
Parallelism vs. Speculation: Exploiting Speculative
Genetic Algorithm on GPU

Yanchao Lu
Department of Computer
Science and Engineering,

Shanghai Jiao Tong University,
Shanghai, China

chzblych@sjtu.edu.cn

Long Zheng
Department of Computer
Science and Engineering,

Shanghai Jiao Tong University,
Shanghai, China

longzheng@sjtu.edu.cn

Li Li
School of Software,

Shanghai Jiao Tong University,
Shanghai, China

lilijp@cs.sjtu.edu.cn

Minyi Guo
Department of Computer
Science and Engineering,

Shanghai Jiao Tong University,
Shanghai, China

guo-my@cs.sjtu.edu.cn

ABSTRACT
Graphics Processing Unit (GPU) shows stunning comput-
ing power for scientific applications in the past few years,
which attracts attention from both industry and academics.
The huge number of cores means high parallelism and also
powerful computation capacity. Many previous studies have
taken advantage of GPU’s computing power for accelerating
scientific applications. The common theme of those research
studies is to exploit the performance improvement provided
by massive parallelism on GPU. Despite that there have
been fruitful research work for speeding up scientific applica-
tions, little attention has been paid to the redundant compu-
tation resources on GPU. Recently, the number of cores inte-
grated in a single GPU chip increases rapidly. For example,
the newest NVIDIA GTX 980 device has up to 2048 CUDA
cores. Some scientific applications, such as Genetic Algo-
rithm (GA), may have an alternative way to further improve
their performance. In this paper, based on the biological
fundamentals of GA, we propose a speculative approach to
use the redundant computation resources (i.e., cores) to im-
prove the performance of parallel genetic algorithm (PGA)
applications on GPU. Comparing to the traditional paral-
lelism scheme, our theoretical analysis shows that the spec-
ulative approach should improve the performance of GA ap-
plications intuitively. We experimentally compare our de-
sign with the traditional parallelism scheme on GPU using
three Nonlinear Programming problems (NLP). Experimen-
tal results demonstrate the effectiveness of our speculative
approach in both execution time and solution accuracy of
GA applications on GPU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA
Copyright 2015 ACM 978-1-4503-3404-4/15/02 ...$15.00.
http://dx.doi.org/10.1145/2712386.2712398.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms, Design, Performance

Keywords
GPGPU, Speculative Execution, Genetic Algorithm, Perfor-
mance Evaluation

1. INTRODUCTION
Nowadays compared to the traditional multi-core proces-

sors, GPUs offer dramatic computation power because of
their highly massive parallel architecture. The number of
cores integrated into a GPU is the key factor that affects
the performance of GPUs. Recently, the number of cores
integrated in a single GPU chip increases rapidly. For ex-
ample, the newest NVIDIA GTX 980 device has up to 2048
CUDA cores. Besides the number of cores, the GPU archi-
tecture evolves quickly. GPU manufacturers are trying to
hide more and more hardware specifications so that eventu-
ally programmers can write their GPU codes more easily.

In the predictable future, more cores will be integrated in
a single GPU chip. More cores mean a single GPU device
can support higher parallelism. However, the GPU hard-
ware now is a little ahead the computation needs, that is,
the GPU hardware may offer the redundant computation
resource for some specific applications. The latest CUDA
Platform that simplifies the multiple GPUs management in-
creases the redundancy of computation resources provided
by GPU devices. The newest GPU architecture allows mul-
tiple kernels running on the GPU simultaneously, that is, a
single GPU device allows different applications to share the
GPU computation resources. It can be considered as one
of solutions to use of the redundant computation resources.
Therefore, how to use of so many cores of GPUs efficiently
is very critical for GPU computing instead of the skills of
fine optimization based on the GPU architecture. We find

68

Table 1: The results of a GA application during 10 executions
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Optimal Result 7052.47 7054.28 7051.95 7051.92 7054.81 7051.94 7053.22 7052.79 7053.95 7052.17
Execution Time 7858.97 10933.39 14267.79 8943.80 14337.15 11986.93 9177.28 13527.16 12718.70 12301.07

that some scientific applications, such as Genetic Algorithm
(GA), may have an alternative way to further improve their
performance.
A Genetic Algorithm (GA) is a search heuristic that in-

spired by natural evolutionary biology, such as inheritance,
mutation, selection and crossover [6]. The GA can be effec-
tively used to find approximate solutions for optimization
and search problems in an acceptable mount of time. Thus,
it is successfully used in business, engineering and science
fields [2, 9, 7, 11]. However, as GA applications need huge
numbers of individuals that composes a population to search
probable solutions with enough generations of evolution, GA
applications cost lots of computation capacity. The solution
accuracy and execution time strongly depends on the de-
velopment of computing parallelism. With the emergence
of GPU devices, the GA researchers focus on the new mas-
sive parallel architecture immediately. Many GA applica-
tions are transplanted from clusters to GPUs and get tens
or hundreds of speedup.
The previous research mainly concentrates on use of the

massive parallelism of GPU devices with traditional paral-
lel genetic algorithm approach [8, 12, 1, 5]. However, the
redundancy of computation resources provided by GPU de-
vices is not considered seriously enough. In this paper, we
begin with a normal fact that we find in our experiences
of implementing GA applications on GPU. Inspired by the
fact, we propose a new speculative GA approach on GPU to
use of the redundant computation resources of GPU devices
more effectively for GA applications. Comparing to the tra-
ditional parallelism scheme, our theoretical analysis shows
that the speculative approach should improve the perfor-
mance of GA applications intuitively. We take three classic
engineering problems solved by GA applications as our case
studies to evaluate the effectiveness of our speculation ap-
proach. Experimental results show that the proposed spec-
ulative GA approach can use GPU computation resources
better than the traditional parallelism approach. Our spec-
ulative approach is superior to the traditional parallelism
scheme in both execution time and solution accuracy of GA
applications on GPU.
Our work offers an alternative approach to use GPU’s

huge computation resources–speculation rather than paral-
lelism. This approach is not limited only in field of GA appli-
cations. The speculation approaches should be effective for
the algorithms based on searching with random candidates,
e.g., evolution algorithm, neural network and machine learn-
ing algorithms. We exploit a new perspective to use GPU’s
powerful computation capacity, and further get performance
improvement by using GPU devices.
The remainder of this paper is structured as follows. Sec-

tion 2 is the motivation of our work, which presents a fact
of GA applications that we find in our experiences of im-
plementing GA applications. We describe our speculative
GA approach on GPU and make a theoretical analysis in
Section 3. Experimental results are presented in Section 4.
Section 5 summaries our findings and points our future work.

2. MOTIVATIONS
In nature, the lifetime of each individual is a procedure

in which it compete with others and fits the environment.
Only the strongest ones can survive from the tough en-
vironment. The survivor individuals mate randomly and
produce the next generation. During reproducing the next
generation, crossover always occurs, while mutation hap-
pens rarely, which makes individuals of the next generation
stronger for the tough environment.

Genetic Algorithms are heuristic search algorithms that
mimic natural species selection and evolution described above.
The problem that a GA application tends to solve is the
tough environment. Each individual in the population of a
GA application is a candidate solution of the problem.

A generation of a GA is generated by the following steps:
fitness computation, selection, crossover and muta-
tion. The fitness computation is the competition of indi-
viduals, and can tell which individual is good for the prob-
lem; the selection choose good individuals to survive and
eliminates bad ones; the crossover mates two individuals to
produce the next generation individuals; and the mutation
occurs after crossover, so that the next generation can be
more diverse. With enough generations, GAs can evolve an
individual that is the optimal solution to the problem. Since
GAs are so similar to the biological species evolution, many
theories of GAs are motivated and explained by biological
theory.

During our experiences of implementing GA applications
on GPU devices, we find a fact that when we run the GA
application to find suitable results of an engineering problem
with several times, one can hardly get the same result even
with the same configuration. Table 1 shows the solution
accuracy and execution time of an example GA application
that solves an tested engineering problem. In this problem,
a smaller result means a higher solution accuracy. We run
this GA application for 10 times with a maximum of 50000
generations, and show the best result as well as the execution
time that the GA application taken to reach the best result.

From Table 1, we can easily find that the results of the
GA application are unstable. For example, the best results
of the 3rd and 4th run are almost the same, while the time
they consumed to reach the best results are quite different.
Moreover, although the time of the 3rd and 5th run are al-
most the same, the 3rd run gets the highest accuracy, rather
than the 5th run gets the lowest accuracy.

There are two reasons for the instability of GA applica-
tions. First, the evolution progress in the nature (e.g., mat-
ing and mutation) are highly random, which is full of ran-
dom operations. A little difference in mating or mutation
progress will lead to a total different evolution track. Sec-
ond, the population may evolve into a trap that is hard to
jump out, which leads GA applications get the bad results.
All above observations are exactly the same as the species
evolutions in the nature. There are millions of species be-
cause they evolve into different evolution track. Meanwhile,
lots of species extinguished because they were trapped and

69

SM SM

Population I

SM SM SM SM

Population II

SM SM

SM SM

Population III

SM SM SM SM

Population IV

SM SM

L2 Cache

Thread Block

Block Shared
Memory

A Thread
maintains

an individual
A island of
individuals

Each block maintains
4 islands to use the shared

memory and synchronization.

Migration
between
islands

Figure 1: The Speculation Methodology that Implements GAs on a GPU.

evolved into the dead end.
Although we can develop some rules for mating and muta-

tion to improve the performance of GA applications, one can
not manipulate the progress of mating and mutation in GA
applications. This progress highly depends on randomness,
so that what we can do is to accept the instability of GA ap-
plications. Actually, this is also the biological fundamental
of GA. Lots of biologists, philosophers and even religionists
have been discussing whether Darwin’s theory is right, one
of which is “if the all species on earth evolve again, our world
may be totally different.”. Whether this statement is right
or not, it should be right in fields of GA applications.

3. A SPECULATIVE GA SCHEME ON GPU
The traditional GA applications on GPU devices usually

use island-based parallel genetic algorithm (PGA) models to
make usage of GPU cores. In a typical PGA model, the pop-
ulation of a GA application is divided into islands, which can
be considered as sub-populations. The individuals within a
island evolve separately. Every a pre-defined number of gen-
erations, individuals in different islands will exchange, which
is called migration. The island mechanism is designed to
map GA applications to parallel computing devices easily
and reduce the communication overhead as much as possi-
ble. Compared to the original GA schemes, PGA schemes
reduce the execution time so that lots of problems can be
solved within an acceptable time, at the cost of decreasing
the solution accuracy with a same generations.
The island-based PGA model is perfectly fit for the GPU

architecture, which has been shown the most effective ap-
proach on GPU [13]. Although a GPU device has hundreds
of cores, they are organized into Streaming Multiprocessors
(SMs). The threads running on cores in a SM can share
the fast on-chip shared memory, while the communication
between SMs are quite expensive. The classic implemen-
tation of island-based PGA models on GPU is that each
block of threads maintains an island, and each block is fur-
ther assigned to a particular SM. Island-based PGA models
try to reduce the communication overhead between islands

caused by migrations. Thus, the communication overhead
between SMs is not much.

Because of GPU’s powerful computation capacity, GPU
offers two or even three orders of magnitude speedups com-
pared to the multi-core processors. Currently, the imple-
mentations of GA applications on GPU devices mostly fol-
low island-based PGA models [8, 12, 1]. However, GPU has
too powerful computation capacity. In island-based PGA
models on GPU, each thread represents a individual. The
newest NVIDIA GTX 980 GPU can support over 20,000
threads, which means the size of a GA application’s popula-
tion on a single GPU device can exceed 20,000 individuals.
The essential number of individuals is related to the number
of variables of the problem that a GA application tries to
solve. In general, hundreds or thousands of individuals are
enough to get a good result in reasonable generations [3].
The computation capacity of GPU devices for GA applica-
tions is obviously redundant now.

Therefore, how to make usage of the redundant computa-
tion resources of GPU devices for GA applications effectively
now is very critical. As we analyze in Section 2, the results
of GA applications are not stable. When running the GA
application on GPU, we wish our GA application can get
benefits rather than suffer from the instability.

We propose a new GA approach on GPU that is based
on the speculation thinking, so that the GA applications on
GPU can gain the benefits from the instability, which leads
to improve both the solution accuracy and execution time.
In short, we split GPU SMs into groups. Each group main-
tains a separate population of the GA application, which is
independent with each other. The islands of each popula-
tion still depends on the number of SMs in a group. The
more groups of SMs are partitioned, the more opportunities
that the GA application can try to get a better result.

Figure 1 illustrates the basic concept of our speculative
GA approach on GPU. In Figure 1, the GPU device has
16 SMs which is partitioned into four groups. Therefore,
four separate populations can evolve simultaneously, which
indicates that the GA application can get four speculative
results during each running. After the four populations

70

Table 2: Speculative Genetic Algorithm Configurations With Different Values of CP
CP 1 2 4 8 16

Individuals per Island 64 64 64 64 64
Islands per Population 64 32 16 8 4

Individuals per Population 4096 2048 1024 512 256
Populations 1 2 4 8 16

Total Individuals 4096 4096 4096 4096 4096

evolve to a pre-defined generations, we choose the best result
among the results of four populations provided. Actually, we
also can split the 16 SMs into different number of groups.
We introduce the Configure Parameter (CP) to represent the
number of groups in the GPU device. For example, when the
value of CP is 4, it implies that the GA application can get
4 speculative results during each running. When the value
of CP is 1, it is the traditional island-based PGA scheme
on GPU. The candidate CP can be set to 2n, which means
the value of CP can be 1, 2, 4, till the maximum number
of blocks that a GPU can support. As the value of CP in-
creases, we can get more speculative results, while the size
of each population decreases.
The size of population is very important for GA applica-

tions. If the population size is too small, the optimization
space of a GA application is too small so that it evolves
very slowly. Thus, individuals in the population can easily
evolve to a bad result. On the contrary if the population size
is too large, it will not offer the corresponding performance
improvement, which is a waste of computation resources on
GPU. Besides, with the speculation methodology, the num-
ber of speculative results is another factor that affects the
performance of GA applications. The more speculative re-
sults means that the GA application has high probability to
obtain a better result.
Therefore, if the value of CP is too large, we can get

enough speculative results to get the benefits from the in-
stability of GA executions, but the size of each population
may be too small which leads to the individuals in the pop-
ulation traps into bad results. Oppositely, if the value of CP
is too small, the size of population can be guaranteed, but
the effect of speculation is weak. Additionally, the size of
each population perhaps is too big that the precious com-
puting resources are wasted. With the analysis above, a
suitable value of CP is critical to the performance of GA
applications on GPU. In Section 4, we demonstrate that our
speculative GA approach is superior to the traditional par-
allelism scheme (i.e., the value of CP equals 1) in practice.
Our future work will focus on the relationship between the
performance and the value of CP.

4. EVALUATION
In this section, we present the quantitative evaluation of

our proposed speculative approach for solving GA applica-
tions on GPU.

4.1 Methodology
In order to evaluate our speculative GA approach, we

choose three Nonlinear Programming problems (NLP) as
our benchmark, which are widely used to evaluate the per-
formance of different GA schemes or other optimization al-
gorithms [10, 4, 13]. The detailed descriptions of these test
problems can be found in Appendix A.

We use a NVIDIA GTX 580 GPU device that is the Fermi
architecture to evaluate our speculative GA approach. The
GTX 580 GPU device consists of 512 CUDA cores that are
organized into 16 SMs. Each SM has 32 CUDA cores. The
Fermi architecture allows programmers to set the configu-
ration of L1 Cache and Shared Memory in a SM. In our
evaluation, we set the configuration to 48KB/16KB, which
means the size of L1 Cache is 48KB while the size of Shared
Memory is 16KB. Compared to the configuration that is
16KB/48KB, we find that a larger L1 Cache can provide a
better performance of GA applications on GPU.

When implementing those three Nonlinear Programming
problems on GPu, each island consists of 64 individuals, four
islands are organized into a block, and we initialize 16 blocks
in total. Hence, the value of CP can be 1, 2, 4, 8 and 16.
With different values of CP, we have different number of
populations. However, we keep the number of individuals in
all populations the same (i.e., 4096). The detailed configu-
rations of GA applications with different values of CP are
shown in Table 2.

4.2 Experimental Results
In this section, we evaluate the performance of our spec-

ulative GA approach, and compare it with the traditional
parallelism one. 100 runs are performed for each value of
CP in order to assure to get the stable results. The perfor-
mance of different GA schemes are measured by execution
time and result accuracy. When the value of CP is 1 (i.e.,
only one population exists on GPU), our speculative ap-
proach becomes the traditional parallelism scheme, which is
similar to the Hierarchy (Async) PGA approach developed
in [13].

We select a pre-defined acceptable result that is 0.1% close
to the optimal result for each test problem, and evaluate
the execution time that the GA application can reach the
pre-defined accuracy. Figure 2 shows the execution time of
100 runs, which is a combination of scatter and line chart.
Each + of the scatter chart represents the execution time
of each run, and the solid circle symbol on lines shows the
average execution time of 100 runs when the value of CP
varies from 1 to 16. For Test Problem 1 and 3, when the
value of CP increases from 1 to 4, the average execution
time decreases significantly. And for Test Problem 2, the
average execution time decreases as the value of CP varies
from 1 to 8. When the value of CP increases, more popula-
tions can evolve simultaneously. Thus, the GA applications
have more opportunities to reach the pre-defined accuracy
as soon as possible. This also demonstrates that our specu-
lative GA approach outperforms the traditional parallelism
scheme (i.e., the value of CP equals 1) in practice. However,
when the value of CP is greater than 4 (8 for Test Problem
3), the average execution time becomes longer as the value
of CP increases. Although we can get more speculative re-

71

1 2 4 8 16

3000

4000

5000

6000

7000

8000

9000

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

The Value of CP

 The Average of Execution Time

T
h
e
 A

v
e
ra

g
e
 o

f
E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

(a) Test Problem 1

1 2 4 8 16
0

1000

2000

3000

4000

5000

6000

7000

3000

3300

3600

3900

4200

4500

4800

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

The Value of CP

 T
h

e
 A

v
e

ra
g

e
 o

f
E

x
e

c
u

ti
o

n
 T

im
e

 (
m

s
) The Average of Execution Time

(b) Test Problem 2

1 2 4 8 16

8000

10000

12000

14000

16000

18000

12000

12200

12400

12600

12800

13000

13200

13400

13600

13800

14000

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

The Value of CP

T
h
e
 A

v
e
ra

g
e
 o

f
E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

 The Average of Execution Time

(c) Test Problem 3

Figure 2: The execution time of reaching a pre-defined accuracy.

7052.8

7052.9

7053.0

7053.1

7053.2

7053.3

1 2 4 8 16

7051.5

7052.0

7052.5

7053.0

7053.5

7054.0

7054.5

7055.0

7055.5

T
h
e
 A

v
e
ra

g
e
 o

f
A

c
c
u
ra

c
y

 The Average of Accuracy

T
h
e
 A

c
c
u
ra

c
y

The Value of CP

(a) Test Problem 1

2.38121

2.38122

2.38123

2.38124

2.38125

2.38126

1 2 4 8 16
2.38113

2.38116

2.38119

2.38122

2.38125

2.38128

2.38131

2.38134

T
h

e
 A

v
e

ra
g

e
 o

f
A

c
c
u

ra
c
y

 The Average of Accuracy

T
h

e
 A

c
c
u

ra
c
y

The Value of CP

(b) Test Problem 2

24.3286

24.3288

24.3290

24.3292

24.3294

24.3296

24.3298

24.3300

24.3302

1 2 4 8 16
24.322

24.324

24.326

24.328

24.330

24.332

24.334

24.336

T
h
e
 A

v
e
ra

g
e
 o

f
A

c
c
u
ra

c
y

 The Average of Accuracy

T
h
e
 A

c
c
u
ra

c
y

The Value of CP

(c) Test Problem 3

Figure 3: The solution accuracy with a fixed number of generations (50,000 Generations).

sults when the value of CP is more larger, the size of each
population is too small that the speculation effect cannot
compete the negative effect of small population sizes.
Most GA applications are set a fixed generation for evo-

lution to get a suitable result. Therefore, we also conduct
experimental studies in which we set 50,000 generations to
solve each test problem. Figure 3 shows the solution accu-
racy of each test problem with different values of CP after
a 50,000-generation evolution. Similar to Figure 2, scatter
and line charts are used to represent the solution accuracy
of each run and the average solution accuracy, respectively.
Thanks to the speculative execution, we observe the best
solution accuracy are obtained when the value of CP is 4 for
Test Problem 1 & 3, and 8 for Test Problem 3, respectively.
When the value of CP becomes too larger, the solution accu-
racy drops significantly. This observation is consistent with
our findings in Figure 2. In a word, a suitable value of CP is
sensitive to the problem’s characteristics. Our future work
will focus on the relationship between the performance and
the value of CP.
Finally, we show a detailed comparison between our specu-

lative approach and the traditional parallelism scheme using
Test Problem 2. All data in Tables 3 and 4 are the average
value of 100 runs.
From Table 3, we observe that compared to the traditional

parallelism scheme, our speculative approach can save up to
10,274 generations that is 1,795 ms to reach the pre-defined
accuracy. Overall, our speculative approach outperforms the
traditional parallelism scheme with the maximum speedup
of 1.6.
Table 4 indicates that the solution accuracy also improves

when the speculation methodology is used, which is only
+4.7×10−5 away from the optimum solution. However, the
result of the traditional parallelism scheme is +10.4× 10−5

away from the optimum solution. We also observe that,
except for when the value of CP is 16, the total execu-
tion times of 50,000 generations of speculation and paral-

lelism approaches are similar, which means our speculation
methodology does not introduce any overhead. When the
value of CP is 16, all islands of a population are within a
single block. Thus, all data exchanges during migrations
are in the shared memory of the GPU. Nevertheless, when
the value of CP is not 16, islands of a population are in
two blocks at least, which means migration operations need
to access the global memory. The global memory access is
100 times slower than the shared memory one. However,
the number of threads on GPU is big enough to hide most
the global memory accesses, so there is only one millisecond
difference, which we can omit reasonably.

5. CONCLUSION
Currently, existed GA applications on GPU mostly ex-

ploit the massive parallelism provided by GPU devices to
improve their performance. However, GPU can offer more
and more computation capacity with its fast development
in the future. In this paper, we start with the biological
fundamentals of GA, and show that the results of GA appli-
cations are unstable across each execution. Different from
the traditional parallelism methodology, we propose a spec-
ulative approach to get benefits from the instability of GA
applications. With our theoretical analysis, the specula-
tive approach can make usage of the redundant computa-
tion resources of GPU devices more efficiently. Thus, the
performance of GA applications can be further improved
on GPU intuitively. Our experimental results show that the
speculative approach outperforms the traditional parallelism
scheme both in execution time and the solution accuracy.
Our future work will focus on the relationship between GA
applications’ performance and the value of CP, so that we
can help researchers and engineers to use our speculation
methodology to achieve a better performance in practice.

6. ACKNOWLEDGMENTS

72

Table 3: The comparison of execution time our speculative approach and the traditional parallelism scheme
Methodology Parallelism Speculation

CP 1 2 4 8 16
Generation 27324 23230 20302 17050 18179
Time (ms) 4805 4086 3585 3010 3210
Speedup 1 1.17 1.34 1.60 1.50

Table 4: The comparison of solution accuracy between our speculative approach and the traditional parallelism
scheme

Parallelism Speculation
CP 1 2 4 8 16
Result 2.38126 2.38124 2.38122 2.38121 2.38121
Accuracy +10.4 +8.0 +5.8 +4.7 +5.0
Time (ms) 8845 8845 8845 8845 8844

The authors would like to thank anonymous reviewers
for their insightful comments. This work is supported by
the National Basic Research Program of China (973 Project
Grant No. 2015CB352400). This work is also partly sup-
ported by Program for Changjiang Scholars and Innovative
Research Team in University (IRT1158, PCSIRT) China,
NSFC (Grant No. 61272099) and Scientific Innovation Act
of STCSM (No. 13511504200).

7. REFERENCES
[1] R. Arora, R. Tulshyan, and K. Deb. Parallelization of

binary and real-coded genetic algorithms on gpu using
cuda. In CEC ’10, pages 1–8. IEEE, 2010.

[2] A. Beham, S. Winkler, S. Wagner, and M. Affenzeller.
A genetic programming approach to solve scheduling
problems with parallel simulation. In IPDPS ’08,
pages 1–5. IEEE, 2008.

[3] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs paralleles, reseaux et systems repartis,
10(2):141–171, 1998.

[4] K. Deb. An efficient constraint handling method for
genetic algorithms. Computer Methods in Applied
Mechanics and Engineering, 186(2–4):311–338, 2000.

[5] B. Dorronsoro and P. Bouvry. Cellular genetic
algorithms without additional parameters. The
Journal of Supercomputing, 63(3):816–835, 2013.

[6] Z. Konfrt. Parallel genetic algorithms: Advances,
computing trends, applications and perspectives. In
IPDPS ’04, page 162b. IEEE, 2004.

[7] M. Lahiri and M. Cebrian. The genetic algorithm as a
general diffusion model for social networks. In AAAI
’10, pages 494–499, 2010.

[8] T. V. Luong, N. Melab, and E.-G. Talbi. Gpu-based
island model for evolutionary algorithms. In GECCO
’10, pages 1089–1096. ACM, 2010.

[9] A. Markham and N. Trigoni. Discrete gene regulatory
networks dgrns: A novel approach to configuring
sensor networks. In INFOCOM ’10, pages 1–9. IEEE,
2010.

[10] Z. Michalewicz. Genetic algorithms, numerical
optimization, and constraints. In ICGA ’95, pages
151–158. Morgan Kaufmann, 1995.

[11] G. Renner and A. Ekart. Genetic algorithms in
computer aided design. Computer-Aided Design,

35(8):709–726, 2003.

[12] P. Vidal and E. Alba. A multi-gpu implementation of
a cellular genetic algorithm. In CEC ’10, pages 1–7.
IEEE, 2010.

[13] L. Zheng, Y. Lu, M. Guo, S. Guo, and C.-Z. Xu.
Architecture-based design and optimization of genetic
algorithms on multi- and many-core systems. Future
Generation Computer Systems, 38(0):75–91, 2014.

APPENDIX
A. DESCRIPTIONS OF TEST PROBLEMS

In the following, we provide detailed descriptions of the
benchmarks used in our evaluation. Those three Nonlinear
Programming problems (NLP) are widely used to evaluate
the performance of different GA schemes or other optimiza-
tion algorithms [10, 4, 13]. Specifically, we show the mathe-
matical definition, the optimal solution and the best solution
obtained by GA-based methods in the literature for each test
problem.

A.1 Test Problem 1
This problem has eight variables and six inequality con-

straints.
Minimize

f(x⃗) = x1 + x2 + x3

Subject to

g1(x⃗) ≡ 1− 0.0025(x4 + x6) ≥ 0,

g2(x⃗) ≡ 1− 0.0025(x5 + x7 − x4) ≥ 0,

g3(x⃗) ≡ 1− 0.01(x8 − x5) ≥ 0,

g4(x⃗) ≡ x1x6 − 833.33252x4 − 100x1 + 83333.333 ≥ 0,

g5(x⃗) ≡ x2x7 − 1250x5 − x2x4 + 1250x4 ≥ 0,

g6(x⃗) ≡ x3x8 − x3x5 + 2500x5 − 1250000 ≥ 0,

100 ≤ x1 ≤ 10000,

1000 ≤ (x2, x3) ≤ 10000,

10 ≤ xi ≤ 1000, i = 4, · · · , 8.

The optimum solution is f∗(x⃗) = 7049.330923.

73

A.2 Test Problem 2
This problem has four variables and five inequality con-

straints, and is known as the welded beam design problem
(WBD).
Minimize

f(x⃗) = 1.10471h2l + 0.04811tb(14.0 + l)

Subject to

g1(x⃗) ≡ 13600− τ(x⃗) ≥ 0,

g2(x⃗) ≡ 30000− σ(x⃗) ≥ 0,

g3(x⃗) ≡ b− h ≥ 0,

g4(x⃗) ≡ Pc(x⃗)− 6000 ≥ 0,

g5(x⃗) ≡ 0.25− δ(x⃗) ≥ 0,

0.125 ≤ h ≤ 10,

0.1 ≤ l, t, b ≤ 10,

The terms τ(x⃗), σ(x⃗), Pc(x⃗), δ(x⃗) are given below.

τ(x⃗) =
(
((τ ′(x⃗))2 + (τ ′′(x⃗))2

+ lτ ′(x⃗)τ ′′(x⃗)√
0.25(l2+(h+t)2)

) 1
2

,

σ(x⃗) = 504000
t2b

,

Pc(x⃗) = 64746.022(1− 0.0282346t)tb3,

δ(x⃗) = 2.1952
t3b

,

where

τ ′(x⃗) = 6000√
2hl

,

τ ′′(x⃗) =
6000(14+0.5l)

√
0.25(l2+(h+l)2)

2{0.707hl(l2/12+0.25(h+t)2)} .

The optimum solution is f∗(x⃗) = 2.38116.

A.3 Test Problem 3
This problem has ten variables and eight inequality con-

straints.
Minimize

f(x⃗) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2

+(x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2

+2(x9 − 10)2 + (x10 − 7)2 + 45

Subject to

g1(x⃗) ≡ 105− 4x1 − 5x2 + 3x7 − 9x8 ≥ 0,

g2(x⃗) ≡ −10x1 + 8x2 + 17x7 − 2x8 ≥ 0,

g3(x⃗) ≡ 8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0,

g4(x⃗) ≡ −3(x1 − 2)2 − 4(x2 − 3)2 − 2x2
3 + 7x4 + 120 ≥ 0,

g5(x⃗) ≡ −5x2
1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0,

g6(x⃗) ≡ −x2
1 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0,

g7(x⃗) ≡ −0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2
5 + x6 + 30 ≥ 0,

g8(x⃗) ≡ 3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0,

−10 ≤ xi ≤ 10, i = 1, · · · , 10.

The optimum solution is f∗(x⃗) = 24.3062091.

74

