
Supervised Hashing with Latent Factor Models

Peichao Zhang
Shanghai Key Laboratory of

Scalable Computing and
Systems

Department of Computer
Science and Engineering

Shanghai Jiao Tong University,
China

starforever00@gmail.com

Wei Zhang
Shanghai Key Laboratory of

Scalable Computing and
Systems

Department of Computer
Science and Engineering

Shanghai Jiao Tong University,
China

razhangwei@gmail.com

Wu-Jun Li
National Key Laboratory for
Novel Software Technology
Department of Computer
Science and Technology
Nanjing University, China
liwujun@nju.edu.cn

Minyi Guo
Shanghai Key Laboratory of

Scalable Computing and
Systems

Department of Computer
Science and Engineering

Shanghai Jiao Tong University,
China

guo-my@cs.sjtu.edu.cn

ABSTRACT
Due to its low storage cost and fast query speed, hashing
has been widely adopted for approximate nearest neighbor
search in large-scale datasets. Traditional hashing methods
try to learn the hash codes in an unsupervised way where
the metric (Euclidean) structure of the training data is pre-
served. Very recently, supervised hashing methods, which
try to preserve the semantic structure constructed from the
semantic labels of the training points, have exhibited higher
accuracy than unsupervised methods. In this paper, we pro-
pose a novel supervised hashing method, called latent factor
hashing (LFH), to learn similarity-preserving binary codes
based on latent factor models. An algorithm with conver-
gence guarantee is proposed to learn the parameters of LFH.
Furthermore, a linear-time variant with stochastic learning
optimization is proposed for training LFH on large-scale
datasets. Experimental results on two large datasets with
semantic labels show that LFH can achieve superior accu-
racy than state-of-the-art methods with comparable training
time.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval—Retrieval models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR’14, July 6–11, 2014, Gold Coast, Queensland, Australia.
Copyright 2014 ACM 978-1-4503-2257-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2600428.2609600 .

Keywords
Hashing; Latent Factor Model; Image Retrieval; Big Data

1. INTRODUCTION
Nearest neighbor (NN) search plays a fundamental role in

machine learning and related areas, such as pattern recog-
nition, information retrieval, data mining and computer vi-
sion. In many real applications, it’s not necessary for an
algorithm to return the exact nearest neighbors for every
possible query. Hence, in recent years approximate nearest
neighbor (ANN) search algorithms with improved speed and
memory saving have been received more and more attention
by researchers [1, 2, 7].

Over the last decades, there has been an explosive growth
of data from many areas. To meet the demand of perform-
ing ANN search on these massive datasets, various hashing
techniques have been proposed due to their fast query speed
and low storage cost [1, 4, 5, 8, 10, 16, 20, 21, 26, 27, 31,
35, 36, 37, 38, 39, 40, 41]. The essential idea of hashing is
to map the data points from the original feature space into
binary codes in the hashcode space with similarities between
pairs of data points preserved. Hamming distance is used
to measure the closeness between binary codes, which is de-
fined as the number of positions at which two binary codes
differ. More specifically, when two data points are deemed
as similar, their binary codes should have a low Hamming
distance. On the contrary, when two data points are dis-
similar, a high Hamming distance is expected between their
binary codes. The advantage of binary codes representation
over the original feature vector representation is twofold.
Firstly, each dimension of a binary code can be stored us-
ing only 1 bit while several bytes are typically required for
one dimension of the original feature vector, leading to a
dramatic reduction in storage cost. Secondly, by using bi-
nary codes representation, all the data points within a spe-
cific Hamming distance to a given query can be retrieved

173

in constant or sub-linear time regardless of the total size of
the dataset [30]. Because of these two advantages, hashing
techniques have become a promising choice for efficient ANN
search on massive datasets.
Existing hashing methods can be divided into two cate-

gories: data-independent methods and data-dependent meth-
ods [6, 17, 18]. For data-independent methods, the hash-
ing functions are learned without using any training data.
Representative data-independent methods include locality-
sensitive hashing (LSH) [1, 5, 7], shift-invariant kernels hash-
ing (SIKH) [22], and many other extensions [4, 13, 14]. On
the other hand, for data-dependent methods, their hashing
functions are learned from some training data. Generally
speaking, data-dependent methods often require less num-
ber of bits than data-independent methods to achieve satis-
factory performance.
The data-dependent methods can be further divided into

two categories: unsupervised and supervised methods [17,
20, 32]. Unsupervised methods try to preserve the metric
(Euclidean) structure between data points using only their
feature information. Representative unsupervised methods
include spectral hashing (SH) [34], principal component anal-
ysis based hashing (PCAH) [33], iterative quantization (ITQ)
[6], anchor graph hashing (AGH) [18], isotropic hashing (Iso-
Hash) [9], multimodel latent binary embedding (MLBE) [42]
and predictable dual-view hashing (PDH) [23]. Due to the
fact that high level semantic description of an object of-
ten differs from the extracted low level feature descriptors,
known as semantic gap [25], returning nearest neighbors
according to metric distances between the feature vectors
doesn’t always guarantee a good search quality. Hence,
many recent works focus on supervised methods which try
to preserve the semantic structure among the data points
by utilizing their associated semantic information [17, 19].
Although there are also some works to exploit other types
of supervised information like the ranking information for
hashing [16, 20], the semantic information is usually given
in the form of pairwise labels indicating whether two data
points are known to be similar or dissimilar. Representa-
tive supervised methods include restricted Boltzmann ma-
chine based hashing (RBM) [24], binary reconstructive em-
bedding (BRE) [12], sequential projection learning for hash-
ing (SPLH) [33], minimal loss hashing (MLH) [19], kernel-
based supervised hashing (KSH) [17], and linear discrimi-
nant analysis based hashing (LDAHash) [28]. Additionally,
there are also some semi-supervised hashing methods [32]
which use both labeled data and unlabeled data to train
their model. As stated in recent works [17, 19, 20], so-
phisticated supervised methods, such as SPLH, MLH, and
KSH, can achieve higher accuracy than unsupervised meth-
ods. However, some existing supervised methods, like MLH,
suffer from a very large amount of training time, making it
difficult to apply to large-scale datasets.
In this paper, we propose a novel method, called latent

factor hashing (LFH), for supervised hashing. The main
contributions of this paper are outlined as follows:

• Base on latent factor models, the likelihood of the pair-
wise similarities are elegantly modeled as a function of
the Hamming distance between the corresponding data
points.

• An algorithm with convergence guarantee is proposed
to learn the parameters of LFH.

• To model the large-scale problems, a linear-time vari-
ant with stochastic learning optimization is proposed
for fast parameter learning.

• Experimental results on two real datasets with seman-
tic labels show that LFH can achieve much higher ac-
curacy than other state-of-the-art methods with effi-
ciency in training time.

The rest of the this paper is organized as follows: In Sec-
tion 2, we will introduce the details of our LFH model. Ex-
perimental results are presented in Section 3. Finally, we
conclude the paper in Section 4.

2. LATENT FACTOR HASHING
In this section, we present the details of our latent factor

hashing (LFH) model, including the model formulation and
learning algorithms.

2.1 Problem Definition
Suppose we have N points as the training data, each rep-

resented as a feature vector xi ∈ RD. Some pairs of points
have similarity labels sij associated, where sij = 1 means
xi and xj are similar and sij = 0 means xi and xj are dis-
similar. Our goal is to learn a binary code bi ∈ {−1, 1}Q
for each xi with similarity between pairs preserved. In par-
ticular, when sij = 1, the binary codes bi and bj should
have a low Hamming distance. On the other hand, when
sij = 0, the Hamming distance between bi and bj should
be high. In compact form, we use a matrix X ∈ RN×D to
denote all the feature vectors, a matrix B ∈ {−1, 1}N×Q to
denote all the binary codes, and a set S = {sij} to denote
all the observed similarity labels. Additionally, we use the
notation Ai∗ and A∗j to denote the ith row and the jth
column of a matrix A, respectively. AT is the transpose
of A. The similarity labels S can be constructed from the
neighborhood structure by thresholding on the metric dis-
tances between the feature vectors [17]. However, such S is
of low quality since no semantic information is utilized. In
supervised hashing setting, S is often constructed from the
semantic labels within the data points. Such labels are often
built with manual effort to ensure its quality.

2.2 Model Formulation
Let Θij denote half of the inner product between two bi-

nary codes bi,bj ∈ {−1, 1}Q:

Θij =
1

2
bT
i bj .

The likelihood of the observed similarity labels S can be
defined as follows:

p(S | B) =
∏

sij∈S

p(sij | B), (1)

with

p(sij | B) =

{
aij , sij = 1

1− aij , sij = 0
,

where aij = σ(Θij) with σ being the logistic function:

σ(x) =
1

1 + e−x
.

174

It is easy to prove the following relationship between the
Hamming distance distH(·, ·) and inner product of two bi-
nary codes:

distH(bi,bj) =
1

2
(Q− bT

i bj) =
1

2
(Q− 2Θij).

We can find that the smaller the distH(bi,bj) is, the larger
p(sij = 1 | B) will be. Maximizing the likelihood of S in
(1) will make the Hamming distance between two similar
points as small as possible, and that between two dissimilar
points as high as possible. Hence this model is reasonable
and matches the goal to preserve similarity.
With some prior p(B), the posteriori of B can be com-

puted as follows:

p(B | S) ∼ p(S | B)p(B).

We can use maximum a posteriori estimation to learn the
optimalB. However, directly optimizing onB is an NP-hard
problem [34]. Following most existing hashing methods, we
compute the optimal B through two stages. In the first
stage, we relax B to be a real valued matrix U ∈ RN×Q.
The ith row of U is called the latent factor for the ith data
point. We learn an optimal U under the same probabilistic
framework as for B. Then in the second stage, we perform
some rounding technique on the real valued U to get the
binary codes B.
More specifically, we replace all the occurrences of B in

previous equations with U. Θij is then re-defined as:

Θij =
1

2
Ui∗U

T
j∗.

Similarly, p(S | B), p(B), p(B | S) are replaced with p(S | U),
p(U), p(U | S), respectively. We put a normal distribution
on p(U):

p(U) =

Q∏
d=1

N (U∗d | 0, βI),

where N (·) denotes the normal distribution, I is an identity
matrix, and β is a hyper-parameter. The log posteriori of
U can then be derived as:

L = log p(U | S)

=
∑

sij∈S

(sijΘij − log(1 + eΘij))− 1

2β
∥U∥2F + c, (2)

where ∥ · ∥F denotes the Frobenius norm of a matrix, and
c is a constant term independent of U. The next step is to
learn the optimal U that maximizes L in (2).

2.3 Learning
Since directly optimizing the whole U can be very time-

consuming, we optimize each row of U at a time with its
other rows fixed. We adopt the surrogate algorithm [15]
to optimize each row Ui∗. The surrogate learning algo-
rithm can be viewed as a generalization of the expectation-
maximization (EM) algorithm. It constructs a lower bound
of the objective function, and then updates the parameters
to maximize that lower bound. Just like EM algorithm, we
need to derive different lower bounds and optimization pro-
cedures for different models [15]. In the following content,
we will derive the details of the surrogate learning algorithm
for our model.

The gradient vector and the Hessian matrix of the objec-
tive function L defined in (2) with respect to Ui∗ can be
derived as:

∂L

∂UT
i∗

=
1

2

∑
j:sij∈S

(sij − aij)U
T
j∗

+
1

2

∑
j:sji∈S

(sji − aji)U
T
j∗ − 1

β
UT

i∗,

∂2L

∂UT
i∗∂Ui∗

=− 1

4

∑
j:sij∈S

aij(1− aij)U
T
j∗Uj∗

− 1

4

∑
j:sji∈S

aji(1− aji)U
T
j∗Uj∗ − 1

β
I.

If we define Hi as:

Hi = − 1

16

∑
j:sij∈S

UT
j∗Uj∗ − 1

16

∑
j:sji∈S

UT
j∗Uj∗ − 1

β
I, (3)

we can prove that

∂2L

∂UT
i∗∂Ui∗

⪰ Hi,

whereA ⪰ BmeansA−B is a positive semi-definite matrix.
Then we can construct the lower bound of L(Ui∗), de-

noted by L̃(Ui∗), as:

L̃(Ui∗) = L(Ui∗(t)) + (Ui∗ −Ui∗(t))
∂L

∂UT
i∗
(t)

+
1

2
(Ui∗ −Ui∗(t))Hi(t)(Ui∗ −Ui∗(t))

T .

The values of U and other parameters that depend on U
change through the updating process. Here we use the no-
tation x(t) to denote the value of a parameter x at some
iteration t. We update Ui∗ to be the one that gives the

maximum value of L̃(Ui∗). It is easy to see that L̃(Ui∗) is a
quadratic form in the variable Ui∗, which can be proved to
be convex. Hence, we can find the optimum value of Ui∗ by

setting the gradient of L̃(Ui∗) with respect to Ui∗ to 0. As
a result, we end up with the following update rule for Ui∗:

Ui∗(t+ 1) = Ui∗(t)− [
∂L

∂UT
i∗
(t)]THi(t)

−1. (4)

We can then update other rows of U iteratively using the
above rule.

The convergence of the iterative updating process is con-
trolled by some threshold value ε and the maximum allowed
number of iterations T . Here ε and T are both hyper-
parameters. During each iteration, we update U by up-
dating each of its rows sequentially. The initial value of U
can be obtained through PCA on the feature space X. The
pseudocode of the updating process is shown in Algorithm 1.

2.3.1 Rounding
After the optimal U is learned, we can obtain the final

binary codes B using some rounding techniques. In this
paper, to keep our method simple, the real values of U are
quantized into the binary codes of B by taking their signs,
that is:

Bij =

{
1, Uij > 0

−1, otherwise
.

175

Algorithm 1 Optimizing U using surrogate algorithm

Input: X ∈ RN×D,S = {sij}, Q, T ∈ N+, β, ε ∈ R+.
Initializing U by performing PCA on X.
for t = 1 → T do

for i = 1 → N do
Update Ui∗ by following the rule given in (4).

end for
Compute L in (2) using the updated U.
Terminate the iterative process when the change of L
is smaller than ε.

end for
Output: U ∈ RN×Q.

2.3.2 Out-of-Sample Extension
In order to perform ANN search, we need to compute the

binary code b for a query x which is not in the training set.
We achieve this by finding a matrix W ∈ RD×Q that maps
x to u in the following way:

u = WTx.

We then perform the same rounding technique discussed in
Section 2.3.1 on u to obtain b.
We use linear regression to train W over the training set.

The squared loss with regularization term is shown below:

Le = ∥U−XW∥2F + λe∥W∥2F .

And the optimal W can be computed as:

W = (XTX+ λeI)
−1XTU. (5)

2.4 Convergence and Complexity Analysis
At each iteration, we first construct a lower bound at the

current point Ui∗(t), and then optimize it to get a new
point Ui∗(t+1) with a higher function value L(Ui∗(t+1)).
Hence, the objective function value always increases in the
new iteration. Furthermore, the objective function value
L = log p(U | S) is upper bounded by zero. Hence, our Al-
gorithm 1 can always guarantee convergence to local maxi-
mum, the principle of which is similar to that of EM algo-
rithm. This convergence property will also be illustrated in
Figure 2. The convergence property of our surrogate algo-
rithm is one of the key advantages compared with standard
Newton method and first-order gradient method. In both
Newton method and first-order gradient method, a step size,
also called learning rate in some literatures, should be man-
ually specified, which cannot necessarily guarantee conver-
gence.
We can prove that, when updating Ui∗, the total time to

compute ∂L/∂UT
i∗ and Hi for all i = 1, . . . , N is O(|S|Q)

and O(|S|Q2), respectively. Since the inversion of Hi can be
computed in O(Q3), the time to update Ui∗ following the
rule given in (4) is O(Q3). Then the time to update U by
one iteration is O(NQ3 + |S|Q2). Therefore, the total time
of the updating process is O(T (NQ3 + |S|Q2)), where T is
the number of iterations.
Besides that, the time for rounding is O(NQ). And the

time to compute W for out-of-sample extension is O(ND2+
D3+NDQ), which can be further reduced to O(ND2) with
the typical assumption that Q < D ≪ N . With the pre-
computed W, the out-of-sample extension for a query x can
be achieved in O(DQ).

(a) Full (b) Sparse (c) Aligned

Figure 1: Selection of S for stochastic learning.

2.5 Stochastic Learning
For a given set of N training points with supervised infor-

mation, there are N ×N pairs of similarity labels available
to form S. Straightforwardly, we can choose S to include
all the available similarity pairs, that is, S = {sij | i, j =
1, . . . , N, i ̸= j}. This is illustrated in Figure 1(a), in which
a colored cell in the i-th row and j-th column indicates that
sij is included in S. In this way, the best possible accuracy
can be achieved since we use as much as available semantic
information. However, according to the complexity analy-
sis described in Section 2.4, if we set S to contain the full
supervised information, the time cost to update U would
become O(NQ3+N2Q2) per iteration, and O(N2) memory
is needed to store S. Such cost in both computation and
storage is unacceptable when N grows large.

Inspired by stochastic gradient descent method, we pro-
pose an efficient way of updating U, called stochastic learn-
ing. As illustrated in Figure 1(b), S contains a sparse subset
with only O(NQ) entries which are randomly selected from
all the available similarity pairs. The random sampling is
performed for each iteration. We choose the size of S to
be O(NQ) so that the time cost to update U is reduced to
O(NQ3) per iteration. For storage efficiency, we compute
only the sampled subset during each iteration. By this way,
the maximum required storage reduces to O(NQ).

We can even further reduce the time cost by sampling
S in an aligned way. During each iteration, an index set
I of size O(Q) is randomly chosen from {1, . . . , N}. We
then construct S by using the rows and columns in I, with
entries at the diagonal excluded. The resulted S is shown in
Figure 1(c). Following this, the constructed S is guaranteed
to be symmetric, and Hi defined in (3) can be simplified as:

Hi = −1

8

∑
j:sij∈S

UT
j∗Uj∗ − 1

β
I.

For all i /∈ I, the set {j : sij ∈ S} is exactly the same
thanks to the alignment of S. This implies that Hi remains
the same for all i /∈ I. Therefore, we can compute H−1

i in a
preprocessing step. By doing so, the time cost to updateUi∗
for each i /∈ I can be reduced to O(Q2). For each i ∈ I, we
can updateUi∗ through some complicated calculations while
still maintaining the O(Q2) time complexity. We can also
safely skip updatingUi∗ for that iteration without much loss
in performance due to the fact that Q is much smaller than
N . Even though Ui∗ is not updated for some small portion
of i in one single iteration, it will much likely be updated
in the subsequent iterations because I changes among the
iterations. As a result, the total time cost to update U is
reduced to O(NQ2) per iteration. For Q up to 128, this
makes our learning process two orders of magnitude faster.

176

Consequently, since Q is bounded by a small constant,
we can say that the cost in computation and storage of
our learning algorithm are linear to the number of train-
ing points N . This makes our LFH easily scalable to very
large datasets.

2.6 Normalized Hyper-parameters
The hyper-parameter β in the objective function defined

in (2) acts as a factor weighing the relative importance be-
tween the first and the second term. However, the number
of sum items in each term is different: in the first term there
are |S| sum items, while in the second term there are N sum
items. Since different datasets may have different values of
N and |S|, the optimal value of β may vary between the
datasets. To address this issue and make our method less
dependent on a specific dataset, we introduce a new hyper-
parameter β′ satisfying that:

β′ =
N

|S|β.

By replacing β with β′ in (2), we have a specialized param-
eter β′ for each dataset. The optimal value for β is then
normalized to roughly the same range on different datasets.
We can normalize λe in (5) by following the same idea.
We find that the MLH method spends most of the time

on selecting the best hyper-parameters for each dataset.
With the normalized hyper-parameters introduced, we can
pre-compute the optimal values for the hyper-parameters
on some smaller dataset, and then apply the same values
to all other datasets. This saves us the time of hyper-
parameter selection and makes our method more efficient
on large datasets.

3. EXPERIMENT

3.1 Datasets
We evaluate our method on two standard large image

datasets with semantic labels: CIFAR-10 [11] and NUS-
WIDE [3].
The CIFAR-10 dataset [11] consists of 60,000 color images

drawn from the 80M tiny image collection [29]. Each image
of size 32 × 32 is represented by a 512-dimensional GIST
feature vector. Each image is manually classified into one
of the 10 classes, with an exclusive label indicating its be-
longing class. Two images are considered as a ground truth
neighbor if they have the same class label.
The NUS-WIDE dataset [3] contains 269,648 images col-

lected from Flickr. Each image is represented by a 1134-
dimensional low level feature vector, including color his-
togram, color auto-correlogram, edge direction histogram,
wavelet texture, block-wise color moments, and bag of vi-
sual words. The images are manually assigned with some of
the 81 concept tags. The ground truth neighbor is defined
on two images if they share at least one common tag.
For data pre-processing, we follow the standard way of

feature normalization by making each dimension of the fea-
ture vectors to have zero mean and equal variance.

3.2 Experimental Settings and Baselines
For both CIFAR-10 and NUS-WIDE datasets, we ran-

domly sample 1,000 points as query set, 1,000 points as val-
idation set, and all the remaining points as training set. Us-
ing normalized hyper-parameters described in Section 2.6,

the best hyper-parameters are selected by using the valida-
tion set of CIFAR-10. All experimental results are averaged
over 10 independent rounds of random training / validation
/ query partitions.

Unless otherwise stated, we refer LFH in the experiment
section to the LFH with stochastic learning. We compare
our LFH method with some state-of-the-art hashing meth-
ods, which include:

• Data-independent methods: locality-sensitive hashing
(LSH), and shift-invariant kernels hashing (SIKH);

• Unsupervised data-dependent methods: spectral hash-
ing (SH), principal component analysis based hash-
ing (PCAH), iterative quantization (ITQ), anchor graph
hashing (AGH);

• Supervised data-dependent methods: sequential pro-
jection learning for hashing (SPLH), minimal loss hash-
ing (MLH), and kernel-based supervised hashing (KSH).

All the baseline methods are implemented using the source
codes provided by the corresponding authors. For KSH and
AGH, the number of support points for kernel construction
is set to 300 by following the same settings in [17, 18]. For
KSH, SPLH, and MLH, it’s impossible to use all the super-
vised information for training since it would be very time-
consuming. Following the same strategy used in [17], we
sample 2,000 labeled points for these methods.

All our experiments are conducted on a workstation with
24 Intel Xeon CPU cores and 64 GB RAM.

3.3 Effect of Stochastic Learning
The convergence curve of the objective function on a sam-

pled CIFAR-10 subset of 5000 points with code length 32 is
shown in Figure 2. The LFH-Full method refers to the LFH
that uses the full supervised information for updating, and
LFH-Stochastic refers to the LFH with stochastic learning.
The objective function value is computed based on the full
supervised information for both methods. We can see that
the objective function of LFH-Full converges to a station-
ary point after a few iterations. The objective function of
LFH-Stochastic has a major trend of convergence to some
stationary point with slight vibration. This behavior is quite
similar to stochastic gradient descent method and is empir-
ically acceptable.

Figure 3 shows the mean average precision (MAP) [10, 17,
19] values computed on a validation set during the updating
process. The final MAP evaluated on a query set is 0.5237
for LFH-Full and 0.4694 for LFH-Stochastic. The reduction
in MAP of LFH-Stochastic is affordable given the dramatic
decrease in time complexity by using stochastic learning.

3.4 Hamming Ranking Performance
We perform Hamming ranking using the generated binary

codes on the CIFAR-10 and NUS-WIDE datasets. For each
query in the query set, all the points in the training set are
ranked according to the Hamming distance between their
binary codes and the query’s. The MAP is reported to eval-
uate the accuracy of different hashing methods.

Figure 4(a) and Figure 4(b) show the averaged MAP re-
sults with different code lengths on the two datasets, re-
spectively. We can find that with the help of semantic infor-
mation, supervised data-dependent methods can generally

177

LFH KSH MLH SPLH ITQ AGH LSH PCAH SH SIKH

8 16 24 32 48 64 96 128
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Code Length

M
A

P

(a) CIFAR-10

8 16 24 32 48 64 96 128
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Code Length

M
A

P

(b) NUS-WIDE

Figure 4: MAP results with different code lengths.

0 20 40 60 80 100
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

8

Iteration

O
bj

ec
tiv

e
F

un
ct

io
n

LFH−Full
LFH−Stochastic

Figure 2: Convergence curve.

achieve better accuracy than data-independent and unsu-
pervised data-dependent methods. Furthermore, the accu-
racy of our LFH method is much higher than other methods
including these supervised data-dependent methods KSH,
SPLH, and MLH.
The precision-recall curves with different code lengths will

be illustrated in the Appendix at the end of this paper (refer
to Figure 9 and Figure 10), which will also show that our
LFH method can significantly outperform other state-of-the-
art hashing methods.

3.5 Computational Cost
Figure 5(a) and Figure 5(b) show the average training

time of different hashing methods with different code lengths
on the CIFAR-10 and NUS-WIDE datasets, respectively.
The reported values are in seconds in a logarithmic scale.

0 20 40 60 80 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Iteration

M
A

P

LFH−Full
LFH−Stochastic

Figure 3: MAP during the iterations.

We can find that the data-independent hashing meth-
ods require the least amount of training time, and the su-
pervised data-dependent hashing methods need the most
amount of training time. Compared to other supervised
data-dependent hashing methods, the training time of LFH
is much smaller than that of MLH and is comparable to that
of KSH and SPLH. For large code lengths, our LFH is even
faster than KSH and SPLH. This is because the number of
iterations needed to learn U decreases as the code length
increases.

3.6 Performance using Full Supervised
Information

For the results reported in Section 3.4 and Section 3.5,
we adopt the same strategy as that in [17] to train KSH,
SPLH, and MLH by sampling only 2,000 labeled points due
to their high time complexity. To get a deeper comparison,

178

LFH KSH MLH SPLH ITQ AGH LSH PCAH SH SIKH

8 16 24 32 48 64 96 128
−2

−1

0

1

2

3

4

5

Code Length

Lo
g

T
ra

in
in

g
T

im
e

(a) CIFAR-10

8 16 24 32 48 64 96 128
−1

0

1

2

3

4

5

Code Length

Lo
g

T
ra

in
in

g
T

im
e

(b) NUS-WIDE

Figure 5: Training time with different code lengths.

we perform another experiment on smaller datasets where
the full supervised information can be used for training. We
randomly sample a subset of CIFAR-10 with 5000 points for
evaluation. We also include LFH with stochastic learning
to better demonstrate its effectiveness. Figure 6 and Fig-
ure 7 show the accuracy and computational cost for these
methods.

32 48 64 96
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Code Length

M
A

P

LFH−Full
LFH−Stochastic
KSH−Full
SPLH−Full
MLH−Full

Figure 6: Accuracy on CIFAR-10 subset with full
labels.

We can see that our LFH, even with stochastic learning,
can achieve higher MAP than other methods with full labels
used. The training speed of LFH with full labels is compara-
ble to that of KSH and SPLH, and is much faster than that
of MLH. The LFH with stochastic learning beats all other
methods in training time.

32 48 64 96
0

1

2

3

4

5

6

Code Length

Lo
g

T
ra

in
in

g
T

im
e

LFH−Full
LFH−Stochastic
KSH−Full
SPLH−Full
MLH−Full

Figure 7: Computational cost on CIFAR-10 subset
with full labels.

Hence, we can conclude that our LFH method can out-
perform other supervised hashing methods in terms of both
accuracy and computational cost.

3.7 Case Study
In Figure 8, we demonstrate the hamming ranking results

for some example queries on the CIFAR-10 dataset. For
each query image, the top (nearest) ten images returned by
different hashing methods are shown. We use red rectan-
gles to indicate the images that are not in the same class as
the query image. That is to say, the images with red rect-
angles are wrongly returned results. It is easy to find that
our LFH method exhibits minimal errors compared to other
supervised hashing methods.

179

(a)

(b)

(c) (d)

(e) (f)

Figure 8: Example search (Hamming ranking) results on CIFAR-10, where red rectangles are used to indicate
the images that are not in the same class as the query image, i.e., the wrongly returned results. (a) and
(b) contain the same query images, which are duplicated for better demonstration. Other images are the
returned results of (c) LFH; (d) KSH; (e) MLH; (f) SPLH.

4. CONCLUSION
Hashing has become a very effective technique for ANN

search in massive datasets which are common in this big
data era. In many datasets, it is not hard to collect some
supervised information, such as the tag information in many
social web sites, for part of the whole dataset. Hence, su-
pervised hashing methods, which can outperform traditional
unsupervised hashing methods, have become more and more
important. In this paper, we propose a novel method, called
LFH, for supervised hashing. A learning algorithm with con-
vergence guarantee is proposed to learn the parameters of
LFH. Moreover, to model large-scale problems, we propose a
stochastic learning method which has linear time complexity.
Experimental results on two large datasets with semantic
labels show that our LFH method can achieve higher accu-
racy than other state-of-the-art methods with comparable
or lower training cost.

5. ACKNOWLEDGMENTS
This work is supported by the NSFC (No. 61100125,

61272099, 61261160502), the 863 Program of China (No.
2012AA011003), Shanghai Excellent Academic Leaders Plan
(No. 11XD1402900), Scientific Innovation Act of STCSM
(No. 13511504200), and the Program for Changjiang Schol-
ars and Innovative Research Team in University of China
(IRT1158, PCSIRT).

6. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. In

Proceedings of the Annual Symposium on Foundations of
Computer Science, pages 459–468, 2006.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. Journal of the ACM,
45(6):891–923, 1998.

[3] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.
Nus-wide: A real-world web image database from national
university of singapore. In Proceedings of the ACM
International Conference on Image and Video Retrieval,
2009.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the Annual Symposium on
Computational Geometry, pages 253–262, 2004.

[5] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of the
International Conference on Very Large Data Bases, pages
518–529, 1999.

[6] Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 817–824,
2011.

[7] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In
Proceedings of the Annual ACM Symposium on Theory of
Computing, pages 604–613, 1998.

[8] W. Kong and W.-J. Li. Double-bit quantization for
hashing. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2012.

[9] W. Kong and W.-J. Li. Isotropic hashing. In Proceedings of
the Annual Conference on Neural Information Processing
Systems, pages 1655–1663, 2012.

180

[10] W. Kong, W.-J. Li, and M. Guo. Manhattan hashing for
large-scale image retrieval. In Proceedings of the
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 45–54, 2012.

[11] A. Krizhevsky. Learning multiple layers of features from
tiny images. Master’s thesis, University of Toronto, 2009.

[12] B. Kulis and T. Darrell. Learning to hash with binary
reconstructive embeddings. In Proceedings of the Annual
Conference on Neural Information Processing Systems,
pages 1042–1050, 2009.

[13] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2130–2137, 2009.

[14] B. Kulis, P. Jain, and K. Grauman. Fast similarity search
for learned metrics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(12):2143–2157, 2009.

[15] K. Lange, D. R. Hunter, and I. Yang. Optimization transfer
using surrogate objective functions. Journal of
Computational and Graphical Statistics, 9(1):1–20, 2000.

[16] X. Li, G. Lin, C. Shen, A. van den Hengel, and A. R. Dick.
Learning hash functions using column generation. In
Proceedings of the International Conference on Machine
Learning, pages 142–150, 2013.

[17] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 2074–2081, 2012.

[18] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing
with graphs. In Proceedings of the International Conference
on Machine Learning, 2011.

[19] M. Norouzi and D. J. Fleet. Minimal loss hashing for
compact binary codes. In Proceedings of the International
Conference on Machine Learning, pages 353–360, 2011.

[20] M. Norouzi, D. J. Fleet, and R. Salakhutdinov. Hamming
distance metric learning. In Proceedings of the Annual
Conference on Neural Information Processing Systems,
pages 1070–1078, 2012.

[21] M. Ou, P. Cui, F. Wang, J. Wang, W. Zhu, and S. Yang.
Comparing apples to oranges: A scalable solution with
heterogeneous hashing. In Proceedings of the ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 230–238, 2013.

[22] M. Raginsky and S. Lazebnik. Locality-sensitive binary
codes from shift-invariant kernels. In Proceedings of the
Annual Conference on Neural Information Processing
Systems, pages 1509–1517, 2009.

[23] M. Rastegari, J. Choi, S. Fakhraei, D. Hal, and L. S. Davis.
Predictable dual-view hashing. In Proceedings of the
International Conference on Machine Learning, pages
1328–1336, 2013.

[24] R. Salakhutdinov and G. E. Hinton. Semantic hashing.
International Journal of Approximate Reasoning,
50(7):969–978, 2009.

[25] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta,
and R. Jain. Content-based image retrieval at the end of
the early years. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(12):1349–1380, 2000.

[26] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen.
Inter-media hashing for large-scale retrieval from
heterogeneous data sources. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 785–796, 2013.

[27] B. Stein. Principles of hash-based text retrieval. In
Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 527–534, 2007.

[28] C. Strecha, A. A. Bronstein, M. M. Bronstein, and P. Fua.
Ldahash: Improved matching with smaller descriptors.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(1):66–78, 2012.

[29] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and
scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(11):1958–1970, 2008.

[30] A. Torralba, R. Fergus, and Y. Weiss. Small codes and
large image databases for recognition. In Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2008.

[31] F. Ture, T. Elsayed, and J. J. Lin. No free lunch: Brute
force vs. locality-sensitive hashing for cross-lingual pairwise
similarity. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 943–952, 2011.

[32] J. Wang, O. Kumar, and S.-F. Chang. Semi-supervised
hashing for scalable image retrieval. In Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 3424–3431, 2010.

[33] J. Wang, S. Kumar, and S.-F. Chang. Sequential projection
learning for hashing with compact codes. In Proceedings of
the International Conference on Machine Learning, pages
1127–1134, 2010.

[34] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
Proceedings of the Annual Conference on Neural
Information Processing Systems, pages 1753–1760, 2008.

[35] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang.
Sparse multi-modal hashing. IEEE Transactions on
Multimedia, 16(2):427–439, 2014.

[36] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai.
Harmonious hashing. In Proceedings of the International
Joint Conference on Artificial Intelligence, 2013.

[37] D. Zhai, H. Chang, Y. Zhen, X. Liu, X. Chen, and W. Gao.
Parametric local multimodal hashing for cross-view
similarity search. In Proceedings of the International Joint
Conference on Artificial Intelligence, 2013.

[38] D. Zhang and W.-J. Li. Large-scale supervised multimodal
hashing with semantic correlation maximization. In
Proceedings of the AAAI Conference on Artificial
Intelligence, 2014.

[39] D. Zhang, F. Wang, and L. Si. Composite hashing with
multiple information sources. In Proceedings of the
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 225–234,
2011.

[40] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing
for fast similarity search. In Proceedings of the
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 18–25, 2010.

[41] Q. Zhang, Y. Wu, Z. Ding, and X. Huang. Learning hash
codes for efficient content reuse detection. In Proceedings of
the International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 405–414,
2012.

[42] Y. Zhen and D.-Y. Yeung. A probabilistic model for
multimodal hash function learning. In Proceedings of the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 940–948, 2012.

APPENDIX
For a more extensive evaluation, in Figure 9 and Figure 10,
we illustrate the precision-recall curves with different code
lengths on the two datasets, CIFAR-10 and NUS-WIDE.
Our LFH method shows clear superiority on almost all set-
tings, followed by KSH, SPLH, and MLH, and then the other
methods without using semantic information. The results
are consistent with the MAP results given above.

181

LFH KSH MLH SPLH ITQ AGH LSH PCAH SH SIKH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(a) 8 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(b) 16 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(c) 24 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(d) 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(e) 48 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(f) 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
P

re
ci

si
on

(g) 96 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(h) 128 bits

Figure 9: Precision-recall curves on CIFAR-10.

LFH KSH MLH SPLH ITQ AGH LSH PCAH SH SIKH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(a) 8 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(b) 16 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(c) 24 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(d) 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(e) 48 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(f) 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(g) 96 bits

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

(h) 128 bits

Figure 10: Precision-recall curves on NUS-WIDE.

182

