
Data Filtering for Scalable High-dimensional k-NN Search
on Multicore Systems

Xiaoxin Tang1, Steven Mills2, David Eyers2, Kai-Cheung Leung2,
Zhiyi Huang2, Minyi Guo1

1Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, China
2Department of Computer Science, University of Otago, New Zealand

ABSTRACT
K Nearest Neighbors (k-NN) search is a widely used category of
algorithms with applications in domains such as computer vision
and machine learning. With the rapidly increasing amount of data
available, and their high dimensionality, k-NN algorithms scale
poorly on multicore systems because they hit a memory wall. In
this paper, we propose a novel data filtering strategy, named Sub-
space Clustering for Filtering (SCF), for k-NN search algorithms
on multicore platforms. By excluding unlikely features in k-NN
search, this strategy can reduce memory footprint as well as com-
putation. Experimental results on four k-NN algorithms show that
SCF can improve their performance on two modern multicore plat-
forms with insignificant loss of search precision.

Categories and Subject Descriptors
I.0 [Computing Methodologies]: GENERAL

General Terms
Performance

Keywords
K Nearest Neighbors; High-Dimensional Space; Memory Wall;
Multicore Systems; Subspace Clustering for Filtering.

1. INTRODUCTION
Similarity search is one of the applications that demands efficient

parallel algorithms on multicore systems. Through finding similar
items within a known database, existing knowledge can be used
for predicting unknown information. Many domains, such as com-
puter vision [14], bioinformatics [3], data analysis [5], handwriting
recognition [16], and many other statistical classification tasks, rely
on similarity search and demand high-performance algorithms, es-
pecially under the pressure of big data [10]. For example, the large
amount of available images makes image-matching [13] from com-
puter vision a very interesting and challenging problem.
K Nearest Neighbors (k-NN) search is one frequently used cat-

egory of algorithms for solving similarity search problems. Here,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC’14, June 23–27, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2749-7/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600212.2600710.

we take the concept “feature” to represent one data item in the
database. In general, a feature f can be defined as a D dimen-
sional vector—we later refer to its components as e1 through eD .
The database X is defined as a set of N such features: X =
{f1, f2, . . . , fN}. The similarity is often measured by Euclidean
Distance (ED). Based on these definitions, the k-NN problem can
be formally described as: given a query feature q, find k reference
features in X that have the shortest (Euclidean) distances to q.

In general, most algorithms need two types of data structures:
index data and feature data, both of which are frequently visited
during k-NN search. The index structure is used for finding ref-
erence features—called candidate features—that are most likely to
be the k nearest neighbors. To decide whether a candidate feature
is one of the k nearest neighbors, the feature data will be visited
in order to evaluate their similarity. The feature data structure is a
matrix and can consume up to O(ND) memory space.

As image-matching applications are becoming more and more
popular, the size of typical feature sets X is increasing. The di-
mensionality of features is also high: e.g. SIFT [9] features have
128 dimensions. When both N and D are very large, which is of-
ten the case of problems like image matching, the feature structure
can consume up to several dozens of megabytes for a single image.
In this case, many available algorithms do not work efficiently on
multicore systems [13] due to memory latency and bandwidth lim-
itations (also known as the memory wall), as the data structure is
not small enough to fit in the last-level cache.

In this paper, we propose a novel data filtering strategy for high-
dimensional k-NN search on multicore systems. Instead of find-
ing the likely candidates, our data filtering strategy excludes those
unlikely features based on distance estimation. The data filtering
strategy has two advantages. First, it reduces computation and the
number of memory accesses by replacing high-dimensional dis-
tance calculation with simple distance estimation. Second, its index
structure for filtering has a very small memory footprint and thus
reduces the effect of memory wall.

This paper is organized as follows: Section 2 presents the SCF
method. Section 3 shows performance results of SCF that is applied
to four k-NN algorithms on multicore systems. Section 4 discusses
the related work. Finally, Section 5 draws conclusions of this paper.

2. THE DATA FILTERING STRATEGY
In this section, the following Squared Euclidean Distance (SED)

is used to measure the similarity between two features:

SED(fi, fj) = ‖fi − fj‖ =

D∑

m=1

(fi[m]− fj [m])2. (1)

The square root in ED is not used in the SED, which can reduce the
computation without changing the search results.

305



1 2 4 8 16 32 64 128
0

5

10

15

20

25

Dimensionality

Av
er

ag
e 

ra
di

us
x 

10
00

0 radius

(a) Average radius of a random dataset.

e1 e2 e3 e4
q 0 0 0 0
A -4 2 3 4
B -2 2 1 0
C 2 -3 0 1
D 4 -3 4 3
g1 -3 2 2 2
g2 3 -3 2 2

(b) A 4-dimensional case.

 

* q 

* q 
A * * B 

* A 
* B 

 

* A 

* D 

Dimension [0, 3] 

Dimension [0,1] 

Dimension [2, 3] 

 * C 
* D 

C * * D 

 D* C 

Di
B, q * 

 

 

 
DD

 

(c) From a full-space clustering to subspace clustering.

Figure 1: Challenges of using clustering for distance estimation in high-dimensional space. (a) The left figure shows the average radius
of a randomly generated dataset. This dataset contains 10,000 features, which are divided into 32 groups. Each element of the features is
uniformly distributed in the range of [1, 128]. (b) The table in the middle gives a simple 4-dimensional example. (c) The right figure shows
our subspace clustering method.

2.1 A case study: brute-force search
Here we use the brute-force k-NN search to demonstrate how

our data filtering strategy works. To find the k-NN of a given query
feature, brute-force search first calculates all the distances between
the query feature and all reference features in the database. It uses
a max-heap of size k to accumulate the features with the small-
est distances. After all of the distances are pushed onto the heap,
the k-NN results can be collected from it. This algorithm is very
computation-intensive as it will cost1 O(ND) to calculate the dis-
tances and O(N log k) to find the k-NNs. Distance calculation will
dominate the time as log k is very small for small k while D can
be large for high-dimensional problems. It also has a large memory
footprint as it needs to scan the whole database for each query.

Since k is usually much smaller than the size of the database X ,
many distance calculations are not necessary as most features are
far away from the query feature. If we can exclude those features
that are unlikely to be a k-NN using simple distance estimation, we
can reduce the computation as well as the memory footprint.

2.2 Distance estimation through clustering
The key issue now is how to estimate the distances accurately

and efficiently. Clustering is a traditional method that is used to es-
timate the distances to a group of features. In this paper, we use the
k-means algorithm of the FLANN library [11] for subspace clus-
tering in our distance estimation. Though better clustering methods
may be used, they do not affect our general approach.

After clustering, each reference feature will be assigned to the
group whose group center is the closest to that reference feature.
Then, these group centers will represent the features within their
corresponding groups. However, when the dimensionality becomes
large, the features are sparsely distributed in the space and the
radius of each group becomes large as well. For example, Fig-
ure 1a gives the average radius of the groups generated from ran-
dom dataset with variable dimensionality. As we can see, the ra-
dius of the groups grows quickly with the increasing dimensional-
ity. When the radius is large, clustering-based distance estimation
becomes less accurate.

Consider a simple 4-dimensional case as an example, which is
given in Figure 1b. Here, q is the query feature; A, B, C and
D are four reference features. After clustering on the reference
features based on the all four dimensions, A and B are put into the
same group with the center g1, and C and D are put into the other
group with the center g2. The left side of Figure 1c illustrates the

1Big-O notation usually denotes asymptotic effects, but we will use
it as shorthand for proportionality without simplified expressions.

clustering result (it is simplified with circles as it is hard to draw
4-dimensional space). If we use this clustering result to estimate
distances between the query and the reference features, then ‖g1 −
q‖ will represent ‖A−q‖ and ‖B−q‖ while ‖g2−q‖ will represent
‖C − q‖ and ‖D − q‖. As ‖g1 − q‖ = 21 and ‖g2 − q‖ = 26,
the order of the reference features based on the distance estimation
is A, B, C, D. However, their real distances are ‖A − q‖ = 52,
‖B−q‖ = 8, ‖C−q‖ = 15 and ‖D−q‖ = 43, and the right order
should be B, C, D, A. If k = 1, the results based on this distance
estimation will have 0% accuracy, while in the case of k = 2, the
accuracy is only 50%.

From the above example we can see that clustering within high-
dimensional spaces has two problems. First, it is so coarse-grained
that it is not able to tell the differences between features within the
same group. For example, it cannot tell that B is much closer to q
than A. Second, it could present incorrect results easily as a closer
group center does not mean all features in that group are closer to
the query. For example, though group g1 is closer to q than group
g2, feature C in g2 has a smaller distance to q than A of group g1.
The reason is that the radius of each group could be very large, and
thus can obscure the differences between groups.

0 1 C-1

0 1 C-1

0 1 C-1

Sub-space (0)
Dims: [0, d-1]

D-dimensional Feature Space

Sub-space (S-1)
Dims: [(S-1)*d, S*d-1]

Sub-space (i)
Dims: [i*d, (i+1)*d-1]

Figure 2: The basic structure for SCF method. It contains S sub-
spaces. All features are divided into different groups by using the
corresponding dimensions within each subspace.

2.3 Subspace Clustering for Filtering
Based on the above analysis, we propose the following Subspace

Clustering for Filtering (SCF) method. As Figure 2 shows, the data
structure of SCF is a multi-level cover of the feature space. Instead
of using all the dimensions for clustering, SCF divides the whole
space into S subspaces, each of which may contain �D

S
� dimen-

306



Algorithm 1: Build the SCF index.

d ← �D
S
�;

for i ← 0 to S − 1 do
Based on dimensions [i× d, (i+ 1)× d), use a clustering
method (e.g. k-means) to divide X into C groups;
for j ← 0 to N − 1 do

β[j][i] ← group ID that feature j belongs to;
for j ← 0 to C − 1 do

θ[i][j] ← center of group j;
γ[i][j] ← radius of group j;

return β, θ and γ;

Table 1: PSEDs between q and the group centers in the example.

g11 g12 g21 g22
q 13 18 0.5 24.5

sions. The remainder of D
S

can either be treated as an additional
subspace, or these dimensions can be distributed to the other sub-
spaces. Then, within each subspace, we use the aforementioned
k-means clustering method to divide the features into C different
groups where each group may contain N

C
features on average.

The SCF-based distance estimation depends on two data struc-
tures: the SCF index and a matrix of partial distances for the query
feature. The SCF index is created based on the clustering results
in the subspaces. The detailed algorithm for creating SCF index is
shown in Algorithm 1. β, θ and γ in the algorithm are three ma-
trixes that represent the SCF index. Each element βij (i ∈ [0, N),
j ∈ [0, S)) in the index represents the group ID of the ith feature
of X within the jth subspace. θjt (t ∈ [0, C)) represents the center
point of the tth group in the jth subspace. Similarly, γjt is used to
represent the radius of the tth group in the jth subspace.

The matrix of partial distances for the query feature is created by
Algorithm 2. It is represented by the matrix δ in the algorithm. The
matrix gives the Partial SED (PSED) between the query feature and
the center of each group in each subspace. It can be defined as:

PSED l,u(fi, fj) =

u∑

m=l

(fi[m]− fj [m])2 (2)

where 1 ≤ l ≤ u ≤ D, and [l, u] bound the dimensions used to
form a subspace.

Algorithm 3 shows the steps for distance estimation. The PSED
between the query and the center of a group is used to estimate the
PSED between the query and the reference features of that group.
For each reference feature, the sum of all estimated PSEDs in every
subspace is used as the Estimated SED (ESED) between the query
and the reference feature.

Table (1) shows the matrix for the PSEDs of the previous exam-
ple, where g11= (−3, 2, ·, ·), g12= (3,−3, ·, ·), g21= (·, ·, 0.5, 0.5),
and g22= (·, ·, 3.5, 3.5). Thus, in the right side of Figure 1c, the
ESED of each reference features are:

‖A− q‖est = ‖g11 − q‖psed + ‖g22 − q‖psed = 37.5,

‖B − q‖est = ‖g11 − q‖psed + ‖g21 − q‖psed = 13.5,

‖C − q‖est = ‖g12 − q‖psed + ‖g21 − q‖psed = 18.5,

‖D − q‖est = ‖g12 − q‖psed + ‖g22 − q‖psed = 42.5.

They result in the estimated order B, C, A, D, which is closer
to the real order of B, C, D, A than that estimated based on the
original full-space clustering.

Algorithm 2: Calculation of partial distances between the
query feature and the center of each group in each subspace

d ← �D
S
�;

δ[S][C] ← 0;
for i ← 0 to S − 1 do

for j ← 0 to C − 1 do
l ← i× d;
u ← (i+ 1)× d− 1;
δ[i][j] ← PSED [l,u](q, θ[i][j])

return δ;

Algorithm 3: SCF_Estimation(q, rt)

ESED ← 0;
for i ← 0 to S − 1 do

ESED ← ESED + δ[i][β[t][i]];
return ESED

It is worth noting that the overhead of Algorithm 1 is a one-off
cost, which will be relatively minor when amortized over many
queries. Also note that by adjusting S and C in the above algo-
rithms, we can change the estimation accuracy of SCF. Usually
when S and C are increasing, the estimation accuracy can be im-
proved. Since this paper focuses on performance and due to the
limited space here, we do not give further discussions on how to
maintain a high estimation accuracy. However, the real accuracy
achieved by our method is given in the experimental section.

2.4 Space complexity analyses
As shown in the above algorithms, SCF uses small index struc-

tures. Since there are S subspaces and each one has C groups,
it takes O(SC D

S
) = O(CD) memory space to store all the group

centers (θ) and O(SC) memory space to store radius of each group
(γ). Then, it takes O(NS) memory space to store group IDs (β) for
all reference features. During runtime, it will cost O(SC) memory
space to store the PSEDs (δ) for each query feature. Overall, the to-
tal memory used is O(CD+SC+NS+SC) for SCF method. As
N is the dominant one among all parameters, the space complex-
ity for SCF can be reduced to O(NS). Since S is much smaller
than D (8 versus 128 in our implementation for SIFT dataset), the
index structure of SCF is more likely to fit into the shared cache.
For example, when N = 20000, the brute-force algorithm needs
to access up to 10 MiB memory (each element of the feature is
float number) while the SCF structure only needs around 160 KiB
(group ID is represented by one byte). Therefore, SCF can better
utilize the shared cache and requires significantly fewer memory
accesses compared to the brute-force algorithm.

3. EVALUATION
In this section, we evaluate the performance of our SCF method

when it is applied to four k-NN algorithms: Brute-force (BF), Ran-
domized KD-Trees (RKD), Hierarchical k-means (Kmeans) and
Random Ball Cover (RBC). The first three algorithms (BF, RKD
and Kmeans) are chosen from the FLANN [11] library, which is
also contained in OpenCV [2] to provide fast approximate k-NN
search functionality. RBC is a state-of-the-art algorithm on parallel
platforms [4] and is well optimized to reduce scalability problems
when running on multicore systems. As the BF algorithm is the
most computation- and memory-intensive algorithm, we use it to
show that the SCF method can effectively reduce computation and

307



Table 2: Filtering rate (FR) and lost precision (LP) after applying SCF on each algorithm and dataset.

��������Algs
Dataset SIFT Random Madelon HAR Digits

FR LP FR LP FR LP FR LP FR SP

BF_SCF 96.87% 3.23% 89.53% 3.76% 67.75% 0.58% 89.21% 0% 96.64% 3.51%
RKD_SCF 82.99% 2.83% 84.48% 3.54% 20.22% 0.08% 76.88% 3.81% 66.84% 3.05%

Kmeans_SCF 77.66% 3.49% 87.43% 2.96% 48.39% 0% 34.5% 3.38% 47.38% 3.64%
RBC_SCF 87.81% 2.72% 85.75% 2.14% 48.87% 0% 68.38% 3.97% 81.24% 4.61%

Table 3: Overview of each test dataset.

Name Ref Query Dim

SIFT 25271 7481 128
Random 25000 7500 128
Madelon 2000 1800 500

HAR 7352 2947 560
Digits 3823 1797 64

memory footprint. However, we will also demonstrate that the fil-
tering method is very effective when applied to other optimized
algorithms such as RBC.

The datasets listed in Table (3) are used to evaluate the per-
formance of the above algorithms. In the table, “SIFT” repre-
sents features generated by the SIFT [9] algorithm, which is com-
monly used in computer vision. “Random” contains features that
are randomly generated and evenly distributed in the feature space
(a hypercube with sides of length 128). The “Digits”, “Madelon”
and “HAR” datasets are selected from the UCI Machine Learning
Repository [1]. In Table (3), the “Ref” column indicates the num-
ber of reference features while the “Query” column lists the num-
ber of query features used in the experiment. The “Dim” column
specifies the dimensionality of the datasets.

Two multicore platforms are used in our evaluation:

• AMD64: AMD Opteron Processor 6276, 16 cores × 4 @ 2.3
GHz, 16 MiB L3 shared cache, 64GiB DDR3 (1333 MHz)
memory;

• MIC: Intel Xeon Phi Coprocessor 5110P, 60 cores @ 1.0
GHz, 30 MiB L2 shared cache, 8 GiB GDDR5 (5.5 GHz)
memory.

The g++-4.4 compiler is used on the AMD64 machine and icc-14.0
is used for the code generation for the Xeon Phi.

3.1 Performance of sequential execution
In this section, we evaluate the performance after applying SCF

to the aforementioned four algorithms under sequential execution.
The results are collected from running the algorithms on a single
core of AMD64. As shown in Table (2), two metrics are used to
evaluate the performance and precision of SCF. The first one is Fil-
tering Rate (FR), which represents the percentage of features that
can be filtered by SCF. Thus, the higher the FR, the more computa-
tion and memory accesses it reduces, which leads to better perfor-
mance. The second one LP, indicates the lost precision compared
with the original k-NN results. For example, the LP of RBC_SCF
is the number of k-NN that are not in the k-NN results of the origi-
nal RBC, divided by the total number of k-NN of the original RBC
in each test. From the table we can see that SCF can successfully
maintain a LP of under 5%.

Though LP is very small in Table (2), FR varies across differ-
ent datasets and algorithms. This is because different algorithms
have different search precisions on different datasets. For example,
RKD can find the k-NN of “Madelon” efficiently, which leads to
a lower FR (20.22%). In this case most features the original RKD

SIFT Random Madelon HAR Digits
0
1
2
3
4
5
6
7
8
9

10

Im
pr
ov

em
en

t

BF_SCF RKD_SCF Kmeans_SCF RBC_SCF

Figure 3: Performance improvement of sequential execution after
applying SCF to each algorithm on AMD64 machine.

has found are good candidates that SCF cannot exclude. Similarly,
Kmeans processes “HAR” well, and thus SCF achieves a lower FR
(34.5%). SCF works well on BF and RBC in most cases as both al-
gorithms are highly dependent on exhaustive search of the feature
space, which is very suitable for applying SCF.

Figure 3 gives the performance improvement on a single core of
AMD64 after applying SCF to each algorithm. As we can see, SCF
can improve the performance by up to 8.85× for BF (in the “HAR”
case) and up to 5.78× for RBC (“SIFT”). This can be explained by
the exhaustive search in both algorithms benefiting greatly from
SCF. Though FR for RKD and Kmeans is high for some datasets,
their performance improvement is not as good as BF and RBC.
This is because both RKD and Kmeans spend a lot of time search-
ing their complex index structures to get a small number of good
candidates. Since the number of candidates for filtering is small,
SCF has a smaller effect on these two algorithms, even though FR
is high. However, on average, SCF can still improve the perfor-
mance of RKD by 33% and that of Kmeans by 19%. Moreover,
on multicore platforms, RKD and Kmeans will benefit more from
SCF due to reduced memory accesses, as we demonstrate later.

3.2 Performance of parallel execution
Although the computing power is increasing on multicore ma-

chines, memory latency and bandwidth are often the bottleneck that
leads to poor performance. We will show that, after applying our
SCF method, the scalability of the k-NN algorithms on multicore
machines is greatly improved. Here, all algorithms are parallelized
by using OpenMP and the suffix “_SCF” means that SCF is applied
to the corresponding algorithm. The improvements are calculated
by comparing with the original algorithm. For example, the im-
provement for BF is calculated as the execution time of the paral-
lelized original BF divided by the time of the parallelized BF_SCF.

Table 4: Parallel performance improvement of BF_SCF over the
original BF algorithm on each platform and dataset.

Platform SIFT Random Madelon HAR Digits

AMD64 15.54× 5.04× 2.66× 9.43× 4.13×
MIC 3.23× 2.11× 1.43× 2.97× 1.33×

308



1 8 16 24 32 40 48 56 64
0

50

100

150

200

250

Number of cores

Sp
ee

du
p

BF BF_SCF

(a) Scalability on AMD64.

SIFT Random Madelon HAR Digits
0
1
2
3
4
5
6

Im
pr
ov
em

en
t

RKD_SCF Kmeans_SCF RBC_SCF

(b) Performance improvement on AMD64.

0

50

100

150

200

BF_SCF RKD_SCF Kmeans_SCF RBC_SCF
0

5

10

15

M
PI

CP
I

CPI_ORG CPI_SCF MPI_ORG MPI_SCF

(c) Performance counters on AMD64.

1 60 120 180 240
0

100

200

300

400

500

Number of hardware threads

Sp
ee

du
p

BF BF_SCF

(d) Scalability on MIC.

SIFT Random Madelon HAR Digits
0

1

2

3

4

Im
pr
ov
em

en
t

RKD_SCF Kmeans_SCF RBC_SCF

(e) Performance improvement on MIC.

0

10

20

30

40

BF_SCF RKD_SCF Kmeans_SCF RBC_SCF
0
2
4
6
8
10
12

M
PI

CP
I

CPI_ORG CPI_SCF MPI_ORG MPI_SCF

(f) Performance counters on MIC.

Figure 4: Performance statistics of SCF.

3.2.1 Performance improvement of the BF_SCF
Table (4) lists the parallel performance improvement of BF_SCF

on AMD64 and the MIC machines. Compared with their sequen-
tial performance shown in Figure 3, the BF_SCF search has the
most improvement. For the case of the SIFT dataset on AMD64,
its improvement is 15.54× (64 cores), which is much better than
the 8.11× on a single core. Figure 4a explains why the parallel
BF_SCF is able to get more performance gain than its sequential
counterpart. The speedup curves in the figure show the good scal-
ability of BF_SCF, while the original BF’s speedup curves become
flat after 32 cores. On the AMD64 machine, the BF hits the mem-
ory wall much earlier than when all cores are used.

This result shows that for an embarrassingly parallel algorithm
like BF, the memory wall becomes one of the most serious bottle-
necks, which is supported by our statistics collected from perfor-
mance monitoring counters. However, after applying SCF, its scal-
ability has been significantly improved. For example, the speedup
against the original sequential BF has been improved from 12.84×
to 199.63× on AMD64 when all cores available are used. On the
MIC platform, the scalability of the original BF is better because
MIC has much better memory bandwidth. Moreover, since MIC
has four hardware threads in each core, it can efficiently hide the
memory latency through overlapping computation and memory ac-
cess. In this case, the memory wall problem in the original BF is
greatly relieved and it has reasonable scalability on MIC, as shown
in Figure 4d. However, BF_SCF still has much better performance
than the original BF, as can be seen in the other series on that figure.

3.2.2 Performance improvement of other algorithms
Figures 4b and 4e show the performance improvement of other

k-NN algorithms on parallel platforms. This compares the orig-
inal algorithm running across all cores to the SCF version. The
performance improvement of RBC_SCF is very similar to that of
its sequential counterpart (5.64× versus 5.54× on AMD64 in the
best cases). Since this algorithm has already been optimized for
multicore platforms, it scales well on parallel platforms and does
not suffer from the memory wall. This shows that SCF is very
cache-efficient and has little impact on the performance of those
algorithms that already have good cache utilization. On AMD64,
RKD_SCF and Kmeans_SCF get their best performance improve-
ment of 4.25× and 2.39×, which is much better than their sequen-
tial improvement (2.55× and 1.53×).

However, for the “Madelon” and “Digits” datasets, neither the
RKD_SCF nor Kmeans_SCF algorithms have more of a perfor-
mance improvement than their sequential counterparts do. The rea-
son is that both datasets are quite small (3.8 MiB for “Madelon” and
0.88 MiB for “Digits”) so that they can fit in the last-level cache and
are less likely to hit the memory wall. Moreover, due to the lower
dimensionality, RKD and Kmeans perform efficiently on “Digits”
anyway. Thus, fewer features can be filtered by SCF. Nonetheless,
in most cases SCF can significantly improve performance in these
algorithms on AMD64.

Since MIC has a higher memory bandwidth, the memory wall
problem is relieved for the k-NN algorithms. This is due to its
usage of the GDDR5 memory and a larger shared L2 cache that
provides very high memory throughput. The performance improve-
ment of most algorithms after applying SCF is quite similar to their
sequential counterparts, which means they scale well on this new
platform.

We note that the current evaluation code does not contain low-
level optimizations specific to the architecture, and thus its com-
puting ability may not be fully utilized. For example, the Vector
Processing Unit (VPU) in Xeon Phi contributes most to the plat-
form’s peak computing power. If the VPUs are fully utilized, the
memory latency may again become the bottleneck. We will explore
this in our future work.

3.2.3 Performance monitoring counter statistics
Figure 4c and 4f are provided to verify our previous observations

and analyses. In the figures, Cycles Per Instruction (CPI) is used
to evaluate the computing efficiency while Misses Per Instruction
(MPI) is used to represent intensity of the last-level cache misses
per instruction. For AMD64, the CPIs have a very close relation-
ship with the MPIs as they grow and drop in the same pattern. That
means that the CPIs are mainly affected by the memory wall. How-
ever, for MIC, CPI is not significantly influenced by MPI, which
demonstrates that the Xeon Phi can provide enough memory band-
width for these algorithms.

In summary, SCF is general enough to improve the performance
of existing k-NN algorithms on different datasets by reducing both
computation and memory accesses. Both memory-intensive and
computation-intensive k-NN algorithms can benefit from our pro-
posed method.

309



4. RELATED WORK
As far as we know, this is the first effort on optimization of ap-

proximate k-NN algorithms on multicore systems that addresses
both performance and precision.

Garcia et al. [6] first used the GPU to implement the brute-force
algorithm. However, as implementing efficient max-heaps on GPU
is very difficult, it becomes very slow in searching for the smallest
distances, especially when the required number of results (k-NN)
is larger than 2 [13]. Designing other multicore-friendly approx-
imate algorithms has been a recent trend for accelerating k-NN
search (e.g. RBC [4]). Although they have achieved very good
performance on multicore platforms, they still incur a great deal
of unnecessary computation, which can be reduced with our data
filtering mechanism.

The Vector Approximation (VA) [15] and Vector Quantization
(VQ) [12] approaches share a similar idea of using small structures
to represent data and estimate distances. However, they are de-
signed to reduce disk I/O overhead. While VA uses one dimension
and VQ uses full dimensions to build the index, our method can
choose any number of dimensions to better balance time complex-
ity and estimation accuracy. Location Sensitive Hashing (LSH) [3]
uses special hash functions so that features that are close to each
other will get the same hash value. However, developing an appro-
priate hash function can be a very complex undertaking [4].

The Xeon Phi is a new coprocessor with the Intel Many Inte-
grated Core (MIC) architecture. Currently, many researchers are
exploring this new architecture. For example, Alexander et al. have
implemented the famous Linpack Benchmark on Xeon Phi [7], and
Liu et al. have designed efficient sparse matrix-vector multiplica-
tion on this new architecture [8]. As far as we know, our work is
the first effort evaluating the performance of k-NN algorithms on
Xeon Phi.

5. CONCLUSIONS
Traditional k-NN algorithms run into serious bottlenecks caused

by the memory wall on multicore systems. In this paper, we pro-
pose a data filtering strategy that tries to reduce the computation-
and memory-intensive distance calculation. We propose the Sub-
space Clustering for Filtering (SCF) method, which can accurately
estimate similarity. Experimental results show that SCF is general
enough to significantly improve the performance of several k-NN
algorithms on multicore platforms.

In the future, we intend to further explore how to improve our
method so that it can efficiently utilize the massive computing abil-
ity and memory bandwidth of new hardware such as next genera-
tion GPUs and the Xeon Phi.

Acknowledgment
We thank the anonymous reviewers for their valuable comments.
Xiaoxin Tang would like to thank the University of Otago for host-
ing his PhD internship during the course of this research. This work
was partially supported by the Program for Changjiang Scholars
and Innovative Research Team in University (IRT1158, PCSIRT)
China, NSFC (Grant No. 61272099, 61261160502) and by the Sci-
entific Innovation Act of STCSM (No. 13511504200).

6. REFERENCES
[1] K. Bache and M. Lichman. UCI machine learning repository,

2013.

[2] G. Bradski and A. Kaehler. Learning OpenCV: Computer
vision with the OpenCV library. O’Reilly Media,
Incorporated, 2008.

[3] J. Buhler. Efficient large-scale sequence comparison by
locality-sensitive hashing. Bioinformatics, 17(5):419–428,
2001.

[4] L. Cayton. Accelerating nearest neighbour search on
manycore systems. In IEEE Int. Parallel and Distributed
Processing Symposium (IPDPS), 2012.

[5] D. L. Donoho et al. High-dimensional data analysis: The
curses and blessings of dimensionality. AMS Math
Challenges Lecture, pages 1–32, 2000.

[6] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud.
K-nearest neighbor search: Fast GPU-based implementations
and application to high-dimensional feature matching. In
Image Processing (ICIP), 2010 17th IEEE International
Conference on, pages 3757–3760, 2010.

[7] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov,
R. Dubtsov, G. Henry, A. G. Shet, G. Chrysos, and P. Dubey.
Design and implementation of the Linpack benchmark for
single and multi-node systems based on Intel Xeon Phi
coprocessor. Parallel and Distributed Processing
Symposium, International, 0:126–137, 2013.

[8] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. Efficient
sparse matrix-vector multiplication on x86-based many-core
processors. In Proceedings of the 27th international ACM
conference on International conference on supercomputing,
ICS ’13, pages 273–282, New York, NY, USA, 2013. ACM.

[9] D. Lowe. Object recognition from local scale-invariant
features. In Computer Vision The Proceedings of the Seventh
IEEE International Conference on, volume 2, pages
1150–1157 vol.2, 1999.

[10] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,
C. Roxburgh, and A. H. Byers. Big data: The next frontier
for innovation, competition, and productivity. Technical
report, McKinsey Global Institute, 2011.

[11] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
International Conference on Computer Vision Theory and
Application VISSAPP’09), pages 331–340. INSTICC Press,
2009.

[12] S. Ramaswamy and K. Rose. Adaptive cluster distance
bounding for high-dimensional indexing. Knowledge and
Data Engineering, IEEE Transactions on, 23(6):815–830,
2011.

[13] X. Tang, S. Mills, D. Eyers, K.-C. Leung, Z. Huang, and
M. Guo. Performance bottlenecks in manycore systems: A
case study on large scale feature matching within image
collections. In Proceedings of the 15th IEEE International
Conference on High Performance Computing and
Communications, 2013. to appear.

[14] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(11):1958–1970, 2008.

[15] R. Weber and K. Böhm. Trading quality for time with
nearest-neighbor search. In C. Zaniolo, P. Lockemann,
M. Scholl, and T. Grust, editors, Advances in Database
Technology (EDBT), volume 1777 of Lecture Notes in
Computer Science, pages 21–35. Springer Berlin Heidelberg,
2000.

[16] C. Zanchettin, B. L. D. Bezerra, and W. W. Azevedo. A
KNN-SVN hybrid model for cursive handwriting
recognition. In Proceedings of the International Joint
Conference on Neural Networks, 2012.

310




