
PCM: A Parity-check Matrix Based Approach to Improve

Decoding Performance of XOR-based Erasure Codes

Yongzhe Zhang∗, Chentao Wu∗‡, Jie Li∗†, Minyi Guo∗
∗Shanghai Key Laboratory of Scalable Computing and Systems,

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
†Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki, Japan

‡Corresponding author: wuct@cs.sjtu.edu.cn

Abstract—In large storage systems, erasure codes is a primary
technique to provide high reliability with low monetary cost.
Among various erasure codes, a major category called XOR-
based codes uses purely XOR operations to generate redun-
dant data and offer low computational complexity. These codes
are conventionally implemented via matrix based method or
several specialized non-matrix based methods. However, these
approaches are insufficient on decoding performance, which
affects the reliability and availability of storage systems.

To address the problem, in this paper, we propose a novel
Parity-Check Matrix based (PCM) approach, which is a general-
purpose method to implement XOR-based codes, and increases
the decoding performance by using smaller and sparser matrices.
To demonstrate the effectiveness of PCM, we conduct several
experiments by using different XOR-based codes. The evaluation
results show that, compared to typical matrix based decoding
methods, PCM can improve the decoding speed by up to a
factor of 1.5× when using EVENODD code (an erasure code
for correcting double disk failures), and accelerate the decoding
process of STAR code (an erasure code for correcting triple disk
failures) by up to a factor of 2.4×.

Keywords-Reliability, Erasure Code, Parity-check Matrix, Per-
formance Evaluation

I. INTRODUCTION

With the tremendous requirements on reliability in cloud

computing systems, nowadays erasure code is an effective

method to provide high reliability for storage systems [17]

[36] [24] [34]. In these systems, redundant data are organized

by erasure codes, which forms a reliable storage system (e.g.,

RAID1) to tolerate concurrent disk failures. It is an efficient

way to provide both high performance and high reliability

storage services with low monetary cost.

Among various erasure codes, a major category is based on

XOR operations, which is called XOR-based codes. Another

category uses addition and multiplication over finite field to

generate parities. Right now XOR-based codes show great

advantages on encoding/decoding speed [29] [4] [33] [19]

[37]. Typically, some XOR-based codes are used for correcting

double disk failures in RAID-6 (i.e., EVENODD [1], RDP

[6]), and the others can tolerate concurrent disk failures of

three or more disks (i.e., STAR [15], HoVer [12]).

Conventionally, there are two approaches to implement

XOR-based codes in storage systems. One approach [13]

1RAID: Redundant Array of Independent (or Inexpensive) Disks [25].

(called “matrix based approach”) performs encoding and

decoding based on the generator matrix [31], which is a

general-purpose method to implement XOR-based codes. The

other approach (called “non-matrix based approach”) uses

specialized algorithm for each code (such as EVENODD [1],

STAR [15], etc.), which utilizes the properties of the code for

encoding and decoding.

However, existing approaches are insufficient to provide

high decoding performance2, which affects the reliability of

the storage systems in terms of reconstruction time, and has

great impact on data availability as well. On one hand, matrix

based method has disadvantages on decoding speed due to

the large size of the decoding matrix. On the other hand,

non-matrix based methods has many limitations due to the

following reasons (detailed illustration will be given in Section

II). First, in some scenarios, the decoding speed of several

codes are slow [16], such as EVENODD [1] and STAR [15].

Second, the implementation of non-matrix based approach is

complex. Third, non-matrix based approach can be used in

several specific erasure codes (such as RDP [6], EVENODD

[1], STAR [15], etc), but it is not a general-purpose method

for most erasure codes.

To address the problem, in this paper, we propose a Parity-
Check Matrix based (PCM) approach for XOR-based codes,

which is a general-purpose approach with high decoding

performance. By using parity-check matrix, we discover small

and sparse matrices to represent the relationship between

lost data and surviving data, thus has much higher decoding

efficiency than traditional matrix based approach.

The contribution of our work includes,

1) We propose a novel Parity-Check Matrix based (PCM)

approach to implement XOR-based erasure codes based

on parity-check matrix, which shows great advantages on

decoding performance.

2) We conduct a series of simulations and experiments to

compare PCM with traditional approaches on decoding

performance. The results show that, PCM achieves high

decoding performance by using different erasure codes

such as EVENODD and STAR.

The rest of paper is organized as follows. In Section II, we

2In this paper, decoding performance refers to the speed of reconstructing
lost data under the maximum number of device failures.

2015 IEEE 34th Symposium on Reliable Distributed Systems

1060-9857/15 $31.00 © 2015 IEEE

DOI 10.1109/SRDS.2015.15

182

introduce related work and our motivation. In Section III, the

design and optimization techniques of PCM is illustrated in

detail. The evaluation is presented in Section IV. Finally we

conclude our work in Section V.

II. RELATED WORK AND MOTIVATION

In this section, we introduce the related work and our

motivation. To facilitate the discussion, we summarize the

symbols used in this paper in Table I.

TABLE I
SYMBOLS USED IN THIS PAPER

Symbols Description

n the number of disks in a disk array
m total number of disk failures
k an integer with k = n−m
w the word size
i row ID
j column ID (disk ID)

Ci,j an element at the ith row and jth column
Di the ith disk
G a generator matrix

Ĝ
a sub-matrix of G with rows corresponding to the
surviving data

H a parity-check matrix

HL
a sub-matrix of H with columns corresponding to the
lost data

HS
a sub-matrix of H with columns corresponding to the
surviving data

pi a parity element defined by the ith row of H

A. Erasure Codes

Erasure codes are widely used in clusters or data centers to

prevent data loss with low spatial and monetary cost. Typically,

erasure codes can be divided into two categories. One class is

based on arithmetic over finite field, and the other is based on

XOR operations.

Reed-Solomon (RS) code [35] is a traditional erasure code

based on finite field, whose multiplication is expensive [29] [4]

[33] [19]. Recently, several erasure codes based on RS codes

are proposed to improve the efficiency of storage systems,

such as Pyramid Code [14], Local Reconstruction Codes [17]

and Locally Repairable Codes [36], SD codes [28] and STAIR

codes [20].

XOR-based codes is a major category of erasure codes that

uses purely XOR operations in computation, and offers low

computational cost on encoding/decoding. Erasure codes for

correcting double or triple disk failures are widely used in

storage systems. Typically, XOR-based codes can be further

divided into two categories, XOR-based codes for correct-

ing double disk failures in RAID-6 (referred to as “RAID-

6 codes”) and XOR-based codes for tolerating triple disk

failures. Typical RAID-6 codes include EVENODD code [1],

RDP code [6], Blaum-Roth code [2], X-code [46], Liberation

code [27], Liber8tion code [26], Cyclic code [5], B-Code [45],

Rotary-code [42], H-code [44], P-code [18], HDP-code [43]

and HV-code [37]. Then, STAR code [15], Triple-Star code

[41], TP technique [7], HDD1 code [40], RSL-code [8] and

RL-code [9], WEAVER codes [11], HoVer codes [12], T-code

[39], HDD2 code [40] and Cauchy Reed-Solomon codes [3]

are proposed to tolerate three or more disk failures.

B. Problems in Existing Decoding Approaches

In the last two decades, researchers propose two approaches

to implement XOR-based codes in disk arrays, matrix/non-

matrix based approaches. Matrix based approach can be ap-

plied to various codes, and non-matrix based approach is

proposed for specific codes according to the parity layout.

1) Non-matrix based Approach: This approach [46] [1]

[6] [15] decodes the erasure codes via specific reconstruction

algorithms. We take EVENODD code [1] as an example,

which is a typical code for illustrating the decoding process.

EVENODD code [1] is a typical RAID-6 code to tolerate

double disk failures, which supports p + 2 disks, where p
is a prime number. Fig.1 and Fig.2 show the encoding and

decoding procedures of EVENODD when p = 5, respectively.

In the encoding process, a parity element is calculated via

XOR operations among the data elements with the same shape

(e.g., C0,5 = C0,0 ⊕ C0,1 ⊕ C0,2 ⊕ C0,3 ⊕ C0,4 as shown in

Fig.1(a).).

0

1

2

3

0 1 2 3 4 5 6

Data Horizontal Parity
Diagonal Parity

(a) Horizontal parity coding (e.g.,
C0,5 = C0,0⊕C0,1⊕C0,2⊕C0,3⊕
C0,4)

0 1 2 3 4 6

0

1

2

3

S
Data Horizontal Parity
Diagonal Parity

(b) Diagonal parity coding (e.g., S =
C3,1 ⊕ C2,2 ⊕ C1,3 ⊕ C0,4 and
C0,6 = S ⊕C0,0 ⊕C3,2 ⊕C2,3 ⊕
C1,4)

Fig. 1. Encoding of EVENODD (p = 5). It’s represented by a (p−1)×(p+
2) matrix, where the first p and the last two columns delegate the data and the
parity columns, respectively. We use different icon shapes to denote different
sets of parity chains, which consist of parity elements and their corresponding
data elements. S is an internal element calculated by several data elements,
and it is finally added to every diagonal parity element.

The decoding process of EVENODD can be divided into

many scenarios, regarding to the number of disk failures and

the location of failed disks. For decoding a single data/parity

element (or a single column), it can be computed via encoding

equations (e.g., C0,1 = C0,5 ⊕ C0,0 ⊕ C0,2 ⊕ C0,3 ⊕ C0,4 as

shown in Fig.1(a).). When double columns fail, first we need

to find the recovery chain(s) and decode the starting point(s)

of the recovery chain(s), and then decode all lost elements

based on the order in the recovery chain(s).

However, non-matrix based approach has the following

disadvantages,

• Low Efficiency. In some scenarios, the specific decoding

algorithm is inefficient, such as EVENODD and STAR

[16].

• High Complexity in Implementation. When double or

triple columns fail, the decoding process is complex by

using non-matrix based approach. It is because that many

183

0

1

2

3

0 1 2 3 4 5 6
Survivors Lost Data

Fig. 2. Decoding of EVENODD (p = 5) when columns 0 and 2 fail.
First we identify the starting point of recovery chain: C2,2. Second we
reconstruct data elements according to the corresponding recovery chains
until they reach the endpoint (C1,0). The order to decode data elements is
C2,2 →C2,0 →C0,2 →C0,0 →C3,2 →C3,0 →C1,2 →C1,0.

different scenarios should be considered in the decoding

process. For example, when columns 0 and 1 fail, two

recovery chains are handled in the decoding process,

which is different from the example in Fig.2.

• Low Flexibility. Non-matrix based approach can be used

in several specific erasure codes (such as STAR [15] and

EVENODD [1]), but it is not a general-purpose method

for all erasure codes.

2) Matrix based Approach: Matrix based approach [13]

is a popular choice to implement various erasure codes.

Given a generator matrix of an erasure code, it can provide

standardized encoding and decoding algorithms.

By using matrix based approach, the encoding of XOR-

based erasure codes is represented by a matrix-vector product.

The data is a vector of k words. Each word contains w ele-

ments, and each element represents a data block in disk array.

A generator matrix G transforms the data into a codeword,

which contains the original data and m additional parity words.

Fig.3 shows the encoding of EVENODD code using generator

matrix when p = 5, which generates two redundant parity

words by using p data words.

D0

D1

D2

D3

D4

D5

D6

=

0

Generator matrix G

data

codeword disks

*

pa
rit

y
da

ta

1

2

3

4

5

6

Fig. 3. Matrix based encoding procedure for EVENODD code (p = 5)
by using generator matrix, which transforms the data into a codeword (the
encoded data). G is a bit matrix, and the element in this matrix is either 0
or 1. Each element in the codeword is computed by the dot product of the
corresponding row in G and the data, where an addition is an XOR operation
and a multiplication is a bitwise AND.

When some data words or parity words are lost, the de-

coding process of matrix based approaches abides by the

following steps. First it constructs a new matrix Ĝ from the

rows in the generator matrix corresponding to the surviving

data, such that the product of Ĝ and the original data equals

to the surviving data. Second, the original data is recovered

by multiplying the generalized inverse of Ĝ with the surviving

data. Finally the lost data is recovered by multiplying the

generator matrix G with the original data.

In previous literatures, several optimization techniques are

proposed to increase the decoding performance for matrix

based approach. Bit matrix scheduling [27] is introduced to

accelerate the calculation of matrix-vector product by reusing

the recovered elements. And then, Huang et al. [16] give two

greedy approaches to optimize the decoding of Cauchy Reed-

Solomon (CRS) codes [3]. Later, Luo et al. [23] study the

cache effect and presents DWG XOR-Scheduling Algorithm to

reduce cache miss via scheduling XOR operations, which im-

proves the decoding performance in implementation. Recently,

Li et al. [21] propose a scheduling algorithm to reduce data

transmission for degraded reads in distributed systems.

However, the decoding efficiency of matrix based approach

is restricted as well. A critical problem is that, it cannot decode

some erasure codes (such as STAR [15] and Triple-Star [41])

efficiently, which is mainly caused by the large size of the

decoding matrix. Here we take STAR and Triple-Star code as

examples. Fig.4 shows the decoding complexity3 [38] of these

two codes by using matrix based approach and non-matrix

based approach. It is clear that matrix based approach has

significant drawback on decoding performance.

(a) Triple-Star code (b) STAR code

Fig. 4. Comparison between non-matrix based decoding algorithm and matrix
based decoding algorithm in terms of decoding complexity. With a larger
array size, the decoding cost of matrix based approach is 3.4× of the non-
matrix based approach. It demonstrates that matrix based approach has great
disadvantage on decoding performance.

C. Motivation

We summarize the existing implementation approaches for

XOR-based codes in Table II. From this table, existing meth-

ods are insufficient to provide high decoding performance

for XOR-based codes. Parity-check matrix has shown great

advantages on error correcting codes [10] [22] [32], which

motivates us to propose a new decoding approach for XOR-

based erasure codes.

3Decoding complexity refers to the average number of XOR operations to
recover a lost data element. The higher decoding complexity indicates the
lower decoding speed.

184

TABLE II
SUMMARY ON EXISTING DECODING APPROACHES FOR XOR-BASED

CODES

Decoding Decoding Complexity in
Flexibility

Approaches Efficiency Implementation
Matrix based low low high

Non-matrix based medium high low
PCM high low high

III. PARITY-CHECK MATRIX BASED APPROACH

In this section, we introduce our Parity-Check Matrix based

(PCM) approach, which is an efficient decoding method for

the implementation of XOR-based erasure codes.

A. Parity-check Matrix for Erasure Codes

A parity-check matrix is a bit matrix which describes the

linear relationships among data elements in a codeword. For

an XOR-based MDS code that has k data words and m parity

words with a word size w, the dimension of its parity-check

matrix is mw×nw where n = k+w. In a parity-check matrix,

each column represents an element in a codeword, and each

row is a parity-check equation, which specifies a subset of

elements in the codeword with an XOR sum of 0. A property

of parity-check matrix is that, the product of a parity-check

matrix and the corresponding codeword is always 0.

D0

D1

D2

D3

D4

D5

D6

*

codeword

= 0

0
1
2
3

D0 D1 D2 D3 D4 D5 D6stripe

Parity-check matrix H

data disks parity disks

Fig. 5. Parity-check matrix of EVENODD code (p = 5). Each column of
parity-check matrix corresponds to an element in the codeword (or a data block
in a stripe), and each row represents a parity-check equation, which specifies
a subset of elements with an XOR sum of 0. In this example, the selected
row represents a parity-check equation with 9 elements, and the corresponding
data blocks in the stripe have an XOR sum of 0.

Any XOR-based erasure codes can be defined with a parity-

check matrix. Fig.5 shows the parity-check matrix of EVEN-

ODD code when p = 5. In this example, the construction of

parity-check matrix is based on the encoding of EVENODD

(as shown in Fig.1). Each encoding equation corresponds to a

row in the parity-check matrix. In this row, several columns

are set to 1 and the others are set to 0. The columns with 1’s

corresponds the elements appeared in the encoding equation.

For example, the selected row in Fig.5 represents the encoding

equation C0,6 = C3,1 ⊕ C2,2 ⊕ C1,3 ⊕ C0,4 ⊕ C0,0 ⊕ C3,2 ⊕
C2,3 ⊕ C1,4.

The parity-check matrix is not unique for erasure codes. For

example, we can use row switching (swap two rows) or row

addition (replace a row by the sum of that row and another

row) to generate a new parity-check matrix, which is valid

for erasure codes as well. Therefore, in some scenarios, we

need to select a proper parity-check matrix to achieve high

efficiency. This problem is discussed in Section III-C.

B. Encoding with Parity-check Matrix

To encode with parity-check matrix, we simply use the

encoding equations. The elements in each encoding equation

are represented by the 1’s in each row of the parity-check

matrix.

For some erasure codes, a parity element participates in the

generation of some other parity elements, thus the order of

calculating parity elements should be arranged properly. Due

to this reason, the encoding is performed as below,

(1) Explore the dependencies of all parity elements via a graph

model. For two parity elements A and B, if the generation

of A depends on B, then we connect B to A with a

directed edge.

(2) Sort all parity elements in topological order. A parity

element should be placed after all other parity elements it

depends on.

(3) Calculate all parity elements in the order of step 2 accord-

ing to the encoding equations.

There is no significant difference on encoding between PCM

and existing methods (matrix/non-matrix based approaches).

It is because that the encoding procedure of these approaches

are all based on the encoding equations defined by the coding

scheme.

C. Decoding with Parity-check Matrix

To decode with parity-check matrix (denoted as H), we first

divide H into two sub-matrices HS and HL. HS contains the

columns corresponding to the surviving disks, and HL con-

tains the columns corresponding to the lost disks. According

to the property of H (the dot product of each row and the

codeword is always zero), the product of HS and the survivors

is equal to the product of HL and the lost data. We give an

example to illustrate the relation of equality in Fig.6, which

is using EVENODD to decode the two lost disks D0 and D2.

Parity-check matrix H

D1

D3

D4

D5

D6

* =

D0 D2 D1 D3 D4 D5 D6

Syndromes

HL

Coefficient matrix

survivors

lost data

HS

D0

D2
*

Fig. 6. Example of decoding 2 lost disks on D0 and D2 for EVENODD
code (p = 5). The parity-check matrix H is divided into HL and HS , where
HL consists of the columns of H corresponding to the lost data, and HS

contains the columns corresponding to the survivors. The relation of equality
in this figure is ensured by the property of parity-check matrix. Using this
equation, the lost data can be calculated by H−1

L ·HS · survivors.

In Fig.6, the right side is the product of HS and the

survivors, which is denoted as syndrome. The left side is the

product of HL and the lost data. Obviously the lost data can

be calculated by multiplying the (generalized) inverse of HL

185

(denoted as H−1
L) with the syndromes. A typical algorithm to

calculate generalized inverse of a bit matrix is presented in

[12].

Given the parity-check matrix of an erasure code (denoted

as H) and the list of failed disks, the decoding procedure

abides the following steps,

(1) Divide H into two parts HS and HL. The columns of

HL correspond to the lost data, and the columns of HS

correspond to the surviving data.

(2) Calculate the syndromes by multiplying HS with the

survivors.

(3) Calculate the lost data by multiplying H−1
L with the

syndromes.

From the encoding/decoding algorithms of PCM, the effi-

ciency is highly related to the number of 1’s in the parity-check

matrix, because it is proportional to the number of XORs in

both encoding equations and the calculation of syndromes. For

some erasure codes, the parity-check matrix constructed by

their original encoding equations is not sparse, so we propose

an optimization technique in Section III-D1 to address this

problem.

D. Optimization Techniques

In this subsection, we introduce three optimization tech-

niques to improve the decoding efficiency of our PCM ap-

proach. The first technique generates a sparse parity-check

matrix, the second technique extends parity-check matrix to

improve the efficiency for EVENODD and STAR codes, and

the last technique improves the decoding efficiency for erasure

codes tolerating three or more disk failures.

1) Constructing Sparse Parity-check Matrix: As illustrated

in Section III-A, the parity-check matrix is not unique. Among

various choices of parity-check matrices, a sparse one can

improve the encoding and decoding efficiency. Our first opti-

mization is to construct a sparse parity-check matrix.

A class of valid constructions of parity-check matrix can be

obtained by row addition, which preserves the property that

the dot product of each row and the codeword is zero. Here we

present an algorithm which iteratively performs row additions

to achieve this goal. Assume pi is the parity element calculated

by the encoding equation in the ith row, we generate the sparse

matrix by Algorithm 1,

Particularly, this optimization method is useful for CRS

code [3], which can reduce both encoding and decoding

complexity compared to the original implementation of CRS

code.

2) Extension of Parity-check Matrix: Some codes such as

EVENODD and STAR have redundancy problem in their

parity-check matrix, due to the utilization of internal values

in their encoding procedure. We take EVENODD with p = 5
as an example, whose encoding process is shown in Fig.1.

In specialized non-matrix based approach for EVENODD, a

special element S (shown in Fig.1(b)) is calculated once in

encoding, and added to all diagonal parity elements. However,

when constructing parity-check matrix using the algorithm in

Section III-A, S is actually calculated multiple times in the

Algorithm 1: Generating sparse parity-check matrix

xors[i]: the number of XORs to calculate pi.
from[i]: the other row that is added to the ith row.
visit[i] : whether the ith row is calculated.
mw: the number of rows in a parity-check matrix.

update = 1;
while update = 1 do

update = 0;
for i = 0 to mw do

xors[i] = number of 1’s in the ith row minus 2;
from[i] = -1;
visit[i] = 0;

end
while there exists some visit[i] = 0 do

x = row ID which satisfies visit[x] = 0 and has
minimum ones[x];
for i = 0 to mw do

if i �= x and visit[i] = 0 then
dis = hamming distance of row i and x;
if dis− 2 ≤ xors[i] then

xors[i] = dis− 2;
from[i] = x;

end
end

end
if from[x] �= −1 then

add row from[x] to row x;
update = 1;

end
visit[x] = 1;

end
end

encoding algorithm of PCM, thus decreases the efficiency.

From the original parity-check matrix for EVENODD (shown

in Fig.7(a)), we can see that the matrix is not sparse.

In our approach, we extend the parity-check matrix with

additional rows/columns to support the usage of internal

elements, which can improve the sparsity of the parity-check

matrix. To achieve this goal, first we add a column in the

parity-check matrix to represent the internal elements S. Then,

all the diagonal parity elements can be calculated from S
directly (set the corresponding column to 1), which reduces

the number of 1’s in each row. Finally, we add an additional

parity-check equation to the matrix to compute S from the

data elements. The extended parity-check matrix is shown in

Fig.7(b). Using this optimization, we reduce seven 1’s in the

matrix.

In addition, two scenarios should be considered in the

decoding process. First, since S is not actually stored on the

disks, we need to allocate an additional buffer to store S
during encoding and decoding. Second, in decoding procedure,

S is regarded as a lost element, thus is computed from the

syndromes by the decoding matrix H−1
L .

3) Iterative Reconstruction: The iterative reconstruction is

derived from the observation that, when decoding three or

more lost disks, existing optimization may not take the most

advantage of recovered elements.

To improve the efficiency of decoding, we do not recover

186

D0 D1 D2 D3 D4 D5 D6

Diagonal
Parity

Horizontal
Parity

(a) Original parity-check matrix with redundancy problem caused by
repeatedly calculating special element S in each diagonal parity equa-
tion. The selected columns corresponds to the elements involved in the
calculation of S. Due to the encoding procedure of EVENODD, these
columns are set to 1 in for diagonal parity elements, which makes this
matrix dense. When using this matrix in encoding, the efficiency is lower
than the specialized encoding algorithm of EVENODD.

D0 D1 D2 D3 D4 D5 D6 S

Diagonal
Parity

Horizontal
Parity

Element S

(b) Extended parity-check matrix with an additional row to calculate
S, and an additional column with element S for each diagonal parity
element. When using this parity-check matrix for encoding, S is only
calculated once by the last row of this matrix, instead of being calculated
multiple times using the original parity-check matrix as shown in
Fig.7(a). Obviously, this matrix is sparser than the original one.

Fig. 7. Parity-check matrix for EVENODD (p = 5).

all the failed disks at one time. Instead, we recover them one

by one, thus several iterations should be performed. Once the

data on some disk is recovered, they are regarded as survivors,

then we redo the decoding procedure to handle the rest of the

failed disks. According to the decoding procedure in III-C, the

decoding matrix H−1
L should be computed in each iteration,

however the syndrome (the product of HS and the survivors)

should be calculated in the first iteration, but only need to be

updated afterwards.

We summarize the algorithm of iterative reconstruction as

Algorithm 2:

Algorithm 2: Iterative reconstruction

f = the number of failed disks;
Calculate the syndromes;
while f ≥ 2 do

(1) Generate the decoding matrix H−1
L .

(2) Split H−1
L into several sub-matrices, and each

sub-matrix corresponds to the decoding of a failed disk.
(3) Choose a disk that consumes minimum XORs for
decoding, and recover the data on this disk using
corresponding sub-matrix.
(4) Update the syndromes using the recovered data.
(5) f = f − 1;

end
Decode the rest of failed disks.

In addition, to use this optimization on extended parity-

check matrix, we need to regard the internal elements in

codeword as an individual pseudo disk, and the iterative

reconstruction algorithm remains unchanged.

IV. EVALUATION

In this section, we conduct a series of experiments to

demonstrate the efficiency of PCM on decoding performance.

A. Evaluation Methodology

We select the following erasure codes in our evaluation,

including two typical RAID-6 codes for correcting double disk

failures, three typical erasure codes for correcting triple disk

failures, and an erasure code for correcting arbitrary number

of disk failures.

• EVENODD code [1]: A typical RAID-6 code for p+ 2
disks to tolerate double disk failures.

• Liberation code [27]: A RAID-6 code for p+2 disks to

tolerate double disk failures.

• STAR code [15]: A typical erasure code for p+ 3 disks

to tolerate triple disk failures, which is extended from

EVENODD code.

• Triple-Star code [41]: An erasure code for p + 2 disks

to tolerate triple disk failures, which is extended from

Rotary-code [42].

• TIP-code [47]: An erasure code for p+2 disks to tolerate

triple disk failures.

• Cauchy Reed-Solomon (CRS) codes [3]: A typical

erasure code that can tolerate arbitrary number of disk

failures. We choose the configuration of m = 2, 3, 4, 5,

where m is the number of disk failures it can tolerate.

We use both mathematical analysis and experiments to

demonstrate the efficiency of our work.

1) Metrics and Methods for Mathematical Analysis: We use

the decoding complexity [38] as the metric in our mathemati-

cal analysis, which is defined as the average number of XOR

operations to recover a data element. We evaluate the decoding

complexity under the scenarios with maximum number of disk

failures.

In mathematical analysis, we evaluate the decoding perfor-

mance for the following decoding approaches,

• Parity-Check Matrix based (PCM) approach: We use

the method as introduced in Section III.

• Matrix based approach [13]: The method is introduced

in Section II-B2.

• Non-matrix based approach [1] [15] [41]: This approach

is illustrated in Section II-B1.

For XOR-based codes, the decoding complexity is related

to the erasure patterns [15] [41]. So in our evaluation, we

enumerate all combinations of lost disks, and generate the

corresponding decoding scheme. The results are the average

number over all erasure patterns.

2) Metrics and Methods for Experiments: To evaluate the

decoding performance in implementation, we compare our

work with Jerasure [30] in terms of decoding speed, which

is the size of data that decoded per unit time. Jerasure is

a state-of-the-art open source library, which is written in C

and implements a wide range of XOR-based codes such as

Liberation code [27], Cauchy Reed-Solomon codes [3], etc.

Both PCM and Jerasure can implement any XOR-based codes,

187

and the decoding of Jerasure is implemented by matrix based

approach.

TABLE III
DETAILS OF THE TEST PLATFORM

Name Machine 1 Machine 2
CPU Intel Core E5-2620 Intel Core i5-4430

Memory 12GB 32GB
L1/L2/L3 Cache 32KB/256KB/15MB 32KB/256KB/6MB

OS Ubuntu 14.04 64-bit Ubuntu 14.04 64-bit

The performance evaluation is conducted on two different

machines as described in Table III. No other irrelevant ap-

plications are running during the experiments. We use the

configuration of n = 16 in our evaluation.

To evaluate the decoding performance, we first create

a 256M memory region with randomly generated content,

then encode it into 16 pieces. To simulate disk failures, we

randomly drop m of them. Finally we decode the original

information using the remaining pieces. We vary the packet

size4 from 1KB to 64KB to find the peak speed of the two

implementations. Our results are averaged over 1000 repeated

experiments.

B. Numerical Results on Decoding Performance

1) Comparison with Matrix based Decoding Approach:
First, we compare PCM with matrix based approach on

decoding complexity, which is shown in Fig.8. We summarize

the improvements over matrix based method in Table IV.

For erasure codes tolerating triple disk failures including

STAR, Triple-Star and TIP codes, PCM reduces more than

78.2% decoding cost, and the improvement can be even higher

when n increases. We also observe that, by using matrix based

approach, the decoding complexity is nearly proportional to

the array size. In comparison, it is less than 4 in all scenarios

when using PCM approach.

Then, for RAID-6 codes for correcting double disk failures,

PCM decreases the decoding complexity of EVENODD and

Liberation by up to 45.0% and 12.0%, respectively. For CRS

codes, PCM saves the decoding complexity by up to 18.27%.

In a few cases, PCM is slightly worse than the matrix based

approach. It is reasonable because our method calculates

syndromes, which may bring additional overhead when array

size is small.

2) Comparison with Non-matrix based Decoding Approach:
EVENODD, STAR and Triple-Star codes can be implemented

via non-matrix based approach. Fig.9 shows the decoding

complexity for these codes. It is clear that PCM provides better

decoding performance for all codes. In this comparison, PCM

achieves better effects when the array size (n) is small.

C. Experimental Results on Decoding Performance

Fig.10 shows the comparison between PCM and Jerasure

in terms of decoding speed by using various erasure codes.

We choose the peak speed among all packet sizes, and

4Packet size: the size of an element (or a chunk).

the improvements of PCM over Jerasure are summarized in

Table V. Clearly, PCM is much more efficient than Jerasure.

For STAR, Triple-Star and TIP codes, PCM accelerates the

decoding process by up to a factor of 2.4×, 2.7× and

2.6×, respectively. For EVENODD, the speedup of PCM over

Jerasure is approximate 1.5×.

TABLE V
COMPARISON BETWEEN PCM AND JERASURE IN TERMS OF DECODING

SPEED IN A 16-DISK ARRAY

Coding
Machine 1 Machine 2

Method
Speed (GB/s)

Speedup
Speed (GB/s)

Speedup
PCM Jerasure PCM Jerasure

EVENODD 4.70 3.11 1.51× 7.06 4.74 1.49×
Liberation 4.77 4.47 1.07× 7.20 6.62 1.09×

STAR 2.94 1.23 2.40× 4.44 2.00 2.22×
Triple-Star 3.07 1.14 2.70× 4.68 1.84 2.54×
TIP-code 2.94 1.14 2.59× 4.38 1.65 2.66×

CRS (m=2) 4.09 3.34 1.22× 6.06 5.25 1.16×
CRS (m=3) 2.75 2.33 1.18× 3.98 3.66 1.09×
CRS (m=4) 2.13 1.80 1.18× 3.08 2.83 1.09×

D. Further Discussion

1) Space Overhead: PCM approach can be implemented

with low space overhead. The space overhead includes mem-

ory size to store the parity-check matrix and related buffers

for optimizing decoding efficiency.

Fig.12 shows the space overhead of PCM we measured in

terms of memory consumption (in MB). From this figure, we

can see that PCM consumes up to 1MB memory, which is

negligible (10MB/12GB = 0.08%).

1K 2K 4K 8K 16K 32K 64K

Packet Size

0

2

4

6

8

10

M
e
m
o
ry

C
o
n
s
u
m
p
ti
o
n
(M

B
)

EVENODD

Liberation

STAR

TIP-code

CRS(m=2)

CRS(m=3)

CRS(m=4)

Fig. 12. Space overhead of PCM approach in terms of memory consumption
for various XOR-based codes (Total memory size is 12GB).

2) Encoding Complexity: Except for the improvements

on decoding performance, PCM can enhance the encoding

efficiency for several erasure codes as well. In this part, we

present the numerical results to demonstrate the efficiency of

PCM on encoding performance.

We use the encoding complexity [38] as the metric in our

mathematical analysis, which is defined as the average number

of XOR operations to encode a data element. Because non-

matrix based approach cannot be applied with various erasure

codes, it is excluded in our evaluation. Here we only present

the results for PCM and matrix based approaches by using

some typical erasure codes, such as EVENODD, STAR and

CRS codes.

188

6 9 12 15 18 21 24

Disk Array Size (n)

1.5

2.0

2.5

3.0

3.5

4.0

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

EVENODD

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

Liberation

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

0

4

8

12

16

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

STAR

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

0

4

8

12

16

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

Triple-Star

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

0

4

8

12

16

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

TIP-code

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

1.5

2.0

2.5

3.0

3.5

4.0

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

CRS code (m=2)

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

CRS code (m=3)

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

2

3

4

5

6

7

8

9

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

CRS code (m=4)

PCM

Matrix based

Fig. 8. Comparison between PCM and matrix based approach in terms of decoding complexity.

TABLE IV
IMPROVEMENT OF PCM OVER MATRIX BASED METHOD IN TERMS OF DECODING COMPLEXITY

Coding n (the number of disks in a disk array)
Method 6 8 10 12 14 16 18 20 22 24

Typical RAID-6 Erasure Codes
EVENODD 23.03% 31.93% 37.16% 39.07% 40.86% 42.44% 43.11% 43.87% 44.63% 44.97%
Liberation 10.11% 12.03% 11.49% 11.77% 11.58% 11.17% 11.13% 10.95% 10.74% 10.70%

Array Codes Tolerating Triple Disk Failures
STAR 0.00% 19.29% 44.64% 58.52% 60.76% 64.96% 71.12% 72.00% 74.88% 78.31%

Triple-Star 18.59% 30.38% 50.80% 55.26% 61.78% 69.32% 70.65% 73.94% 77.60% 78.20%
TIP-code 13.89% 26.89% 54.12% 62.17% 71.77% 74.89% 79.61%

CRS Codes under Various Configurations
CRS (m = 2) 6.15% 11.91% 14.15% 16.68% 18.05% 18.23% 18.27% 17.75% 17.23% 16.84%
CRS (m = 3) −5.32% −2.17% 13.22% 14.91% 13.92% 10.13% 15.35% 16.81% 16.97% 17.29%
CRS (m = 4) 1.99% −0.60% 5.15% 9.26% 14.15% 11.31% 16.34% 16.76% 17.28% 17.94%

6 9 12 15 18 21 24

Disk Array Size (n)

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

EVENODD

PCM

Non-matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

STAR

PCM

Non-matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

D
e
c
o
d
in
g
C
o
m
p
le
x
it
y

Triple-Star

PCM

Non-matrix based

Fig. 9. Comparison between our method and non-matrix based decoding method for several codes in terms of decoding complexity.

TABLE VI
IMPROVEMENT OF PCM OVER MATRIX BASED APPROACH IN TERMS OF ENCODING COMPLEXITY

Coding n (the number of disks in a disk array)
Method 6 8 10 12 14 16 18 20 22 24

EVENODD 18.18% 23.53% 26.60% 27.59% 28.57% 29.46% 29.79% 30.19% 30.61% 30.77%
STAR 0.00% 25.00% 29.76% 32.81% 33.75% 34.77% 35.71% 36.06% 36.49% 36.94%

CRS (m = 3) 0.00% 4.08% 0.97% 4.97% 5.85% 3.00% 6.62% 4.65% 2.00% 4.70%
CRS (m = 4) 0.00% 2.27% 2.46% 1.75% 5.94% 5.59% 3.93% 6.26% 6.37% 7.38%

The evaluation results is shown in Fig.11, and we sum-

marize the improvements in Table VI. Compared to matrix

based approach, PCM reduces the encoding complexity for

CRS codes by up to 7.83%. It also decreases the encoding

complexity of EVENODD and STAR by up to 30.77% and

36.94%, respectively.

E. Analysis

From the results in previous section, compared to typical

matrix based method, PCM shows great advantages on decod-

ing performance, and improves the encoding performance in

some scenarios. There are several reasons to achieve these

gains. First, our method utilizes the relationships between

the lost data and syndromes. Due to the low complexity

in calculating syndromes and smaller decoding matrix to

189

1K 2K 4K 8K 16K 32K 64K

Packet Size

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 1, EVENODD

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

2

3

4

5

6

7

8

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 2, EVENODD

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

2.5

3.0

3.5

4.0

4.5

5.0

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 1, Liberation

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 2, Liberation

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

0.5

1.0

1.5

2.0

2.5

3.0

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 1, STAR

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 2, STAR

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 1, Triple-Star

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 2, Triple-Star

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 1, TIP-code

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D
e
c
o
d
in
g
S
p
e
e
d
(G

B
/s
) Machine 2, TIP-code

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

2.0

2.5

3.0

3.5

4.0

4.5

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 1, CRS (m=2)

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 2, CRS (m=2)

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 1, CRS (m=3)

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

2.0

2.5

3.0

3.5

4.0

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 2, CRS (m=3)

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

1.0

1.2

1.4

1.6

1.8

2.0

2.2

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 1, CRS (m=4)

PCM

Jerasure

1K 2K 4K 8K 16K 32K 64K

Packet Size

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

D
e
c
o
d
in
g
S
p
e
e
d
(G
B
/s
) Machine 2, CRS (m=4)

PCM

Jerasure

Fig. 10. Comparison between PCM and Jerasure in terms of decoding speed (n = 16).

6 9 12 15 18 21 24

Disk Array Size (n)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

E
n
c
o
d
in
g
C
o
m
p
le
x
it
y

CRS code (m=3)

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

2

3

4

5

6

7

8

E
n
c
o
d
in
g
C
o
m
p
le
x
it
y

CRS code (m=4)

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

E
n
c
o
d
in
g
C
o
m
p
le
x
it
y

EVENODD

PCM

Matrix based

6 9 12 15 18 21 24

Disk Array Size (n)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E
n
c
o
d
in
g
C
o
m
p
le
x
it
y

STAR

PCM

Matrix based

Fig. 11. Comparison between PCM and matrix based approach in terms of encoding complexity.

calculate lost data, PCM achieves much lower decoding cost

compare to matrix based method. Second, our PCM is flexible

to deploy powerful optimizations. We design both specialized

(constructing sparse matrix for CRS, EVENODD and STAR

codes) and general (iterative reconstruction method) optimiza-

tion techniques to improve the efficiency of our approach.

V. CONCLUSION

In this paper, we propose a novel Parity-Check Matrix

based (PCM) approach to implement XOR-based erasure

codes. Based on PCM, we design the encoding and decoding

algorithms and some optimization techniques to improve the

decoding efficiency. To demonstrate the effectiveness of PCM,

we conduct several experiments among various erasure codes.

Compared to existing implementation methods (matrix based

and non-matrix based approaches), PCM shows the following

advantages: 1) speeds up the decoding process by up to a

factor of 1.5× by using EVENODD code, and 2.4× by using

STAR code; 2) improves the encoding performance by up to

36.9%; 3) has low space overhead.

VI. ACKNOWLEDGEMENT

This work is partially sponsored by the National Ba-

sic Research 973 Program of China (No. 2015CB352403),

the National Natural Science Foundation of China (NSFC)

(No. 61332001, No. 61261160502, No. 61272099 and No.

61303012), the Program for Changjiang Scholars and In-

novative Research Team in University (IRT1158, PCSIRT),

the Shanghai Innovative Action Plan (No. 13511504200), the

Shanghai Natural Science Foundation (No. 13ZR1421900),

the Scientific Research Foundation for the Returned Overseas

Chinese Scholars, and the the EU FP7 CLIMBER project (No.

PIRSES-GA-2012-318939).

190

REFERENCES

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on Computers, vol. 44, no. 2, pp. 192–202, 1995.

[2] M. Blaum and R. Roth, “On lowest density MDS codes,” IEEE Trans-
actions on Information Theory, vol. 45, no. 1, pp. 46–59, 1999.

[3] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuck-
erman, “An XOR-based erasure-resilient coding scheme,” International
Computer Science Institute, Tech. Rep. TR-95-048, August 1995.

[4] V. Bohossian, C. Fan et al., “Computing in the RAID: A reliable array
of independent nodes,” IEEE Transactions on Parallel and Distributed
Systems, vol. 12, no. 2, pp. 99–114, 2001.

[5] Y. Cassuto and J. Bruck, “Cyclic lowest density MDS array codes,”
IEEE Transactions on Information Theory, vol. 55, no. 4, pp. 1721–
1729, 2009.

[6] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-Diagonal Parity for double disk failure correction,” in
Proceedings of the USENIX FAST’04, San Francisco, CA, March 2004.

[7] P. Corbett and A. Goel, “Triple parity technique for enabling efficient
recovery from triple failures in a storage array,” September 2011, US
Patent 8,015,472.

[8] G. L. Feng, R. Deng, F. Bao, and J. C. Shen, “New efficient MDS
array codes for RAID part I: Reed-Solomon-like codes for tolerating
three disk failures,” IEEE Transactions on Computers, vol. 54, no. 9,
pp. 1071–1080, 2005.

[9] ——, “New efficient MDS array codes for RAID part II: Rabin-like
codes for tolerating multiple (≥ 4) disk failures,” IEEE Transactions on
Computers, vol. 54, no. 12, pp. 1473–1483, 2005.

[10] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[11] J. Hafner, “WEAVER codes: Highly fault tolerant erasure codes for stor-
age systems.” in Proceedings of the USENIX FAST’05, San Francisco,
CA, December 2005.

[12] ——, “HoVer erasure codes for disk arrays,” in Proceedings of the
IEEE/IFIP DSN’06, Philadelphia, PA, June 2006.

[13] J. Hafner et al., “Matrix methods for lost data reconstruction in erasure
codes,” in Proceedings of the USENIX FAST’05, San Francisco, CA,
December 2005.

[14] C. Huang, M. Chen, and J. Li, “Pyramid Codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
Proceedings of the IEEE NCA’07, Cambridge, MA, July 2007.

[15] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” IEEE Transactions on Computers, vol. 57,
no. 7, pp. 889–901, 2008.

[16] C. Huang, J. Li, and M. Chen, “On optimizing XOR-based codes for
fault-tolerant storage applications,” in Proceedings of the ITW’07, Tahoe
City, CA, September 2007.

[17] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin et al., “Erasure coding in windows azure storage,” in
Proceedings of the USENIX ATC’12, Boston, MA, June 2012.

[18] C. Jin, H. Jiang, D. Feng, and L. Tian, “P-Code: A new RAID-6
code with optimal properties,” in Proceedings of the ICS’09, Yorktown
Heights, NY, June 2009.

[19] N. Joukov, A. M. Krishnakumar, C. Patti, A. Rai, S. Satnur, A. Traeger,
and E. Zadok, “RAIF: Redundant array of independent filesystems,” in
Proceedings of the MSST’07, San Diego, CA, September 2007.

[20] M. Li and P. Lee, “STAIR codes: a general family of erasure codes
for tolerating device and sector failures in practical storage systems.” in
Proceedings of the USENIX FAST’14, Santa Clara, CA, February 2014.

[21] S. Li et al., “Exploiting decoding computational locality to improve
the I/O performance of an XOR-coded storage cluster under concurrent
failures,” in Proceedings of the SRDS’14, Nara, Japan, October 2014.

[22] M. Luby, M. Mitzenmacher et al., “Practical loss-resilient codes,” in
Proceedings of the STOC’97, Paso, TX, May 1997.

[23] J. Luo, L. Xu, and J. Plank, “An efficient XOR-scheduling algorithm
for erasure codes encoding,” in Proceedings of the IEEE/IFIP DSN’09,
Estoril, Lisbon, June 2009.

[24] S. Muralidhar, W. Lloyd et al., “F4: Facebooks warm BLOB storage
system,” in Proceedings of the USENIX OSDI’14, Broomfield, CO,
October 2014.

[25] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for Redundant
Arrays of Inexpensive Disks (RAID),” in Proceedings of the ACM
SIGMOD’88, Chicago, IL, June 1988.

[26] J. Plank, “A new minimum density RAID-6 code with a word size of
eight,” in Proceedings of the IEEE NCA’08, Cambridge, MA, July 2008.

[27] ——, “The RAID-6 liberation codes,” in Proceedings of the USENIX
FAST’08, San Jose, CA, February 2008.

[28] J. Plank, M. Blaum, and J. Hafner, “SD codes: Erasure codes designed
for how storage systems really fail,” in Proceedings of the USENIX
FAST’13, San Jose, CA, February 2013.

[29] J. Plank et al., “A performance evaluation and examination of open-
source erasure coding libraries for storage.” in Proceedings of the
USENIX FAST’09, San Francisco, CA, February 2009.

[30] J. Plank and K. Greenan, “Jerasure: A library in c facilitating erasure
coding for storage applications–version 2.0,” Technical Report UT-
EECS-14-721, University of Tennessee, Tech. Rep., 2014.

[31] J. Plank and C. Huang, “Tutorial: Erasure coding for storage applica-
tions,” in Slides presented at USENIX FAST’13, San Jose, CA, February
2013.

[32] J. Plank, M. Thomason et al., “A practical analysis of low-density parity-
check erasure codes for wide-area storage applications,” in Proceedings
of the DSN’04, Florence, Italy, June 2004.

[33] J. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon codes for Fault-
Tolerant network storage applications,” in Proceedings of the IEEE
NCA’06, Cambridge, MA, July 2006.

[34] K. Rashmi, N. Shah et al., “A hitchhiker’s guide to fast and efficient
data reconstruction in erasure-coded data centers,” in Proceedings of the
SIGCOMM’14, Snowbird, UT, June 2014.

[35] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial & Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[36] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “XORing elephants: Novel erasure codes for
big data,” in Proceedings of the VLDB’13, Riva del Garda, Italy, August
2013.

[37] Z. Shen and J. Shu, “HV code: An all-around mds code to improve
efficiency and reliability of RAID-6 systems,” in Proceedings of the
IEEE/IFIP DSN’14, Atlanta, GA, June 2014.

[38] P. Subedi and X. He, “A comprehensive analysis of XOR-Based erasure
codes tolerating 3 or more concurrent failures,” in Proceedings of the
IPDPSW’13, Cambridge, MA, May 2013.

[39] D. Tang, X. Wang, S. Cao, and Z. Chen, “A new class of highly fault
tolerant erasure code for the disk array,” in Proceedings of the PEITS’08,
Guang Zhou, China, August 2008.

[40] C. Tau and T. Wang, “Efficient parity placement schemes for tolerating
triple disk failures in RAID architectures,” in Proceedings of the
AINA’03, Xi’an, China, March 2003.

[41] Y. Wang, G. Li, and X. Zhong, “Triple-Star: A coding scheme with
optimal encoding complexity for tolerating triple disk failures in RAID,”
International Journal of Innovative Computing, Information and Con-
trol, vol. 8, no. 3, pp. 1731–1472, 2012.

[42] Y. Wang and G. Li, “Rotary-code: Efficient mds array codes for raid-
6 disk arrays,” IEEE Transactions on Computers, vol. 8, no. 12, pp.
1917–1926, 2009.

[43] C. Wu et al., “HDP code: A Horizontal-Diagonal parity code to optimize
I/O load balancing in RAID-6,” in Proceedings of the DSN’11, 2011.

[44] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie, “H-Code: A hybrid MDS
array code to optimize partial stripe writes in RAID-6,” in Proceedings
of the IPDPS’11, Anchorage, Alaska, May 2011.

[45] L. Xu, V. Bohossian, J. Bruck, and D. Wagner, “Low-Density MDS
codes and factors of complete graphs,” IEEE Transactions on Informa-
tion Theory, vol. 45, no. 6, pp. 1817–1826, 1999.

[46] L. Xu and J. Bruck, “X-Code: MDS array codes with optimal encoding,”
IEEE Transactions on Information Theory, vol. 45, no. 1, pp. 272–276,
1999.

[47] Y. Zhang, C. Wu et al., “TIP-code: A three independent parity code
to tolerate triple disk failures with optimal update complexity,” in
Proceedings of the DSN’15, Rio de Janeiro, Brazil, June 2015.

191

