiaowei Li†, Minyi Guo‡, Xiaoyao Liang‡
†State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

‡Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

{yan guihai, yinhes, lxw}@ict.ac.cn, yingmin.li@gmail.com, {guo-my, liang-xy}@cs.sjtu.edu.cn

Abstract

The widening gap between the fast-increasing tran-
sistor budget but slow-growing power delivery and sys-
tem cooling capability calls for novel architectural so-
lutions to boost energy efficiency. Leveraging the fact
of surging “dark silicon” area, we propose a hybrid
scheme to use both on-chip and off-chip voltage reg-
ulators, called “AgileRegulator”, for a multicore sys-
tem to explore both coarse-grain and fine-grain power
phases. We present two complementary algorithms:
Sensitivity-Aware Application Scheduling (SAAS) and
Responsiveness-Aware Application Scheduling (RAAS)
to maximally achieve the energy saving potential of the
hybrid regulator scheme. Experimental results show
that the hybrid scheme achieves performance-energy ef-
ficiency close to per-core DVFS, without imposing much
design cost. Meanwhile, the silicon overhead of this
scheme is well contained into the “dark silicon”. Unlike
other application specific schemes based on accelerators,
the proposed scheme itself is a simple and universal so-
lution for chip area and energy trade-offs.

1 Introduction

Semiconductor road map shows power delivery and
temperature will be more serious constraints to chip per-
formance than the chip area as technology evolves. At
20nm technology node, it is estimated that roughly 20%
chip area will become dark silicon [1], which cannot be
turned on all the time to fully contribute to the chip per-
formance. This projection indicates that putting more
and more logics on a chip and expect higher performance
is unsustainable if we do not pay attention to the energy
efficiency.

As a major power management technique, Dynamic
Voltage and Frequency Scaling (DVFS) promises to
greatly save energy with only marginal performance loss,
or significantly improve the performance with a given
power budget. DVFS technique requires Voltage Regu-
lators (VR) to provide variable voltages corresponding
to different power states for each Voltage-Frequency Is-

†To whom correspondence should be addressed. The work was
supported in part by National Basic Research Program of China
(973) under grant No. 2011CB302503, in part by National Natural
Science Foundation of China (NSFC) under grant No.(61100016,
61076037, 60921002).

lands (VFI) in the microprocessor[2]. To achieve the best
power efficiency, the DVFS operations should be able to
respond to the transition of power phases in a timely
way [3][4].

The response time of regulators virtually determines
how fast the DVFS can operate. There are two kinds of
regulators: the conventional off-chip VR and the more
recently invented on-chip VR. Off-chip VR doesn’t oc-
cupy chip area except power pins and the on-chip power
network. It has higher power delivery efficiency, but is
not as responsive as on-chip VR. By contrast, on-chip
VR has much shorter latency to switch to a new volt-
age setting, but it has relatively lower power delivery
efficiency and it dictates significant amount of chip area.

Unlike off-chip VRs which can only exploit the coarse-
grain power phases, on-chip VRs are ideal to exploit fine-
grain power phases. However, completely resorting to
on-chip VRs are impractical due to two reasons: 1) Area
overhead: It is estimated that to deliver 1 watt of power
we need to pay 2mm2 chip area for the on-chip VRs [5].
Even though the regulator area can be partially amor-
tized by the surge of dark silicon, it is still an overkill
to pack per-core on-chip VRs which will occupy similar
area as the cores on the chip. 2) Power delivery efficiency
(DC-DC converter efficiency): Due to the physical con-
straints, the power transfer efficiency of the state-of-art
on-chip VRs can hardly reach 80% [5] as compared to
the 90% efficiency of off-chip VRs [6]. Therefore in some
cases the energy benefit gained by using on-chip VRs can
be totally offset by the loss of power delivery efficiency.

In this paper, we propose ”AgileRegulator”, a scheme
leveraging dark silicon for a small number of on-
chip VRs, rather than specialized computing logics or
accelerators[7]. We might refer to the silicon taken as
“Power Silicon” since the primary goal is for flexible
power delivery and energy conservation. We demon-
strate the hybrid scheme with mixed on-chip and off-chip
VRs in a multicore architecture running multi-program
applications. Since not all applications can benefit from
fast DVFS, we only deploy a few on-chip VRs and other
cores are still powered up by off-chip VRs. By combining
the advantage of both on-chip and off-chip VRs through
our smart DVFS and application scheduling algorithm,
our scheme provides energy efficiency close to ideal per-
core DVFS, with an increased area budget well fitted
into the forecasted dark silicon.



In particular, this paper makes the following contri-
butions:

1. We found that different cores within a single VFI
often exhibit unbalanced program activities. Since each
VFI can only have one off-chip regulator and that regula-
tor has to accommodate the program whose performance
is most sensitive to power settings, such core-to-core be-
havior variation will result in unfairness and the degrada-
tion of the overall energy efficiency in that specific VFI.
In this paper we propose a novel application schedul-
ing algorithm, “Sensitivity-Aware Application Schedul-
ing (SAAS)”, to mitigate the unfairness by dynamically
grouping the applications with similar energy behavior
into the same VFI, under the constraint of other system
limitations such as memory bandwidth. This scheme
greatly improves the overall energy efficiency for a sys-
tem powered up by off-chip VRs.

2. Beyond SAAS, we propose to use the dark sil-
icon area for a very limited number of on-chip VRs
to maximally explore the fine-grain power phases for
the most benefited applications. We show a smart al-
gorithm “Responsiveness-Aware Application Scheduling
(RAAS)” to identify and schedule such applications to
use on-chip VRs. We also find that an on-chip VR is
only helpful for a limited number of applications after
considering the lower power delivery efficiency. Given
the hefty area overhead, we advise to adopt the on-chip
VRs judiciously and selectively.

3. We demonstrate the importance of building a syn-
ergy between SAAS and RAAS by combining their ad-
vantages and limiting their overhead. In some cases,
SAAS may cause memory congestion in a VFI. When the
fairness optimization conflicts with the memory band-
width, we can leverage RAAS to balance the band-
width utilization, while still maintain the level of fair-
ness required by the SAAS. We evaluate our scheme on
a 16-core, a 36-core, and a 64-core systems with multi-
program workloads. Experimental results show that
such a hybrid scheme can achieve an energy efficiency
close to the ideal per-core DVFS case.

The rest of this paper is organized as follows: Sec-
tion 2 gives the background and clarifies key motiva-
tions. Section 3 introduces the principle and framework
of SAAS, RAAS, and the synergy between them. Section
4 introduces the key implementation heuristic. Section
5 describes the experiment setup and the workloads we
used for this experiment. We show results in Section
6 and introduce related work in Section 7. Finally we
summarize the paper in Section 8.

2 Background

2.1 Application Sensitivity to DVFS

Unlike most prior researches focusing on fairness
issues introduced by shared resources in a multicore
processor[8][9][10][11][12], we find that DVFS operations
can also degrade system fairness and therefore result in
energy inefficiency. The sensitivity of application exe-
cution latency (or time) to power states varies widely
across applications. For example, Figure 1 compares

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized latency

N
or

m
al

iz
ed

 e
ne

rg
y

 

 
gzip
facerec
ammp
fma3d

Pstate1

Pstate2

Pstate3

Pstate4

Figure 1. Energy vs. Latency within an execution
epoch

App1 App2 App3 App4App5 App6App7 App8
Small

VFI1 VFI2

1.5GHz
1.7GHz

1.6GHz 1.6GHz

(b) With AppG

En
er

gy
 u

ni
t

E
ne

rg
y 

un
it

E
ne

rg
y 

un
it

E
ne

rg
y 

un
it

Latency (cycle)

Latency (cycle) Latency (cycle)

Latency (cycle)

Figure 2. Energy vs. Latency pareto frontier under
different DVFS intervals

the trade-off between execution latency and power states
for different applications(gzip, facerec, ammp, fma3d).
We have four power states with Pstate1 having the
highest operating frequency and voltage. The execu-
tion latencies corresponding to all other power states
(Pstate2− Pstate4) are normalized to that of Pstate1.
We find that the execution latency always varies with
power states but to a different degree for different ap-
plications. The latency increase can vary from 17% for
ammp to 100% for fma3d. Clearly, if the two applications
reside in the same VFI powered up by the same volt-
age regulator, to meet the minimal system performance
requirement, the power state has to be tuned based on
fma3d, putting ammp into a sub-optimal operating mode.
We call this as DVFS-Induced Unfairness in this paper.

2.2 Voltage Regulators

The key hardware support for DVFS operations relies
on efficient voltage regulators, either off-chip or on-chip



[13][5]. The conventional regulator is either plugged onto
the PCB board via a connector, or permanently embed-
ded onto the board [14], referred as off-chip VR. The
output voltage can be tuned according to processor op-
erating mode/power state and typically ranges from 0.5V
to 1.5V. A specific voltage is selected by programming
a voltage identification register. The switching latency
across power states is largely determined by the voltage
tuning delay of the off-chip VRs. The latency is usu-
ally at the milliseconds range, which results in a relative
slow DVFS response in practice. Each off-chip VR takes
a large piece of board area and some amount of power
supply pins of the chip. Because modern ICs are usu-
ally pin limited and the PCB boards are expensive, it is
practical to pack only a few off-chip VRs onto the board.

By contrast, on-chip VR was invented for much faster
response [13][5] with nano-seconds DVFS operations.
However, this benefit does not come for free. Firstly,
packing on-chip VRs into the silicon dictates huge area
overhead. The area overhead is proportional to the re-
quired power delivery capacity. Empirically, delivering
1 watt power corresponds to 2mm2 chip area (the spe-
cific relationship varies with different technologies and
types of regulators). That means up to 60mm2 silicon
area is required to power up a 30 watt processor core in
an Itanium� like processor where each core only takes
up 75mm2. Clearly, the area of the on-chip VR is close
to that of the core it powers. Since most of the regula-
tor area is devoted to on-chip capacitors and inductors
(metal), the area overhead is not likely to scale fast with
advanced technology. However, the growth of dark sili-
con area provides us a perfect opportunity to use dark
silicon as on-chip VRs for better voltage tuning. On the
other hand, even with the dark silicon, the hefty area
cost implies that on-chip VRs must be used very selec-
tively to power up the most benefited parts of the mi-
croprocessor. Furthermore, the power delivery efficiency
of on-chip VR is far from perfect. Recently, Kim et al.
demonstrated a nanosecond-scale on-chip regulator with
a peak efficiency staying at 77% [5]. On the other hand,
the efficiency of off-chip VR is usually better than 90%
[6].

2.3 Application Responsiveness to Fast DVFS

Not all applications require fast DVFS to achieve op-
timal energy efficiency. The application’s preference to
DVFS tuning latency is clearly demonstrated through
analyzing the pareto optima of energy-latency tradeoffs.
Figure 2 shows the energy-latency curve of four appli-
cations (crafty, perlbmk, art, fma3d) with different
DVFS tuning latencies. The results show that the bene-
fit of fast DVFS heavily depends on the characteristic of
applications: for crafty and art, the fast DVFS brings
little energy benefit. On the contrary, we can greatly im-
prove the energy efficiency for perlbmk and fma3d with
fast DVFS. In this paper, we call applications sensitive to
DVFS latency as “sponge” applications, as they are like
sponges releasing more water with more pressure (finer
DVFS interval).

3 The Framework of “AgileRegulator”

“AgileRegulator” aims to build a synergy between two
schemes, SAAS and RAAS, to combine the benefits of
both off-chip and on-chip VRs. We assume that the
target microprocessor consists of multiple clusters and
each cluster consists of multiple cores. The hardware
architecture is shown in Figure 3. Each core has a private
L1 cache. The last-level cache can be logically shared by
all of the cores within a cluster. Each cluster holds its
own memory controller for the main memory access.

In our architecture, each cluster forms a VFI and is
powered by an off-chip VR. Our scheme includes both
on-chip and off-chip regulators. Given the hardware
overhead of on-chip VR and the dark silicon area budget
(around 20% chip area), we assume one on-chip VR is at-
tached to each cluster. Only one core in a cluster can be
opportunistically powered by the on-chip VR, depend-
ing on the characteristic of the application running on
the core. When all the on-chip VRs are shut down, the
target architecture degenerates to an off-chip VR only
system.

In this section, we first describe the energy optimiza-
tion problem in a multi-VFI processor and then explain
how “AgileRegulator” can help boost the energy effi-
ciency.

3.1 The Energy Optimization Problem for
Multi-VFI Processors

In this paper, a workload is composed of multiple ap-
plications running on multiple cores. The applications
are evenly divided into K consecutive epoches. At the
beginning of each epoch, the applications will be re-
scheduled and re-assigned to VFIs. We assume a mi-
croprocessor has N VFIs and each VFI has M cores.
P (i, j) denotes the current power state of the ith VFI
for the jth epoch. Given that each VFI hosts multiple
applications, D(i, j) is defined as the maximum execu-
tion latency across all the applications in the ith VFI for
the jth epoch due to DVFS. E(i, j) denotes the total en-
ergy consumption of all the applications in the ith VFI
for the jth epoch. Equation (1) and (2) formulate these
definitions.

D(i, j) = max
m∈the ith VFI

{latency(m, j)}, (1)

E(i, j) =
∑

m∈the ith VFI

{energy(m,j)}. (2)

The energy optimization problem is to determine
P (i, j) for all VFIs over all epochs so that the total
energy Etotal is minimized, subject to the constraint

that the maximum latency Dmax = max{∑K
j=1 D(i, j)}

should not exceed the allowed maximum system latency
(Maxlatency). In summary, we have the following opti-
mization problem:

Minimize Etotal =

N∑

i=1

K∑

j=1

E(i, j), (3)

Subject to Dmax � Maxlatency.



Core4 Core3

Off-chip Regulator

Core1 Core2

Core4 Core3

Core1 Core2

Core4 Core3

Core1 Core2

Core4 Core3

Core1 Core2

Core4 Core3

Cluster 1 Cluster 2

Cluster 3Cluster 4

M
em

ory 
C

ontroller
M

em
ory 

C
ontroller

M
em

ory 
C

ontroller
M

em
ory 

C
ontroller

To
 m

ai
n 

m
em

or
y

To
 m

ai
n 

m
em

or
y

To
 m

ai
n 

m
em

or
y

To
 m

ai
n 

m
em

or
y

Off-chip 
Regulator

Off-chip 
Regulator

Off-chip 
Regulator

Off-chip 
Regulator

Core2Core1

Shared L2 Cache

O
n-chip R

egulator

M
em

ory C
ontroller

In
te

r-c
lu

st
er

 In
te

rc
on

ne
ct

Figure 3. Top view of “AgileRegulator” architecture

1GHz(Pstate1) 750MHz(Pstate2) 600MHz(Pstate3) 500MHz(Pstate4)
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Frequency(Pstate)

N
or

m
al

iz
ed

 la
te

nc
y

 

 

gzip
vpr
perlbmk
twolf
art
facerec
lucas
fma3d
sixtrack

Figure 4. The S-factor for a 4− Pstate system

For simplicity, we use a relative Maxlatency defini-
tion, Dallowable, in the rest of this paper, which is de-
fined as the ratio of actual execution time with DVFS
to the running time at full-speed with the highest fre-
quency/voltage setting. For example, Dallowable = 105%
(or 1.05X) means the the system can accept 5% extra
execution latency (or performance loss) after enabling
DVFS for energy savings compared with the full-speed
case.

3.2 SAAS: Sensitivity-Aware Application
Scheduling

We define the power state with the highest voltage-
frequency combination as Pstate1 and use it as the ref-
erence point. We then define the sensitivity of the exe-
cution latency associated with other power states, also
called S-factor (S), for each epoch in any application:

S(Pstate1 → PstateX) =

Latency(PstateX)− Latency(Pstate1)

Frequency(Pstate1)− Frequency(PstateX)
. (4)

We use S-factor to characterize the fairness in a VFI.
Figure 4 shows the execution latency with four power

states for a bunch of SPEC benchmarks during an epoch
of 10M instructions, where the latencies are normalized
to the Pstate1. We observe that the latency change with
power states varies greatly from benchmark to bench-
mark. For example, the latency of art only increases
17% from Pstate1 to Pstate4 while it varies 100% for
fma3d. Such a big performance variation will seriously
hurt the intra-VFI fairness if applications with big dif-
ference in S-factor are grouped into the same VFI. For a
fair system with the optimal energy efficiency, the nec-
essary condition is that there is as little intra-VFI im-
balance on S-factor as possible. Otherwise, the selection
of power state has to be bottlenecked by the applica-
tion with the biggest S-factor, thereby wasting energy
on other applications. This observation motivates the
SAAS approach that is devoted to mitigate the intra-
VFI imbalance based on the S-factors.

Figure 5 illustrates an example on how SAAS reduces
the S-factor imbalance and in turn saves energy. In this
example, we assume two VFIs, each hosting two appli-
cations during the kth epoch. The applications with
dark color(App2 and App3) have big S-factors, while ap-
plications with light color (App1 and App4) have small
S-factors. In the original case, the required frequency to
meet Dallowable is 1.6GHz for App2 and App3. Without
SAAS, the working frequency for both VFIs has to be set
to 1.6GHz and the off-chip VRs have to select a high volt-
age (1.2V) to meet this frequency. If we take a further
look at VFI1, this setting is inefficient because App1 in
that cluster is wasting power with the 1.6GHz/1.2V set-
ting since its performance is insensitive to a lower power
state. It can well meet the latency requirement with a
much lower voltage and frequency setting. The same
situation also applies to App4 in VFI2. This is what
we called S-factor imbalance in a VFI. Our proposed
SAAS scheme can identify this situation and exchange
the allocation of App2 and App4 to balance the intra-VFI
S-factors. After the re-grouping process, the working fre-
quency of VFI1 hosting App1 and App4 can be reduced to



Allowable latency(Dallowable)
Time

VFI1, App1, Epoch k, @1.6GHz, 1.2V

VFI1, App2, Epoch k, @1.6GHz, 1.2V      

VFI2, App3, Epoch k, @1.6GHz, 1.2V

VFI2, App4, Epoch k, @1.6GHz, 1.2V
……

……

VFI1, App4, Epoch k, @1.1GHz, 0.9V

VFI2, App2, Epoch k, @1.6GHz, 1.2V
……

……
VFI1, App1, Epoch k, @1.1GHz, 0.9V

VFI2, App3, Epoch k, @1.6GHz, 1.2V

(a) DVFS without SAAS

(b) DVFS with SAAS

Slack

Slack

Figure 5. Balancing intra-VFI S-factor through SAAS

1.1GHz and the supply voltage can be reduced to 0.9V
accordingly, saving a large amount of energy.

Bandwidth-Limited SAAS. The memory band-
width for a VFI can be over-utilized if multiple memory-
intensive applications are scheduled into the same VFI
during the process of SAAS. It is clearly undesirable
if the required memory bandwidth exceeds the service
bandwidth of the memory controller for this cluster.
As an essential optimization to the basic SAAS al-
gorithm described above, we propose the bandwidth-
limited SAAS to prevent the memory bandwidth vio-
lations. However, the bandwidth-limited SAAS is not
a simple compromise of the S-factor balancing within a
VFI. The memory bandwidth requirement and the S-
factor balance can be both achieved in most cases by
combining the SAAS technique and the RAAS technique
presented in Section 3.4.

3.3 RAAS: Responsiveness-Aware Application
Scheduling

The RAAS technique is designed to opportunisti-
cally migrate the most benefited application to the core
equipped with on-chip VR for fast DVFS tuning instead
of sticking to the slow off-chip VR which is shared by all
other cores in a VFI, as shown in Figure 3. As stated
in Section 2.3, perlbmk and fma3d are two sponge appli-
cations. Their energy efficiency is very sensitive to fast
DVFS. For these applications, the fast DVFS can save
up to 16% and 35% of energy without compromising the
performance. Slow DVFS driven by off-chip VRs can-
not provide this kind of energy savings due to the much
coarser granularity of voltage tunings.

3.4 Combining SAAS and RAAS

We find that SAAS or RAAS alone cannot fully ex-
ploit the potential of energy savings. In some case, SAAS
has to sacrifice the intra-VFI balance to avoid side ef-
fects like memory bandwidth contention. Coupled with

RAAS, we can greatly reduce the side effects and bal-
ance both the memory bandwidth and S-factor. We find
the combination of SAAS and RAAS can often achieve
the effect of ideal per-core DVFS in terms of energy ef-
ficiency.

More specifically, if SAAS causes memory contention
in a VFI after grouping applications with similar S-
factors, we can exchange one memory-intensive appli-
cation with a memory-none-intensive application in an-
other VFI to relax the memory bandwidth requirement.
However, the newly switched-in application may have
very different S-factors that can potentially degrade the
overall energy efficiency of both VFIs. To avoid this, the
switched-in application will reside in the core powered up
by the on-chip VR, without affecting the existing power
state.

4 Implementation

4.1 SAAS and RAAS Heuristic

Searching for the optimal SAAS and RAAS strategy
is the key technique for “AgileRegulator”. We propose
a practical heuristic that can be implemented into the
hardware for this purpose.

Suppose at the beginning of the kth epoch, ith core
is tagged with the ith application. There are altogether
P = N × M applications in V FI1, V FI2, · · · , V FIN
where each VFI has M cores. The S-factors of all the
applications are denoted as S1, S2, · · · , SP , and their
memory bandwidth as B1, B2, · · · , BP . The memory
bandwidth threshold for each VFI is Bth.

• Step1: Ranking S-factors
{A1, A2, · · · , AP } = RANK(S1, S2, · · · , SP ), where

A1 is the index of the application with the largest S-
factor in the system.

• Step2: Initial Application Grouping
Group1: {A1, A2, · · · , AM}. The applications with

the index of A1, A2, · · · , AM are scheduled into the same
group. This means applications with the largest M S-
factors are scheduled into Group1. Similarly, we have

Group2: {AM+1, AM+2, · · · , A2M}
· · · · · · · · · · · ·
GroupN : {A(N−1)M+1, A(N−1)M+2, · · · , AP }
• Step3: Assigning Sponge Applications to Cores with

On-chip VRs
After SAAS, we step forward to RAAS. If there is no

sponge application identified, the on-chip VR is not used
and turned off. Otherwise, we schedule the sponge ap-
plications to the cores powered by on-chip VRs. If the
number of sponge applications is larger than the num-
ber of on-chip VRs, those applications with higher IPC
(Instruction per Cycle) take the priority, because those
cores tend to be more power-hungry.

• Step4: Easing Memory Bandwidth Contention
The required memory bandwidth BWi of Groupi can

be calculated by adding up the bandwidth of all the
cores in the group. A bandwidth violation is identified
if BWi > Bth. The groups can be divided into two cat-
egories: without bandwidth violation denoted by a set



of Cw/o and with bandwidth violation denoted by a set
of Cw . If Cw/o = ∅, then there is no free bandwidth
available in the system. We cannot do anything in such
a case. However, if Cw/o �= ∅, we can exchange the most
memory-intensive application in the Cw with the most
memory-non-intensive application in the Cw/o. The ex-
changed applications, if any, can only be scheduled to
the cores with on-chip VRs. After this step, the cores
with on-chip VRs may be occupied by switched-in ap-
plications that are not sponge at all. However, it helps
ease memory bandwidth contention.

Clearly, the bandwidth violations cannot always be
eliminated if a workload consists of too many memory-
intensive applications, but our experimental results show
that our bandwidth-aware scheme usually does not ex-
acerbate the contention over the original case.

• Step5: Scheduling the Application Groups
To schedule an application group to a VFI, we use

an algorithm that can reduce the chip thermal violation.
Typically, the groups with large number of L1 misses
consume less core power and run cooler. The algorithm
always schedule such groups to VFIs with higher tem-
perature so as to balance the chip thermal effect.

After Step5, all the applications find their residing
VFIs and cores for the current epoch. The normal DVFS
algorithm can be applied to both off-chip and on-chip
VRs if applicable.

4.2 S-factor Regression and Inference

One essential knowledge required by our scheme is to
identify the S-factor of each application dynamically for
each epoch because SAAS relies on S-factors for dynamic
grouping. We propose to leverage the regression tree
approach to dynamically infer the S-factors of runtime
workload based on a set of built-in performance counters.

Regression Tree is a non-parametric technique that re-
cursively partitions groups into smaller subgroups that
maximally differ on a desired outcome [15]. Regression
tree approach is widely used to 1) predict occurrence of
an outcome from a set of predictors, 2) detect threshold
effects, and 3) predict censored data, etc. The inference
for S-factor just matches the goal of applying the regres-
sion tree method. The first step of using the regression
tree approach is to build a regression tree by determining
a set of if-then conditions based on a training set. Those
conditions imply a non-linear and complex interactions
between predictors.

In this paper, because the application miss events
have large impact on the performance degradation, we
propose to use the following five miss events: L1 instruc-
tion and data cache(il1, dl1), unified L2 cache (ul2), in-
struction TLB and data TLB as the predictors.

The training set is built from the suite of SPEC bench-
marks. Each training sample consists 1 million instruc-
tions. We use 100 samples randomly picked out from
those benchmarks on SimPoint intervals. We find that
100 samples are enough to achieve a stable tree and avoid
over fitting. Figure 6 shows part of the regression tree.
Each leaf shows a possible regression result. Given a set

…
…

…
…

…
…

…
…

Figure 6. Using regression tree to infer S-factor

0 50 100
−6

−4

−2

0

2

4

6

Sample

D
ev

ia
tio

n 
(%

)

(a) Regression accuracy

0 50 100 150
−25

−20

−15

−10

−5

0

5

10

15

Sample

D
ev

ia
tio

n 
(%

)

(b) Inference accuracy

Figure 7. The accuracy of regression and inference
for S-factor using the regression tree method

of predictors, the inferred outcome can be figured out by
following a path indicated by the split conditions.

The accuracy of regression tree is shown in Figure 7.
Figure 7 (a) shows the regression deviation for the train-
ing set itself. More than 90% samples have deviation less
than ± 2%, and the rest of samples show deviation no
more than ± 6%. More importantly, we use this tree to
infer another 150 samples not included in this training
set. The inference accuracy is over 95% for more than
90% samples. Only 3% samples show more than 10%
deviation.

The hardware overhead for applying the regression
tree is small, because the training process is conducted
off-line. The hardware logic only needs to implement a
set of if-else conditions for given predictors.

4.3 Identify Sponge Applications

We also need to identify sponge applications dynami-
cally for the RAAS algorithm. We find that the pattern
of the miss events has strong correlation with the respon-
siveness to a fast DVFS. Figure 8 shows part of results
for dynamic miss events for two applications. In this fig-
ure, each sample is represented as a stacked bars corre-
sponding to the amount of misses in L1 instruction (il1),
L1 data (dl1), and L2 (ul2) cache. A sharp difference
in the miss pattern between the two applications can be
observed. the miss pattern of fma3d exhibits prominent
periodicity, but the pattern of crafty is of erratic fluc-
tuations. We find that fma3d is much more responsive
to fast DVFS compared with crafty.

The on-chip VR has an intrinsic tuning bandwidth
within which it can keep up with the pace of the chang-
ing environment. When the bandwidth of the applica-
tion miss trace is too wide and exceeds the capability of



0 500 1000 1500 2000
0

20

40

60

Time(x100 cycles)

M
is

s 
de

ns
ity

 (#
M

is
s/

10
0c

yc
le

s) crafty

 

 
il1
dl1
ul2

0 500 1000 1500 2000
0

20

40

60

Time(x100 cycles)

M
is

s 
de

ns
ity

 (#
M

is
s/

10
0c

yc
le

s) fma3d

 

 
il1
dl1
ul2

Figure 8. Misses distribution over time for crafty
and fma3d

the regulator, the DVFS will fail to explore the power
phases. If the bandwidth of the trace is less than half of
the regulator bandwidth (i.e. meeting the Nyquist Sam-
pling Theorem), DVFS has large opportunity to catch up
the transition of power phases. In our study, the regular
patterns (e.g. fma3d) usually have much narrower band-
width than those white noise-like patterns (e.g. crafty).
We therefore leverage the pattern recognizer to identify
the sponge applications.

For hardware Implementation of RAAS, we propose
a simple pattern-recognizer. We combine all the miss
events into a single parameter “criticality” [16], defined
by Equation (5).

Criticality = N(MissL1) +
PL1L2

PL1
×N(MissL1L2) (5)

where, N(MissL1) is the number of memory references
that miss in L1 instruction or data cache but hit in L2
cache. N(MissL1L2) is the memory reference miss in
both L1 and L2 cache. PL1 is the penalty (miss latency
cycles) of L1 cache miss with L2 cache miss, and PL1L2

is the penalty of L2 cache miss.
The next step is to smooth the “criticality” with mov-

ing average operation, which serves as a typical low-pass
filter to eliminate outlier disturbance. As Figure 9 (a)
and (b) show, after the low-pass filter, fma3d exhibits
regular pattern, while crafty still shows randomness.
We further clip this waveform into a binary representa-
tion, as Figure 9 (c) and (d) show. Obvious pattern can
be identified after the clipper as shown in the figure. We
can use several counters to differentiate the repetitive
patterns from erratic patterns.

5 Simulation Methodology

Simulation Setup. We use Wattch [17], a generic
power simulator built on Simplescalar [18]. The core mi-
croarchitectue resembles the Alpha-EV6 processor, with
separated L1 cache and shared L2 cache. The detailed
configuration are shown in Table 1. We modify Wattch

Parameter Value
Fetch/Issue/Commit width 4
Issue width 4
Functional units 4-Int/2-FP
Branch predictor 2K-gshare
L1 I-Cache(way)/Latency 64KB(2)/3 cycles
L1 D-Cache(way)/Latency 64KB(2)/3 cycles
L2 cache(way)/Latency 2MB(4)/12 cycles
ITLB,DTLB/Latency 128 entries/30 cycles

Table 1. Processor core configuration

to support four power states. The key focus in this mod-
ification is to separate the core portion (i.e. pipeline and
L1 cache) from other non-core units such as L2 and I/O,
because in practice only the core is enabled with DVFS.
The frequency of the core is scaled according to power
states. There are four available power states: Pstate1
(1.1V, 1GHz), Pstate2 (0.95V, 750MHz), Pstate3 (0.8V,
600MHz), and Pstate4 (0.65V, 500MHz).

We assume each VFI holds a DDR3 memory con-
troller. To study the impact of memory bandwidth,
we set the bandwidth threshold to different configura-
tions ranging from 6.4GB/s of DDR3-800 SDRAM to
17.1GB/s of DDR3-2133 SDRAM. The bandwidth re-
quirement of each VFI can be calculated from the total
last-level cache miss rate (MR) [19]. One memory ac-
cess triggers a memory bus transaction to fill a cache
line. The last-level cache line size (L) is 128 bytes in our
simulated machine. The theoretical bandwidth require-
ment can be calculated by MR× L.

Voltage Regulators. The typical efficiency of off-
chip VR is set to 90%. As for the on-chip VR, the effi-
ciency is usually not constant and depends on the load.
Prior study shows that the peak efficiency is about 77%
at the optimal point [5]. When shifting from that point,
the efficiency will gradually decline. Given that the con-
stant efficiency is the ideal case people pursue and also
for simplicity, we assume on-chip regulators can provide
constant 75% efficiency. The default tuning latencies of
off-chip and on-chip VR are set to 2ms and 100ns respec-
tively, as suggested in [20].

For each 4-core VFI, we assume one on-chip VR. This
roughly fits into the forecasted 20% dark silicon area in
the 20nm process node given the area overhead for state-
of-the-art regulators.

Power Model. Although Wattch is a powerful tool
to investigate the performance and dynamic power in a
reasonable amount of simulation time, it cannot generate
accurate leakage power which accounts for considerable
amount of overall power consumption. We approximate
the leakage power as a fraction of the dynamic power
[21]. By surveying the up-to-date industry data such as
Intel� 8-Core Xeon� processors, fabricated using 45nm
high-κ dielectric CMOS technology, the overall leakage
accounts for about 16% of the total power at typical
process corner [22]. Based on these data, we assume
that leakage accounts for 20% of total power on average.

DVFS Algorithm. The major focus of this paper
is to optimally schedule the applications to VFIs and
cores physically equipped with different voltage regu-



0 500 1000 1500 2000
0

20

40

60

80

Time(x100 cycles)

C
rit

ic
al

ity
 p

er
 1

00
cy

cl
es

crafty

 

 
Raw criticality
Low−pass filtered

(a)

0 500 1000 1500 2000
0

10

20

30

40

50

Time(x100 cycles)

C
rit

ic
al

ity
 p

er
 1

00
cy

cl
es

fma3d

 

 
Raw criticality
Low−pass filtered

(b)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time(x100 cycles)

B
in

ar
y 

cr
iti

ca
lit

y

crafty

(c)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time(x100 cycles)

B
in

ar
y 

cr
iti

ca
lit

y

fma3d

(d)

Figure 9. Working mechanism of pattern-recognizer

lators. Once the applications are allocated, we simply
apply existing DVFS algorithms for energy tuning. We
borrow an algorithm assuming power state configuration
determined off-line [23]. But other solutions can also be
adopted with very small degradation [24].

Workloads. A multi-program workload consists
of multiple applications. The basic applications are
chosen from all SPEC2000 CPU benchmarks; to
add more diversity in the statistical evaluation we
add 10 more SPEC2006 benchmarks (bzip2, gcc,
mcf, libquantum, omnetpp, astar, namd, soplex,
povray). We use SimPoint [25] to sample the simulation
intervals based on standard single simulation points
configuration. A whole application is 100M cycles and
is divided into 8 epochs (i.e. 12.5M cycles for each
epoch). If not specified, the benchmarks are randomly
picked and combined into multi-core workloads. We
randomly generate 100 different workloads in our
simulation to evaluate the statistical efficacy. We also
deliberately build memory-intensive and memory-non-
intensive workloads to study the response of different
optimization techniques. Other work such as [26][27]
applies the similar method to build workloads. These
workloads only intend to represent the multi-program
environment, which is the primary focus of this paper.

Application Migration. Our scheduling scheme re-
lies on application migration at the beginning of each
epoch which has been proved necessary for multicore
processors [28] to improve variation and fault tolerance
[29]. Thread migration is not only engaged for thermal
management [30], but also used to steer the applications
running in a more power-efficient way on multicore pro-
cessors [31]. Each migration involves transferring archi-
tecture states from one core to another. The perfor-
mance and power penalty can be amortized well if the
migration interval is kept long enough. Experimental re-
sults show that for a multicore processor with private L1
and shared L2 cache with a migration interval of 2.5M

cycles, the worst penalty is only 5% and typically 2%
for SPEC benchmarks [28]. The migration interval in
our scheme is kept at 12.5M cycles and only imposes
very marginal performance penalty (less than 1%). We
therefore ignore the migration cost in the experiments.

6 Experimental Results

We first analyze the energy-delay pareto frontiers of
“AgileRegulator” on a 16-core, 4-VFI system and show
the performance of different techniques: 1) Per-VFI-off-
chip is the baseline scheme where each VFI is power
by one off-chip VR. The applications are randomly as-
signed to VFIs. 2) Per-core-off-chip assumes an impracti-
cal scheme where each core has its own off-chip VR. This
structure can achieve coarse-grain per-core DVFS but is
not implementable in the future many-core systems due
to the large number of pin counts and PCB board cost.
3) Per-core-on-chip is also an impractical system that as-
sumes per-core on-chip VR. This can achieve per-core
fine-grain DVFS. Without considering the power deliv-
ery penalty, this is the oracle scheme that provides the
best energy efficiency. It is not practical mostly due
to the unacceptable silicon area cost. 4) SAAS.BW-
unlimited assumes proposed SAAS scheme with unlim-
ited bandwidth, hence SAAS never needs to compro-
mise for memory bandwidth violation. 5) SAAS.BW-
limited assumes the SAAS scheme under limited mem-
ory bandwidth and trades off the VFI fairness for mem-
ory bandwidth alleviation. 6) RAAS is built from the
baseline per-VFI-off-chip, and assumes one core of each
VFI is equipped with an on-chip VR enabling RAAS.
7) SAAS.BW-unlimited+RAAS assumes the ideal combi-
nation of SAAS and RAAS without considering mem-
ory bandwidth limitations. 8) SAAS.BW-limited+RAAS
combines SAAS and RAAS with practical bandwidth re-
quirement. Among all the techniques described in this



1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

3
x 10

9

Allowable normalized latency(D
allowable

)

E
ne

rg
y 

un
it

[eon.fma3d.vortex.vpr.][ammp.mgrid.parser.galgel.]
[lucas.ammp.parser.applu.][galgel.eon.swim.parser.]

 

 
Per−VFI−off−chip
Per−core−off−chip
Per−core−on−chip
SAAS.BW−unlimited
SAAS.BW−limited
RAAS
SAAS.BW−unlimited+RAAS
SAAS.BW−limited+RAAS

(a) Memory non-intensive workload

1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

3
x 10

9

Allowable normalized latency(D
allowable

)

E
ne

rg
y 

un
it

[art.applu.bzip2.bzip2.][parser.mgrid.art.applu.]
[mgrid.sixtrack.vpr.swim.][facerec.gcc.ammp.mcf.]

 

 
Per−VFI−off−chip
Per−core−off−chip
Per−core−on−chip
SAAS.BW−unlimited
SAAS.BW−limited
RAAS
SAAS.BW−unlimited+RAAS
SAAS.BW−limited+RAAS

(b) Memory intensive workload

Figure 10. The pareto frontier for Energy-delay tradeoff, 17.GB/s memory bandwidth

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 e
ne

rg
y

Per−VFI−off−chip

Per−core−off−chip

Per−core−on−chip

SAAS.BW
−unlim

ited

SAAS.BW
−lim

ited

RAAS

SAAS.BW
−unlim

ited+RAAS

SAAS.BW
−lim

ited+RAAS

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 e
ne

rg
y

Per−VFI−off−chip

Per−core−off−chip

Per−core−on−chip

SAAS.BW
−unlim

ited

SAAS.BW
−lim

ited

RAAS

SAAS.BW
−unlim

ited+RAAS

SAAS.BW
−lim

ited+RAAS

Figure 11. The normalized energy given 75% on-chip regulator efficiency and 90% off-chip regulator efficiency for
4x4 system, 20% allowable degradation

section, we highlight SAAS.BW-limited+RAAS because it
is our preferred and practical hybrid solution.

6.1 Energy Latency Frontier Analysis

Figure 10 shows the energy consumption versus allow-
able application execution latency degradation ranging
from 1.05X to 2X for various schemes. The workload
shown in Figure 10 (a) is memory-non-intensive hence no
bandwidth violations are detected on all VFIs. The sec-
ond workload shown in Figure 10 (b) is memory-intensive
and suffers from serious bandwidth violations. The ap-
plications forming a workload are marked at the top of
each figure.

For the workload without bandwidth violations,
SAAS alone can perform almost as well as the the Per-
core-off-chip scheme, but still far from Per-core-on-chip.
Per-core-off-chip cannot squeeze out the energy bene-
fit from sponge applications due to the slow response

time of off-chip VRs. Per-core-on-chip can fully leverage
the advantage of fast-tuning in applications like fma3d,
sixtrack and facerec. RAAS performs comparably
with SAAS, but cannot beat Per-core-on-chip. How-
ever, the combination of SAAS and RAAS (SAAS.BW-
limited+RAAS) performs close to the ideal Per-core-on-
chip scheme.

For the memory-intensive workload, SAAS degrades
badly due to the compromised fairness within a VFI. As
Figure 10 (b) shows, SAAS.BW-limited can only perform
as well as the baseline. RAAS alone, though working
better, is still far from the Per-core-on-chip. However,
SAAS.BW-limited+RAAS combines the benefits of both
techniques and pushes the energy frontier close to the
Per-core-on-chip case.

The above results related to RAAS are based on the
assumption that on-chip VR has the same power trans-
fer efficiency as off-chip VR. However, as we stated in



1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

x 10
9

E
ne

rg
y 

un
it

Per−VFI−off−chip

Per−core−off−chip

Per−core−on−chip

SAAS.BW
−unlim

ited

SAAS.BW
−lim

ited

RAAS

SAAS.BW
−unlim

ited+RAAS

SAAS.BW
−lim

ited+RAAS

13.5%

Figure 12. The statistic energy consumption com-
pare with baseline scheme over 100 workloads for
4x4 system, 20% allowable degradation

Section 2, current on-chip regulators cannot perform as
well as the off-chip regulators in terms of power transfer
efficiency. To deliver the same amount of power to the
cores, on-chip VRs typically take an extra 15% of power
from battery compared with off-chip VRs.

All the results provided in the following sections have
taken the imperfect VR efficiency into account. We re-
plot the results for the two workloads in Figure 11, where
we highlight the Per-core-on-chip scheme with transfer
loss and our preferred SAAS.BW-limited+RAAS scheme.
The results show that the once oracle Per-core on-chip
scheme cannot even beat the Per-core-off-chip for both
workloads. We draw a conclusion here that the on-chip
VR may not necessarily bring us the advantage of power
savings over off-chip VR when considering the power de-
livery cost. Given the inherent area overhead of on-
chip VRs, totally resorting to fast DVFS is not likely
to be the right direction in the future processor design.
For both cases, Per-core-off-chip exhibits great advan-
tage because of its better power transfer efficiency and
core-level corse-grain DVFS. However, Per-core-off-chip
is also not a feasible solution especially in the future
many-core processor due to the very limited power sup-
ply pins and PCB board area. The proposed SAAS.BW-
limited+RAAS scheme is proven to be superior to all
other schemes and it is practical for implementation with
modern IC technology.

6.2 Statistical Effectiveness

The above results only cover two specific workloads,
the following results are devoted to study the statistical
effectiveness of these techniques for 100 workloads ran-
domly generated from SPEC2000 and SPEC2006 bench-
marks. Figure 12 shows the energy using the eight tech-
niques respectively with 20% allowed latency degrada-
tion. The results are presented using “boxplot” which
is a statistical illustration used to show the median
(the middle notch) and dispersion (the upper and lower

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

Working cluster

C
lu

st
er

 m
em

or
y 

ba
nd

w
id

th
 (

G
B

/s
)

 

 

DDR3−800, 6.4GB/s

DDR3−2133, 17.1GB/s

Original BW utilization
SAAS.BW−unlimited utilization
SAAS.BW−limited utilization

Figure 13. The memory bandwidth utilization over
100 workloads for 4x4-core system, 17.GB/s mem-
ory bandwidth

bar) of a group of values (the outliers are denoted by
“+”). Generally speaking, the proposed SAAS.BW-
limited+RAAS scheme can boost the energy efficiency up
to 13.5% comparing with the baseline VFI-based-off-chip
scheme. This result is better than Per-core-on-chip and
close to Per-core-off-chip in both cases.

6.3 The Impact of Memory Bandwidth

SAAS may change the memory bandwidth require-
ment in VFIs, as explained in Section 3.2. Figure 13
shows the memory bandwidth utilization for a 4-VFI
processor across 100 workloads with each VFI holding
17.1GB/s bandwidth. We sort the bandwidth utilization
from low to high for better observation. We find that for
many cases SAAS.BW-unlimited utilization increases the
demand for bandwidth in a specific VFI. This can be
clearly identified at the tailing part of the curves rang-
ing from index #300. But if SAAS was conducted in a
bandwidth-aware manner, the memory bandwidth of the
most memory-hungry VFI will be curbed to stay close
to the original case. As a reference, we also mark the
available memory bandwidth for two commercial DDR3
memory in Figure 13: DDR3-800 and DDR3-2133 which
provide 6.4GB/s and 17.1GB/s bandwidth, respectively.

6.4 Sensitivity of Energy to Memory Band-
width

Larger memory bandwidth creates more chance for
SAAS to balance S-factors, hence leading to more en-
ergy savings. As figure 14 (a) shows, SAAS can sta-
tistically gain more energy savings with the increase in
bandwidth. The dependence on memory bandwidth is
greatly relaxed when combining with RAAS. As figure
14 (b) shows, SAAS.BW-limited+RAAS demonstrates an
energy level insensitive to memory bandwidth. The over-
all energy consumption is significantly lowed compared
with the SAAS only scheme. This again justifies the
synergy between SAAS and RAAS.



6.4GB/s 8.5GB/s 10.7GB/s 12.8GB/s 14.9GB/s 17.1GB/s
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

9

E
ne

rg
y 

un
it

Memory bandwidth

SAAS.BW−limited

(a) SAAS.BW-limited

6.4GB/s 8.5GB/s 10.7GB/s 12.8GB/s 14.9GB/s 17.1GB/s
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

9

E
ne

rg
y 

un
it

Memory bandwidth

SAAS.BW−limited+RAAS

(b) SAAS.BW-limited+RAAS

Figure 14. The impact of memory bandwidth to energy reduction, with SAAS.BW-limited and SAAS.BW-
limited+RAAS

6.5 Scalability Analysis

The SAAS.BW-limited+RAAS technique is scalable
with the number of cores. We show the results for 4x4,
6x6, and 8x8 systems in Figure 15. We still configure
one on-chip and one off-chip VR for each VFI. We see
that although the energy benefit is slightly reduced by
3% from 4x4 system to 8x8 system, the net energy reduc-
tion compared with the baseline is still over 10%. From
the experience we estimate that an on-chip VR will take
approximately the same area as a processor core. There-
fore for the same technology node, the on-chip VR takes
about 20% of the area of a 4-core cluster while it only
takes about 12% area of an 8-core cluster. The large
reduction in area overhead only degrades 3% benefit ac-
tually shows that our scheme is highly scalable.

With the continued technology scaling, the number
of cores integrated onto a single chip will grow quickly
according to the Moore’s law. However, this is not the
case for either on-chip or off-chip VRs. Due to the lim-
ited pin counts of the modern IC and the PCB board
cost, it is not likely to accommodate large number of
off-chip VRs. At the same time, since most of the area
of on-chip VR is dedicated to on-chip capacitors and in-
ductors and they are not scaling well with technology, it
is also not likely to pack many more on-chip VRs even
with the growth of the dark silicon area. This means we
will have to leverage the slow-increasing regulators to
deal with many more cores in the future. The configu-
rations adopted in this study actually reflect the dispro-
portionate scalability between the number of cores and
the number of regulators.

7 Related Work

Power Phase. The adoption of DVFS in essence has
to be based on the power phase prediction in terms of
duration and power characteristics. Isci et al. found that
the power phase can be accurately predicted in practice
[3][32]. But they only focused on the coarse-grain (i.e.

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

x 10
9

E
ne

rg
y 

un
it

Per−VFI−off−chip

SAAS.BW
−lim

ited+RAAS

13.5%

4x4

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

9

E
ne

rg
y 

un
it

Per−VFI−off−chip

SAAS.BW
−lim

ited+RAAS

12.2%

6x6

6.5

7

7.5

8

8.5

x 10
9

E
ne

rg
y 

un
it

Per−VFI−off−chip

SAAS.BW
−lim

ited+RAAS

10.2%

8x8

Figure 15. The statistical energy consumption com-
pare with baseline scheme over 100 workloads for
4x4, 6x6, 8x8-core system.

seconds granularity) power phase and ignored the fine-
grain power phase which can be explored with fast DVFS
operations. Our scheme studies both coarse- and fine-
grain phases by incorporating both on-chip and off-chip
VRs.

DVFS Facility. Rotem et al. studied the poten-
tial of multiple VFI for chip multiprocessors [33], but
without considering the complementary fast DVFS. Al-
though other researchers showed the potential of on-chip
regulators [13][5][4], few studies have been published on
how to overcome the associated huge hardware cost.

Per-core DVFS Optimization. Li et al. proposed
thrifty barrier to improve the energy efficiency of mul-
tithread applications [34] and the management heuristic
[21]. Isci et al. investigated several global power manage-
ment policies assuming per-core DVFS facility [35]. Kim
et al. investigated the possibility of per-core DVFS using
on-chip voltage regulator [20]. Leverich et al. proposed
core-level power gating for system-level power reduction
[36]. Ma et al. [37] proposed a scalable power control al-



gorithm for per-core DVFS tuning for a mesh-like many-
core processors. The design complexity and cost of per-
core DVFS for current multicore processors have already
been barely affordable. The cost of per-core DVFS can
only be prohibitive for the future many-core processors
[31]. By contrast, “AgileRegulator” is built on the cost-
effective VFI-based solution and is much more scalable
than the per-core DVFS design.

Fairness. Unlike the fairness caused by share
resource contentions mentioned in previous works
[38][10][11][8], we mainly focus on the fairness introduced
by DVFS operations, which is a unique contribution of
this work.

8 Conclusions

We introduced a novel hybrid architecture “AgileReg-
ulator”, by exploring the advantage of both on-chip and
off-chip VRs. Two complementary techniques, SAAS
and RAAS, were proposed. We showed our scheme per-
forms close to the ideal per-core DVFS in terms of en-
ergy efficiency without imposing prohibitive hardware
overhead. The area cost in our scheme can well fit into
the predicted dark silicon and this servers as a universal
way to utilize the chip area for power savings. We found
that the synergy of SAAS and RASS solutions can sig-
nificantly improve the energy efficiency in almost all the
cases and we believe the scheme has great potential for
the area-energy trade-offs for the future microprocessor
design.

References

[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore scal-
ing,” in ISCA’11, pp. 365–376, 2011.

[2] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, and H. Wilson, “A 48-core ia-32
message-passing processor with dvfs in 45nm cmos,” in
ISSCC’10, pp. 108–109, 2010.

[3] C. Isci, A. Buyuktosunoglu, and M. Martonosi, “Long-term
workload phases: duration predictions and applications to
dvfs,” Micro, IEEE, vol. 25, no. 5, pp. 39–51, 2005.

[4] S. Eyerman and L. Eeckhout, “Fine-grained dvfs using on-
chip regulators,” ACM TACO, vol. 8, no. 1, pp. 1–24, 2011.

[5] W. Kim, D. M. Brooks, and G.-Y. Wei, “A fully-integrated 3-
level dc/dc converter for nanosecond-scale dvs with fast shunt
regulation,” in ISSCC, pp. 9–10, 2011.

[6] J. Kim and M. Horowitz, “An efficient digital sliding con-
troller for adaptive power-supply regulation,” JSSC, vol. 37,
no. 5, pp. 639–647, 2002.

[7] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Toward dark silicon in servers,” IEEE Micro, vol. Jul./Aug.,
pp. 6–15, 2011.

[8] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing
and partitioning in a chip multiprocessor architecture,” in
PACT’04, pp. 111–122, 2004.

[9] J. Chang and G. S. Sohi, “Cooperative caching for chip mul-
tiprocessors,” in ISCA’06, pp. 264 – 276, 2006.

[10] O. Mutlu and T. Moscibroda, “Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared dram systems,” in ISCA’08, 2008.

[11] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness
via source throttling: a configurable and high-performance
fairness substrate for multi-core memory systems,” in ASP-
LOS’10, pp. 335–346, 2010.

[12] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Address-
ing shared resource contention in multicore processors via
scheduling,” in ASPLOS’10, pp. 129–142, 2010.

[13] R. J. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio,

“Full on-chip cmos low-dropout voltage regulator,” Trans. on
Circuits and Systems-I, vol. 54, no. 9, pp. 1879–1890, 2007.

[14] Intel, “Voltage regulator module (vrm) and enterprise voltage
regulator-down (evrd) 11.1,” tech. rep., Mar. 2009.

[15] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,
Classification and Regression Trees. Chapman & Hall, 1 ed.,
1984.

[16] A. Bhattacharjee and M. Martonosi, “Thread criticality pre-
dictors for dynamic performance, power, and resource man-
agement in chip multiprocessors,” in ISCA’09, 2009.

[17] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions,” in ISCA’00, vol. 28, pp. 83–94, 2000.

[18] D. Burger and T. Austin, “The simplescalar tool set, version
2.0,” tech. rep., Computer Sciences Department, University
of Wisconsin-Madison, 1997.

[19] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory band-
width contention through bandwidth-aware scheduling,” in
PACT’10, pp. 237–248, 2010.

[20] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System
level analysis of fast, per-core dvfs using on-chip switching
regulators,” in HPCA’08, pp. 123–134, 2008.

[21] J. Li and J. F. Mart́ınez, “Dynamic power-performance adap-
tation of parallel computation on chip multiprocessors,” in
HPCA’06, pp. 77–87, 2006.

[22] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang,
R. Varada, M. Ratta, and S. Kottapalli, “A 45nm 8-core en-
terprise xeon processor,” in ISSCC’09, 2009.

[23] F. Xie, M. Martonosi, and S. Malik, “Bounds on power
savings using runtime dynamic voltage scaling: an exact
algorithm and a linear-time heuristic approximation,” in
ISLPED’05, pp. 287–292, 2005.

[24] G. Dhiman and T. S. Rosing, “Dynamic voltage frequency
scaling for multi-tasking systems using online learning,” in
ISLPED’07, 2007.

[25] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Au-
tomatically characterizing large scale program behavior,” in
ASPLOS’02, pp. 45–57, 2002.

[26] J. Donald and M. Martonosi, “Techniques for multicore ther-
mal management: Classification and new exploration,” in
ISCA’06, pp. 78–88, 2006.

[27] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-
optimization power management for chip multiprocessors,”
in PACT’08, pp. 177–186, 2008.

[28] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and
A. Seznec, “Performance implications of single thread mi-
gration on a chip multi-core,” ACM SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 80–91, 2005.

[29] G. Yan, X. Liang, Y. Han, and X. Li, “Leveraging the core-
level complementary effects of pvt variations to reduce timing
emergencies in multi-core processors,” in ISCA’10, pp. 485–
296, 2010.

[30] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, and T. Con-
stantinou, “A study of thread migration in temperature-
constrained multicores,” TACO, vol. 4, no. 2, pp. 1–28, 2007.

[31] K. K. Rangan, G. Y. Wei, and D.Brooks, “Thread motion:
Fine-grained power management for multi-core systems,” in
ISCA’09, pp. 302–313, 2009.

[32] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management,” in Micro’06, 2006.

[33] E. Rotem, R. Ginosar, A. Mendelson, and U. Weiser, “Mul-
tiple clock and voltage domains for chip multi processors,” in
Micro’09, pp. 459–468, 2009.

[34] J. Li, J. F.Mart́ınez, and M. C. Huang, “The thrifty bar-
rier: Energy-aware synchronization in shared-memory multi-
processors,” in HPCA’05, 2005.

[35] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and
M. Martonosi, “An analysis of efficient multi-core global
power management policies: Maximizing performance for a
given power budget,” in Micro’06, pp. 347–358, 2006.

[36] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and
C. Kozyrakis, “Power management of datacenter workloads
using per-core power gating,” IEEE Computer Architecture
Letters, vol. 8, no. 2, pp. 48–51, 2009.

[37] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control
for many-core architectures running multi-threaded applica-
tions,” in ISCA’11, 2011.

[38] M. Kondo, H. Sasaki, and H. Nakamura, “Improving fair-
ness, throughput and energy-efficiency on a chip multiproces-
sor through dvfs,” SIGARCH Comput. Archit. News, vol. 35,
no. 1, pp. 31–38, 2007.


