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Abstract— To get a better understanding of the ongoing in situ 

environmental changes preceding the brain tumorigenesis, we 

assessed cerebrospinal fluid (CSF) proteome profile changes in 

a glioma rat model in which brain tumor invariably develop 

after a single in utero exposure to the neurocarcinogen 

ethylnitrosourea (ENU).  Computationally, the CSF proteome 

profile dynamics during the tumorigenesis can be modeled as 

non-smooth or even abrupt state changes. Such brain tumor 

environment transition analysis, correlating the CSF 

composition changes with the development of early cellular 

hyperplasia, can reveal the pathogenesis process at network 

level during a time before the image detection of the tumors.  In 

this controlled rat model study, matched ENU and saline-

exposed rats’ CSF proteomics changes were quantified at 

approximately 30, 60, 90, 120, 150 days of age (P30, P60, P90, 

P120, P150).  We applied our transition-based network entropy 

(TNE) method to compute the CSF proteome changes in the 

ENU rat model and test the hypothesis of the critical transition 

state prior to impending hyperplasia.  Our analysis identified a 

dynamic driver network (DDN) of CSF proteins related with the 

emerging tumorigenesis progressing from the non-hyperplasia 

state.  The DDN associated leading network CSF proteins can 

allow the early detection of such dynamics before the 

catastrophic shift to the clear clinical landmarks in gliomas. An 

improved understanding of the critical transition state (P60) 

during the brain tumor progression can provide the scientific 

groundwork to device novel therapeutics preventing tumor 

formation. 

Keywords-transition state; dynamical driver biomarker 

(DDN); critical transition; tumorigenesis progressing; network 

entropy; 

I.  INTRODUCTION 

The influence of the local environment, clearly established 
in the development of several systemic neoplasms including 
colon, breast and prostate cancers, remains unexplored in 
gliomas. An ideal approach to study the early relationships 
preceding the clinical landmark of brain tumor is to analyze 
abnormalities in distinct time-series prior to the detection of 
the apparent malignancy. However, brain tumor develops with 
abnormal cells form inside the brain which significantly limits 

the study of its origin due to the relative inaccessibility of the 
tissue. 

Approximately 10-30% of all CSF is extrachoroidal in 
origin and is represented by bulk flow of the interstitial fluid 
from brain parenchyma into the ventricles and subarachnoid 
space [1]. With this readily accessible sample source, we 
previously profiled cerebrospinal fluid (CSF) proteome to 
survey brain environment alterations prior to impending 
hyperplasia by surface-enhanced laser desorption/ionization 
TOF mass spectrometry (SELDI TOF MS). Surface-enhanced 
laser desorption/ionization TOF mass spectrometry (SELDI 
TOF MS) has been used successfully to identify biomarkers 
in blood from various malignancies using comparative 
proteomic strategies [1].  

While there have been several clinical studies that 
attempted to identify biomarkers of brain tumor using 
comparative proteomic techniques, they all suffer from an 
inability to control such factors as age, space occupying 
volume and tissue permeability, thus obscuring whether a 
changed protein expression pattern accurately represents an 
effect of the neoplastic process. To control for these variables, 
we assessed changes in CSF proteome at days P30, P60, P90, 
P120 and P150 in a rat model, of which gliomas invariably 
develop after a single in utero exposure to the 
neurocarcinogen ethylnitrosourea (ENU).  

Given that the rat gliomas are not generally detectable 
pathologically until approximately 90 days of age (P90), we 
hypothesized that brain tumor progression can be modeled 
into three states: (1) a pre-hyperplasia state with high 
resilience and robustness to perturbations; (2) a critical state, 
defined as the prelude to catastrophic shift into the hyperplasia 
state, occurring before the imminent phase transition point is 
reached, therefore, with low resilience and robustness due to 
its dynamical structure; (3) a hyperplasia state, representing a 
seriously deteriorated stage possibly with high resilience and 
robustness, when the system usually finds it difficult to 
recover or return to the normal state even after treatment. This 
is supported by the observations that there is usually sudden 
health catastrophic shift during the gradual progression of 
many chronic diseases [2-7]. The drastic or a qualitative 
transition in the focal system or network, from a normal state 
to a disease state, corresponds to a so-called bifurcation point 
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in dynamical systems theory [8-9].  When the system is near 
the critical point, there exists a dominant group which we 
defined as dynamic driver network (DDN) of features 
satisfying the following three conditions: The correlation 
between any pair of members in DDN becomes very strong; 
The correlation between one member of DDN and any other 
molecule of non-DDN becomes very weak; Any member of 
DDN becomes highly fluctuating during transition  [10-12].  
We previously employed transition-based network entropy 
(TNE) to effectively identify the DDN as well as the transition 
state [11]. The TNE is actually an improved Shannon entropy 
[13] that is conditional on the previous state of a local 
dynamical network in a Markov process, which is also the 
entropy rate of the state change in a feature space network, 
where each node represents a feature and each edge represents 
a regulatory relation between two features, with the 
assumption that a Markov process governs the dynamics of 
each node. Given a high dimensional feature network, we find 
that the TNE is drastically increasing when the system 
approaches the transition state, whereas there are no 
significant TNE fluctuations at either normal or disease states.  

In this study, we set to assess the CSF proteome profile 
dynamics and test our hypothesis of non-smooth or even 
abrupt state changes during the glioma tumorigenesis. Such 
brain tumor environment transition analysis, correlating the 
CSF composition changes with the development of early 
cellular hyperplasia, can reveal the pathogenesis process at 
network level during a time before the image detection of the 
tumors.  

II. METHODS 

A. Data acquirement and Ethics 

Case (ENU) and control rat handling is in accordance with 
guidelines for animal safety and welfare. Rat CSF proteomics 
experiment was approved by the Stanford IUCAC (Protocol 
#11936). 

B. ENU Administration, rat CSF collection, histological 

analysis, and CSF proteomics 

ENU rat glioma model, ENU administration, rat CSF 

collection and subsequent histological analysis were as 

previously described [1]. CSF proteomics profiling and 

subsequent data analysis were as previously described [1, 14-

15].  

TABLE I.  SAMPLE DESCRIPTION 

Times 
Sample description 

Case (samples) Control (samples) Features 

P30 13 11 

247 

P60 16 16 

P90 22 23 

P120 6 7 

P150 6 7 

 

Figure 1. The sketch of study design. (A). Based on SELDI/TOF proteomics profiling, we studied the tumor development of rats with ENU treatment. The 
time-course data ranged over 5 sampling time points, i.e., 30, 60, 90, 120 and 150 days.  The occurrence of hyperplastic micro tumors is at P90 as previously 

observed. (B). With the dynamic driver network (DDN) analysis, we localize the CSF proteome feature network and calculate the network entropy, through 

which the whole feature network can be classified into three layers. (C) Based on the DDN, which locates in the inside layer, we can identify the transition 
state and detect the early-warning signal of the imminent critical deterioration into hyperplasia state.  
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C. Markov process of the network evolution 

In this section, we study the qualitative behaviors in 

dynamics of the nodes to characterize the critical transition 

by an n-node network, which is used to describe the 

regulation relationship among features. Generally, the 

dynamics for the progression of complex diseases is very 

complicated either before or after sudden deterioration, and 

therefore the state equations are generally constructed in a 

high-dimensional space with a large number of variables and 

parameters. However, when the system is driven by some 

parameters to approach to a critical point, theoretically the 

system can be expressed in a very simple form,  generally by 

one- or two-variable dynamical equations in an abstract phase 

space around a codimension-one bifurcation point. This is 

generally guaranteed by the bifurcation theory and center 

manifold theory. Just because of this special feature, during 

this special phase, we can derive the dynamical 

characteristics of the network at this stage to detect the 

critical transition. 
Specifically, we first define the network state (or original 

variables) and transition state of a dynamical network in a 
Markov process. 

For a n-node network, let 𝑍(𝑡) = (𝑧1(𝑡), … , 𝑧n(𝑡)) 
represent the network state at 𝑡 , where 𝑧𝑖(𝑡)  denotes the 
expression value of node (i.e., feature 𝑖). Then, 𝑥𝑖(𝑡) ∈ {0,1}  
is defined to measure whether or not node 𝑖 has a large change 
at sampling point 𝑡 , that is, if |𝑧𝑖(𝑡) − 𝑧𝑖(𝑡 − 1)|  is a 
sufficiently large (≥ 𝑑𝑖), then 𝑥𝑖(𝑡) = 1, otherwise 𝑥𝑖(𝑡) =
0 , where 𝑑𝑖  is a constant threshold. Thus, 𝑋(𝑡) =
(𝑥1(𝑡), … , 𝑥𝑛(𝑡)) is the transition state for the network at 𝑡. 

Next, we define a local network structure centered on each 
node, which is the basis to construct a conditional network 
entropy. Assume that node 𝑖 has 𝑚 linked first-order neighbor 
nodes  𝑖1, 𝑖2, … , 𝑖𝑚, which composes a local network centered 

on node 𝑖  with local transition state 𝑋𝑖(𝑡) =
(𝑥𝑖(𝑡), 𝑥𝑖1

(𝑡), … , 𝑥𝑖𝑚
(𝑡)) at 𝑡. Clearly, from the current state 

𝑋𝑖(𝑡)  at time 𝑡 , there are totally 2𝑚+1  possible state 
transitions (or possible transition states), which is denoted as 
{𝐴𝑢}𝑢=1,2,…,2𝑚+1 for this local network at the next time point 

𝑡 + 1 (see Fig. 2A). To simplify notation, we hereafter drop 𝑖 
to denote 𝑋𝑖(𝑡)  as 𝑋(𝑡) , and also denote transition state 
simply as state.  

From the network structure, we can derive the Markov 
matrix 𝑃 = (𝑝𝑢,𝑣), where 𝑝𝑢,𝑣(𝑡) describes the transition rate 

from state 𝑢 to state 𝑣 with 

𝑝𝑢,𝑣(𝑡) = Pr(𝑋(𝑡 + 1) = 𝐴𝑣 |  𝑋(𝑡) = 𝐴𝑢),          (1) 

where 𝑢, 𝑣 ∈ {1,2, … , 2𝑚+1}  and ∑ 𝑝𝑢,𝑣(𝑡) = 1𝑣 . Thus, we 

have the following the stochastic Markov process for 𝑋(𝑡) 

{𝑋(𝑡 + 𝑖)}𝑖=0,1,… = {𝑋(𝑡), 𝑋(𝑡 + 1), … , 𝑋(𝑡 + 𝑖), … }  (2) 

with 𝑋(𝑡 + 𝑖) = 𝐴𝑢, 𝑢 ∈ {1,2, … , 2𝑚+1}. 

 

Figure 2. (A). For any state at time 𝑡, there are totally 2𝑚+1 possible state 

transitions (or possible transition states) to the state in the next time 𝑡 + 1. 

Such state transition process is modeled as a Markov process. (B) Based on 

the state transition process, we derived the transition-based network entropy 
(TNE). For the data of brain tumor development, the composite TNE index 

𝐼  increase sharply around 60 days, indicating the critical transition and 
reflecting the emerging hyperplasia after P60. 

 

D. Theoretical derivation near the critical point 

Consider the following discrete-time dynamical system 
representing dynamical evolution of a network 

𝑍(𝑡 + 1) = 𝑓(𝑍(𝑡); 𝑃),                               (3) 

where 𝑍(𝑡) = (𝑧1(𝑡), … , 𝑧𝑛(𝑡)) is an 𝑛-dimensional state 
vector or variables at time instant 𝑘  representing feature 
values, 𝑃 = (𝑝1, … , 𝑝𝑠)  is a parameter vector or driving 
factors representing slowly changing factors. 𝑓: 𝑅𝑛 × 𝑅𝑠 →
𝑅𝑛  are generally nonlinear functions. Furthermore, assume 
that the following conditions hold for Eq. (3). 

 �̅� is a fixed point of system such that �̅� = 𝑓(�̅�; 𝑃). 

 There is a value 𝑃𝑐  such that one or a pair of the 

eigenvalues of the Jacobian matrix 
𝜕 𝑓(𝑍;𝑃𝑐)

𝜕 𝑍
|𝑍=𝑍 equal 

to 1 in modulus. 

 When 𝑃 ≠ 𝑃𝑐, the eigenvalues of system (3) are not 
always 1 in modulus. 
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The above three conditions with other transversal 
conditions imply that the system undergoes a phase change at 
�̅�  or a codimension-one bifurcation when 𝑃  reaches the 
threshold 𝑃𝑐 . The bifurcation is generic, i.e. almost all of 
bifurcations for a general system satisfy these conditions.  

For system (3) near �̅�, before 𝑃 reaches 𝑃𝑐 , suppose the 
system is at a stable fixed point �̅�  and therefore all the 
eigenvalues are within (0, 1) in modulus. The parameter value 
𝑃𝑐  at which the state shift of the system occurs is called a 
bifurcation parameter value, or a critical transition value. 

Now we consider the linearized approximate equations of 
Eq.(3). Specifically, introducing new variables 𝑌(𝑡) =
(𝑦1(𝑡), … , 𝑦n(𝑡)) and a transformation matrix 𝑆, i.e., 𝑌(𝑡) =
S−1(𝑍(𝑡) − �̅�), we have 

𝑌(𝑡 + 1) = Λ(𝑃)𝑌(𝑡) + 𝜁(𝑡), 

where Λ(𝑃)  is the diagonalized matrix of 
𝜕 𝑓(𝑍;𝑃𝑐)

𝜕 𝑍
|𝑍=𝑍 , 

𝜁(𝑡) = (𝜁1(𝑡), … , 𝜁n(𝑡)) are small Gaussian noises with zero 
means. Denote σi as the small standard deviation of 𝜁i for all 
𝑘. 

Without loss of generality, the diagonalized matrix 𝛬 =
(𝜆1, … , 𝜆𝑛) with each 𝜆𝑖 between 0 and 1. 

Among eigenvalues of 𝛬, the largest one (in modulus), say 
𝜆1, first approaches to 1 in modulus when parameter 𝑃 → 𝑃𝑐. 
The eigenvalue 𝜆1 characterizes the system's rate of change 
around the fixed point and is called the dominant eigenvalue. 
The early state corresponds to the period with |𝜆1| < 1 , 
whereas the transition stage corresponds to the period with 
𝜆1 → 1 . Without loss of generality, assume that the first 
variable 𝑦1 in 𝑌 is with 𝜆1. Near a fixed point, we have proven 
that there exists a dominant group or a dynamical driver 
network (DDN), which satisfies some generic conditions 
simultaneously (including high fluctuation, strong correlation 
within DDN, and the weak correlation between DDN-
members and other nodes) when the system approaches a 
critical transition point [10]. 

Different from the analysis on the original variables 𝑍 in 
[10], here we focus on the variation equation of Eq. (3) with 
variation variables Δ𝑍. 

Noting 

𝑧𝑖 = 𝑠𝑖𝑗𝑦1 + ⋯ + 𝑠𝑖𝑛𝑦𝑛 + 𝑧�̅�,                   (4) 

let the variation variables 

𝛥𝑍 = 𝑍(𝑡) − 𝑍(𝑡 − 1), 

then from Eq. (4) we have 

𝛥𝑧𝑖 = 𝑠𝑖𝑗𝛥𝑦1 + ⋯ + 𝑠𝑖𝑛𝛥𝑦𝑛 

where 

𝛥𝑌 = 𝑌(𝑡) − 𝑌(𝑡 − 1). 

We call 𝛥𝑧𝑖(𝑡) and 𝛥𝑦𝑖(𝑡) as the variation variables for 𝑧𝑖(𝑡) 
and 𝑦𝑖(𝑡), respectively. 

Obviously, it holds 

𝛥𝑌(𝑡 + 1) = 𝛥𝑌(𝑡) + 𝜉(𝑡), 

where 𝜉(𝑡) = 𝜁(𝑡) − 𝜁(𝑡 − 1) are Gaussian noises with zero 
means and covariances 𝜅𝑖𝑗 = 𝐶𝑜𝑣(𝜉𝑖 , 𝜉𝑗). It is clear that the 

standard deviation of 𝜉𝑖(𝑡) is √2𝜎𝑖, where 𝜎𝑖 is the standard 
deviation of 𝜁 for all 𝑡. Obviously, variable 𝛥𝑦1 corresponds 
to the dominant eigenvalue λ1. 

For any integer 𝑇 > 0, by iteration we have 

Δ𝑌(𝑡 + 𝑇) = Λ𝑇Δ𝑌(𝑡) + Λ𝑇−1𝜉(𝑡) + Λ𝑇−2𝜉(𝑡 + 1) + ⋯
+ Λ𝜉(𝑡 + 𝑇 − 2) + 𝜉(𝑡 + 𝑇 − 1) 

Clearly, the summation of the coefficients for the 
covariance matrices for 𝑇 Gaussian noises, is 

(𝐼 − ΛT)(𝐼 − Λ)−1 

where 𝐼 is the 𝑛 -dimensional identity matrix. 
Note that when the system is in an early state, 𝜆𝑖<1. Hence 

as 𝑇 → +∞ it holds 

Δ𝑌(𝑡 + 𝑇) = 𝜀(𝑡)                           (5) 

where 𝜀(𝑡) = (𝜀1(𝑡), … , 𝜀𝑛(𝑡))  are small Gaussian noises 
with zero means. Based on the Law of Large Numbers, the 
deviation of 𝜀𝑖(𝑡) is bounded when 𝜆𝑖<1. 

Back to the original variables 𝑍, it can be referred that 

𝛥𝑧𝑖(𝑡 + 𝑇) = 𝑠𝑖𝑗𝛥𝑦1(𝑡 + 𝑇) + ⋯ + 𝑠𝑖𝑛𝛥𝑦𝑛(𝑡 + 𝑇),  (6) 

therefore, when the system is in an early state, or equivalently 

|𝜆𝑖| <1, any variation variable 𝛥𝑧𝑖(𝑡 + 𝑇)  is statistically 

independent of its initial variable 𝛥𝑧𝑖(𝑡), for a sufficiently 

long 𝑇 , which generally holds because the biochemical 

reactions occur in a very short time interval (e.g. less than 

micro-seconds). In other words, any two samples can be 

considered to have a long 𝑇  due to a large number of 

biochemical reactions during the intervals of their 

observations, and therefore, variation variables for any two 

samples are statistically independent of each other when the 

system is in the early state. 

Now we discuss the case near the critical transition when 
the dominant eigenvalue λ1 → 1 (for  λ1 → −1, the derivation 
is similar and thus is omitted). 

Notice that the variation variable 𝑦1  is related to the 
dominant eigenvalue 𝜆1. 

𝑦1(𝑡 + 𝑇) = 𝜆1𝑦1(𝑡 + 𝑇 − 1) + 𝜁1(𝑡 + 𝑇 − 1) 

holds for any integer 𝑇, we have 

𝑇Δ𝑦1(𝑡 + 𝑇) + Δ𝑦1(𝑡 + 𝑇 − 1) + ⋯ + 𝛥𝑦1(𝑡 + 1)
= 𝜆1(𝛥𝑦1(𝑡 + 𝑇 − 1) + ⋯ + 𝛥𝑦1(𝑡))

+ (𝜁1(𝑡 + 𝑇 − 1)) − 𝜁1(𝑡 − 1). 

Therefore, 

Δ𝑦1(𝑡 + 𝑇) = (λ1 − 1)Δy1(𝑡 + 𝑇 − 1) + ⋯
+ (𝜆1 − 1)Δ𝑦1(𝑡 + 1) + 𝜆1Δ𝑦1(𝑡)
+ (𝜁1(𝑡 + 𝑇 − 1) − 𝜁1(𝑡 − 1)) 

Hence when λ1 → 1 we have 

Δ𝑦1(𝑡 + 𝑇) = Δ𝑦1(𝑡) + (𝜁1(𝑡 + 𝑇 − 1) − 𝜁1(𝑡 − 1)), 
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which means that Δy1(𝑡 + 𝑇) strongly depends on Δ𝑦1(𝑡) for 
a small noise. In other words, the dominant variables Δ𝑦1(𝑡) 
are strongly dependent of its previous state when 𝑃 is near 𝑃𝑐. 
It is obviously that the same result holds when 𝜆1 → −1. 

On the other hand, because |𝜆𝑖| < |𝜆1| , 𝑖 =2,3,...,n, the 
other variables Δyi(𝑡 + 𝑇) satisfy Eq. (5), that is, 

Δyi(𝑡 + 𝑇) = 𝜀𝑖(𝑡),           𝑖=2, 3, ... , n. 

Notice that the variable Δ𝑦1(𝑡) is related to the dominant 
eigenvalue 𝜆1. 

There are a special group of variables 𝑧𝑗 , whose 

variablesΔ𝑧𝑗  are related to Δ𝑦1 , i.e., the Δ𝑧𝑗  in Eq. (6) with 

𝑠𝑗1 ≠ 0, called a dominant group. Such variables 𝑧𝑗 are called 

the dominant-group members, or dynamical driver network  
(DDN) members [10]. 

For any two DDN members 𝑧𝑗  and 𝑧𝑖  with 𝑠𝑗1 ≠ 0  and 

𝑠𝑖1 ≠ 0 in Eq. (6), when |𝜆1| → 1, we have 

Δ𝑧𝑗(t + T) = sj1Δy1(t + T) + ⋯ + sjnΔyn(t + T)

=
𝑠𝑗1

𝑠𝑖1

Δ𝑧𝑖(𝑡) + 𝜌𝑗(𝑡) 

where 

𝜌𝑗(𝑡) = 𝑠𝑗1 (𝜁1(𝑡 + 𝑇 − 1) − 𝜁1(𝑡 − 1)

+
𝑠𝑗1

𝑠𝑖1

(𝑠𝑗2 − 𝑠𝑖2)𝜀2(𝑡) + ⋯

+
𝑠𝑗1

𝑠𝑖1

(𝑠𝑗𝑛 − 𝑠𝑖𝑛)𝜀𝑛(𝑡)) 

is Gaussian noise, which is assumed to be small. It is clear 
that when |𝜆1| → 1, for any two DDN members, the variable 
Δ𝑧𝑗(𝑡 + 𝑇) is correlated to Δ𝑧𝑖(𝑡). It also holds for 𝑖 = 𝑗, i.e. 

for any DDN member, the variable Δ𝑧𝑗(𝑡 + 𝑇) is correlated 

to its previous Δ𝑧𝑗(𝑡). On the other hand, as indicated by Eq. 

(3), for any non-DDN member 𝑧𝑘, Δ𝑧𝑘(𝑡 + 𝑇) is statistically 
independent of Δ𝑧𝑘(𝑡). 

E. Dynamical increase of network entropy 

For a local structure centered on node 𝑖 with its 𝑚 linked 
first-order neighbor nodes 𝑖1, 𝑖2, … , 𝑖𝑚, we already know that 
its state transition process is a stochastic Markov process 
given as in (2). Within a period or phase, assume that there is 
no change on the transition matrix, i.e., the transition 
probabilities 𝑝𝑢,𝑣(𝑡) in (1) between any two possible states 

𝐴𝑢 and 𝐴𝑣 are invariant. Thus, the process {𝑋(𝑡)}𝑡∈[𝑡1,𝑡2] is a 

stationary stochastic Markov process during a specific period, 
e.g. the early stage or the transition stage. 

Hence, there is a stationary distribution 𝜋 =
(𝜋1, … , 𝜋2𝑚+1)  satisfying ∑ 𝜋𝑣𝑝𝑢,𝑣 = 𝜋𝑢𝑣 . Then, we can 

define a transition-based network entropy (TNE) as 

𝐻𝑖(𝑡) = 𝐻(𝜒) = − ∑ 𝜋𝑣𝑝𝑢,𝑣 log 𝑝𝑢,𝑣

𝑢,𝑣

                (7) 

where the subscript index 𝑖 indicates the center node 𝑖 of this 
local network, and 𝜒  represents the state-transition process 
𝑋(𝑡), 𝑋(𝑡 + 1), … , 𝑋(𝑡 + 𝑇), … of the local network. This 

entropy is actually the conditional entropy while it also 
describes the average transition entropy (11), depending on 

the state transition, i.e., 𝐻𝑖(𝑡) = 𝐻(𝑋(𝑡) | 𝑋(𝑡 − 1)) =

𝐻(𝑋(𝑡), 𝑋(𝑡 − 1)) − 𝐻(𝑋(𝑡 − 1)). We also note that 𝑋(𝑡) 

(or 𝑍(𝑡) − 𝑍(𝑡 − 1)) are variation variables. Clearly, in an 
early state (or a disease state), a system recovers from a small 
perturbation quickly because of high resilience, i.e., 𝑋(𝑡) and  
𝑋(𝑡 − 1)  are almost independent. Thus, we have 𝐻𝑖(𝑡) ≈
 𝐻(𝑋(𝑡))  due to 𝐻(𝑋(𝑡), 𝑋(𝑡 − 1)) ≈ 𝐻(𝑋(𝑡)) + 𝐻(𝑋(𝑡 −
1))  > 0, which results in a high TNE. By contrast, the system 
has difficulty recovering from a small perturbation in a 
transition state because of low resilience, i.e., 𝑋(𝑡)  and  
𝑋(𝑡 − 1)  are strongly correlated, which implies that 𝐻𝑖(𝑡) 
rapidly approaches the minimum, 𝐻𝑖(𝑡) ≈ 0   due to 
𝐻(𝑋(𝑡), 𝑋(𝑡 − 1)) ≈ 𝐻(𝑋(𝑡 − 1)). 

We combine the TNEs for all nodes and define the 
average network entropy for the whole network with 𝑛 nodes 
as the average TNE as follows: 

𝐻(𝑡) =
1

𝑛
∑ 𝐻𝑖(𝑡)𝑛

𝑖=1                           (8) 

Suppose that there are control samples and case samples, 
then we define the comparative entropy as:  

𝐼(𝑡) =
𝐻𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡)

𝐻𝑐𝑎𝑠𝑒(𝑡)
                               (9) 

where 𝐻𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑡) is the TNE based on control samples in the 
form of Eq. (8), and 𝐻𝑐𝑎𝑠𝑒(𝑡)  is the TNE based on case 
samples in the form of Eq. (8).  

Note that we defined the dominant-group, or the DDN, as 
a group of nodes that make the first move toward the disease 
state, thereby indicating a sudden deterioration. Then, the 
nodes in the network can be categorized into three groups 
according to the local structure of the DDN or the leading 
network: 

 Type 1: DDN feature is a DDN node, i.e., if node 𝑖 
belongs to DDN, then 𝑖 is a Type 1 node.  

 Type 2: A 1st-downstream feature is a node that is 
linked with at least one DDN node, i.e., if node 𝑖 is a 
non-DDN node and some of its linked neighbors are 
DDN nodes, then 𝑖 is a Type 2 node.  

 Type 3: A 2nd-downstream feature is a non-DDN node 
that has no links with DDN nodes, i.e., if node 𝑖 is a 
non-DDN node, and its linked neighbors 𝑖1, 𝑖2, … , 𝑖𝑚 
are all non-DDN members, then 𝑖 is a Type 3 node. 

Next, we show that the comparative TNE in Eq. (9) based 
on case samples has the following generic properties in terms 
of its dynamics, which correspond to these three types of 
nodes when the system is near a critical transition: 

 

Type Node TNE for local network  

1 DDN feature Increases drastically 

2 1st-downstream feature Increases 
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3 2nd-downstream feature No significant change 

We have a detailed theoretical proof for the conclusions in  

[11]. 

III. RESULTS 

A. Identify the transition state 

Based on comparative TNE, we selected 35 features out of 
247 features and thus identified the transition state of brain 
tumor. Specifically, the sharp increase of the TNE index 
provides the early-warning signal for the imminent critical 
transition, that is, the commitment of brain tumor. The 
selected 35 features are listed in Table II.  

We point out that, different from the traditional molecular 
biomarkers used in medicine, whose expressions reflect the 
presence or severity of the disease state and are required to 
have consistent (or constant) values that are distinct in the 
respective tumor and early states, the DDN is a strongly 
correlated feature network where the values of features, 
however, dynamically change without keeping constant 
values in the transition state as shown in Fig.1. In other words, 

the system tends to present increasingly instability when the 
system approaches to the transition state, that is, the DDN 
features of DDN show increasingly fluctuation while they 
behave dynamically in a strongly collective manner, which is 
a key feature of the DDN. This is why it can be used to detect 
the early signal of a complex disease in the early stage, which 
is not otherwise possible using traditional biomarkers or 
methods. Hence, the existence of the DDN implies that the 
system is in the transition state for an individual among certain 
high-risk cohort, whose health condition is in a highly 
unstable state and thus results in high-level entropy in the 
driver feature network.  

B. Development of Brain Tumors in Progeny of ENU-

exposed rats  

ENU exposed rats (n= 72) (13 from P30, 21 from P60, 

26 from P90, 6 from P120 and 6 from P150) were examined 

histologically for the presence of nestin+ and OPN+ 

precursor lesions (nests) as well as appearance of tumors, 

which can be detected by MRI after day 90 (Fig. 3A middle 

and right). Consistent with previous reports, single or 

Figure 3. Development of tumor at five time points consistent with transition state. (A). Left, single and multi-cell cysts existed in all five ages of 

ENU-exposed rats. Middle, nestin+ and OPN+ precursor lesions (nests) presented in ENU-exposed rats by day 90, which were rare noted with MRI 
in any rats before P60. Right, the final histological staining by rat death. (B). Left, histogram of percentage of ENU-exposed rats with nests or 

microtumors. Right, surviving curve of ENU-exposed rats after day120. (C) The dynamical change is illustrated for the whole feature network, with 

DDN located in the lower left. It can be seen that the DDN presents a significant change at P60, which illustrates the imminent critical transition. 

The early-warning signal detected by DDN is in accordance with the observation in the experiment, that is, the occurrence of hyperplastic 

microtumors is observed in 90 days. 
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multiple nestin+ precursor cell cyst were noted in all rats by 

P30 (100%) (Fig. 3B left). In contrast, microtumors were 

not noted in any rats sacrificed at P30, only 4 rats (18%) at 

P60, while ~60% of rats at P90, and 100% of rats at P120-

150 (Fig. 3B left). While the rat death was firstly found at 

day150, which were showed by surviving curve in Figure 

3B, right. No macroscopic tumors were found in any 

animals at the time points examined. 

C. Application of Transition-based Network Entropy (TNE) 

Method to Identify Dynamic Drive Network and Critical 

Transition State Before Hyperplasia 

CSF was collected from a total of 72 ENU and 75 saline 
exposed rats over three independent experiments. At P30 (13 
ENU- and 11 saline-treated), P60 (21 ENU- and 21 saline-
treated) and P90 (26 ENU- and 29 saline-treated), mass 
spectra of CSF applied to CM10 ProteinChip arrays were 
collected for the five postpartum ages (P30, P60, P90, P120 
and P150) as described in Methods (Table I). The relative 
intensities of peaks were different in the CSF of rats obtained 
at these five ages. For this reason we grouped the spectra by 
postpartum age for baseline correction, noise reduction and 
intensity normalization. The spectra for all five ages were then 
grouped together for the purpose of finding peaks, and then 
separated again by age for further analysis of the peaks at each 
age. Our DDN method was applied to analyze the case and 
control mass spectrometry profiles, which allowed the 
identification of early-warning CSF proteome DDN 
components. The DDN’s transition-based network entropy 
was proposed as a general early-warning indicator for the 
transition to hyperplasia, which appeared to be related to the 
tumor initiation related CSF proteome changes and 
progression and may provide better insight into the 
pathophysiology and give clues to the tumor environment 
impact. Based on the state transition process, we derived the 
transition-based network entropy (TNE), and we identified 
247 DDN CSF proteins. As shown in Figure 2B, the 
composite TNE index I increase sharply around 60 days, 
indicating the critical transition into hyperplasia during 
glioma development after P60. 

TABLE II.  PART OF SELECTED FEATURES 

M/Z 
Functional analysis 

Laser energy Annotation 

13913 med glutathionylated transthyretin 

14120 med 
Sinapinic acid adduct of glutathionylated 

transthyretin 

22893 high prostaglandin D2 synthase 

66110 high albumin (z=1) 

6795 med transthyretin (z=2) 

6909 med glu-cys-transthyretin (z=2) 

Features without annotation 

3487, 3544, 6953, 5704, 5789, 14285, 4196, 5788, 15847, 3641, 7515 

5375, 3992, 11848, 4362, 8913, 11861, 3941, 3700, 4891, 7061, 3504 
4161, 5818, 8569, 7444, 12772, 22034, 4734 

 

IV. DISCUSSION 

Characterization of the early relationship between brain 
tumor cells and their environment is pivotal to the 
understanding of the brain tumorigenesis. Given that the rat 
gliomas are not generally detectable pathologically until 
approximately 90 days of age (P90), we tested the hypothesis 
that brain tumor progression can be modeled into three states: 
(1) a pre-hyperplasia state with high resilience and robustness 
to perturbations; (2) a critical transition state, defined as the 
prelude to catastrophic shift into the hyperplasia state, 
occurring before the imminent phase transition point is 
reached, therefore, with low resilience and robustness due to 
its dynamical structure; (3) a hyperplasia state, representing a 
seriously deteriorated stage possibly with high resilience and 
robustness.  

With the CSF proteomics survey of the ENU model rats, 
we constructed CSF protein networks to gauge the 
physiological and pathological status of the cerebral 
compartment and nervous tissues at different days of age 
occurring with the gradual appearance of cellular hyperplasia. 
We employed our previously developed transition-based 
network entropy (TNE) [11] and identified the drastic or a 
qualitative transition at P60 in the CSF proteome network 
before hyperplasia, which corresponds to a so-called 
bifurcation point in dynamical systems theory [8-9].  When 
the ENU rats were at P60 and CSF proteome network is near 
the critical point, we found a dominant group of 35 CSF 
proteins which we defined as dynamic driver network (DDN) 
of CNS protein features collectively increased the TNE that is 
conditional on the previous state of a local dynamical network 
in a Markov process, whereas there are no significant TNE 
fluctuations before and after P60.  

Our current up to date proteomics effort identified 6/35 of 
the DDN CSF proteins, and 4/6 are transthyretin species of 
different posttranslational modifications. Consistent with our 
previous observation and other reports, CSF transthyretin 
protein species were shown to differentially express in our 
ENU rat model [1] and human brain tumor [16-18]. In this 
regard, CSF transthyretin is a biomarker, not only differentiate 
between case and control, but also function as DDN 
component with sharp TNE increase at rat age P60. Our 
previous results indicated that, between case and control 
groups, total transthyretin levels did not differ while there 
were significant differences of posttranslational 
modifications. It is possible that variation of different 
translational modifications may disrupt transthyretin’s normal 
functions in the transport of both thyroxine and reinol, which 
may drive the critical transition of cellular hyperplasia after 
P60 during tumorigenesis.  It seems unlikely that the 
fluctuation in CSF transthyretin levels before hyperplasia in 
this study represent release from these small nests and 
microtumors as variation diminished prior and post the critical 
transition at P60.  

Another two CSF DDN proteins identified were albumin 
and prostaglandin D2 synthase (PGD2S). Both proteins are 
abundant in the CSF [19-20] and considering absence of 
hyperplasia before P60, therefore, the differential expression 
between case and control or variations observed before P60 
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reflects either albumin release from tumor cells or the impact 
of a space occupying lesion before imaging changes are 
apparent. Our previous hypothesis [1] of these proteins’ 
differential CSF abundance was the disruption of the blood 
brain barrier during tumorigenesis.  

Our DDN discovery at P60 findings and the DDN CSF 
protein identification results are consistent with the hypothesis 
that a CSF environmental change that is initiated before the 
hyperplasia/ micro tumor stage (before P60), similar to what 
has been reported to occur early in systemic cancers such as 
those involving the breast and prostate [21]. 6/35 DDN CSF 
proteins were identified and 29 CSF protein identities remain 
to be determined. Once completing all DDN CSF protein 
identifications, we will be at a much better position to explore 
CSF environmental changes committing the hyperplasia 
development path. Nevertheless, our dynamic network 
analysis suggests, in regard to tumorigenesis, to focus at P60 
of the rat glioma model to probe the in situ environment 
changes preceding the development of hyperplasia 
abnormalities.  This may lead to not only insights of host 
tumor environment interactions, but also an effective time 
window for novel therapeutic strategies in primary brain 
tumor.  
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