
978-1-4673-9211-2/16/$31 c©2016 IEEE

Simultaneous Multikernel GPU: Multi-tasking Throughput
Processors via Fine-Grained Sharing

Zhenning Wang∗, Jun Yang†, Rami Melhem,
Bruce Childers, Youtao Zhang, and Minyi Guo‡

Department of Computer Science, †Electrical and Computer Engineering Department
∗‡Shanghai Jiao Tong University, P. R. China, University of Pittsburgh, U. S. A.

∗znwang@sjtu.edu.cn, †juy9@pitt.edu, {melhem,childers,zhangyt}@cs.pitt.edu,‡guo-my@cs.sjtu.edu.cn

ABSTRACT
Studies show that non-graphics programs can be less opti-
mized for the GPU hardware, leading to significant resource
under-utilization. Sharing the GPU among multiple pro-
grams can effectively improve utilization, which is partic-
ularly attractive to systems where many applications require
access to the GPU (e.g., cloud computing). However, current
GPUs lack proper architecture features to support sharing.
Initial attempts are preliminary: They either provide only
static sharing, which requires recompilation or code trans-
formation, or they do not effectively improve GPU resource
utilization. We propose Simultaneous Multikernel (SMK),
a fine-grain dynamic sharing mechanism, that fully utilizes
resources within a streaming multiprocessor by exploiting
heterogeneity of different kernels. We propose several re-
source allocation strategies to improve system throughput
while maintaining fairness. Our evaluation shows that for
shared workloads with complementary resource occupancy,
SMK improves GPU throughput by 52% over non-shared
execution and 17% over a state-of-the-art design.

1. INTRODUCTION
The growth of general-purpose GPU computing has led to

its wide adoption in cloud computing, data centers, and even
mobile/embedded computers. A GPU typically has many
streaming multiprocessors (SM), each containing many sim-
ple execution cores [1]. GPUs provide a massive number
of compute cores to exploit thread-level parallelism for hid-
ing memory latency through heavy multi-threading. Many
applications have been ported to GPUs to leverage the enor-
mous computing power these architectures offer for signifi-
cant speedup [2][3][4].

However, non-graphics applications may be less optimized
for GPUs, causing on-chip resource under-utilization. One
kernel1 may use minimal scratchpad memory while access-
ing the L1 cache heavily. Another kernel may have the op-
posite usage. This situation can arise because a user may not
be experienced enough to write high quality code to fully
utilize available resources. Prior work has reported a similar
observation [5]. In addition, even though GPUs are heavily
multi-threaded, there are still abundant core idle cycles be-

1A GPU application consists of multiple kernels, each capable of
spawning many threads that are grouped into thread blocks (TB).

cause current GPUs are memory bandwidth bound. Memory
requests that cannot be served promptly may introduce more
stalls than the available multi-threading capability can hide.
This situation is especially common for memory intensive
applications, indicating that dynamic core computing cycles
are often under-utilized. We have observed 52.5%-98.1%
core idle time for ten Parboil [6] benchmarks.

Furthermore, data centers or clouds are typically exposed
as services to users. Consolidation and virtualization are
used to share hardware resources among several applications
for cost-effectiveness and energy efficiency. Yet, even the
latest GPUs have no or minimal support for shared execu-
tion of multiple applications. Once a kernel is launched onto
the GPU, it cannot be easily interrupted and kernels of other
applications have to wait for the GPU to become available.

There are software attempts to enable sharing the GPU.
These techniques mainly rely on users or code transforma-
tion to statically define or fuse parallelizable kernels [5][7].
These solutions can be appropriate for embedded systems
where the execution of kernels is determined statically. How-
ever, the approaches cannot easily accommodate general sys-
tems having unknown jobs arriving dynamically. Hence,
static techniques do not provide sharing among dynamically
arriving GPU jobs. Also, once launched, kernels cannot be
preempted and resumed later.

Kernel preemption was recently proposed with architec-
tural extensions [8][9]. The main mechanism is to swap the
context of a kernel on one SM with the context of a new ker-
nel. A context switch is achieved by hot-swapping kernel
contexts between one SM and main memory, which gener-
ates high memory traffic and incurs large performance over-
head. Alternatively, one SM can drain all active TBs before
receiving new TBs from the preempting kernel. This ap-
proach may lead to long turn-around times due to the poten-
tially long time an SM needs to completely drain all active
TBs. Chimera [8] introduces a third option, termed “flush-
ing”, to simply drop the execution of idempotent TBs if pre-
empted. This approach also integrates hot-swapping, drain-
ing and flushing into a hybrid mechanism to achieve low
preemption overhead. These proposals allow different ap-
plication kernels to execute concurrently on disjoint sets of
SMs, achieving spatially-partitioned multitasking (Spart) of
a GPU [9][10]. Unfortunately, resource under-utilization oc-
curs mostly within an SM. Hence, context switching all the

358

TBs running on an SM cannot effectively improve GPU re-
source utilization.

In this paper, we introduce a new notion of a multi-tasking
GPU that (1) significantly improves resource utilization (both
static and dynamic) to boost overall system throughput, (2)
provides fair sharing among concurrent kernels, and (3) im-
proves turn-around time for concurrent jobs. We propose Si-
multaneous Multikernel (SMK), drawing an analogy from
simultaneous multithreading for CPUs, to increase thread-
level parallelism (TLP) of a GPU. SMK exploits kernel het-
erogeneity to allow fine-grain sharing by multiple kernels
within each SM. SMK is enabled by a fine-grain context
switch mechanism on per TB basis for low preemption over-
head. Moreover, new TB dispatch strategies and a new warp
scheduling strategy are proposed to maintain resource fair-
ness among sharing kernels.

The fundamental principle is to co-execute kernels with
compensating resource usage in the same SM to achieve high
utilization and efficiency. For example, a memory-intensive
kernel can co-execute with a compute-intensive kernel. The
former may not use scratchpad memory but incur a large
number of memory stall cycles. The latter may fully use
scratchpad memory (to speedup execution), and thus, use a
large number of compute cycles. Pairing these kernels in the
same SM can greatly improve utilization of both scratchpad
and compute cycles, achieving higher overall efficiency and
GPU throughput. We make the following technical contri-
butions in this paper:

• A fine-grain context switch mechanism to support SMK
with very low preemption overhead. We propose to
perform a context switch only on a per TB basis. When
a preempting kernel arrives, we swap out just enough
TBs on a SM to make enough “room” for a new TB
of the preempting kernel to start execution. This de-
sign greatly reduces context switch overhead and the
lead time before a preempting kernel begins execution,
which results in better response time.

• A TB dispatch mechanism to take into account static
resource usage and fairness among different kernels.
When dispatching a TB onto an SM, we integrate fair-
ness to ensure that static resource allocation is fair.
This TB dispatch can be geared to generate SMK shar-
ing with resource partitioning. Hence, our design nat-
urally subsumes Spart with lower context switch over-
head.

• A warp scheduling algorithm that manages the dynamic
core compute cycles of concurrent kernels. We de-
sign a runtime mechanism to guide warp scheduling
of each SM in allocating cycles to different kernels to
minimize idle time. The warp scheduler allocates cy-
cles to kernels in proportion to an individual kernel’s
dynamic cycle utilization when run independently (ob-
tained through online profiling of SMs).

An evaluation on 45 pairs of Parboil kernels show improve-
ment in system throughput of up to 61.2% over Spart can
be achieved by SMK, with an average of 17% for pairs with
complementary resource usage, and an average of 12.7% for
all 45 pairs. Fairness is improved by 5.7% over Spart. The

average turn-around time is greatly reduced as well, with an
average of 19.0% for pairs with complementary resource us-
age, and an average of 10.6% for all 45 pairs. SMK has
higher throughput as more kernels run concurrently, with an
average of 14.8% and 14.3% improvement over Spart for 3
and 4 kernels respectively.

CPU Memory

PCI-E

GPU

Device Memory

SM SM SM SM

MC MC MC

Interconnection

L2 L2 L2

SM

Warp
Scheduler

L1 cache

Registers

Shared
Memory

SIMT Stack

Fetch
Decode

Warp
Scheduler

Warp
Scheduler

Warp
Scheduler

Memory Unit

Figure 1: System overview.

2. BACKGROUND
In this section, we describe the GPU execution model

and the baseline architecture. The baseline is the one sup-
ported by GPGPU-Sim [11], which models an Nvidia dis-
crete GPU. We do not describe integrated GPUs because the
only difference is the connection between the CPUs and the
GPU. We use Nvidia/CUDA terminology, although the de-
scription applies to GPUs from other vendors as well.

2.1 GPU Execution Model
Usually, a GPU program has two parts: host code and de-

vice code (GPU kernel). Kernels are SIMT (Single Instruc-
tion Multiple Threads) programs for GPUs. The program-
mer writes code for one thread, and multiple threads execute
the same code on the GPU. Threads are grouped into thread
blocks (TB). The number of threads and the TB size are set
by the programmer.

The number of concurrent TBs is limited by GPU resources
(registers, scratchpad memory, and thread number). If the
resources are not enough to dispatch all TBs in a kernel, the
remaining TBs wait for the executing ones to finish. A TB
is the minimal unit of dispatch. For example, if there are
enough resources to hold 384 threads but the size of a TB
is 256, then only one TB is dispatched and the remaining
resources are wasted. The resources that a thread needs are
determined at compile time.

2.2 GPU Architecture
Figure 1 shows an overview of a GPU system, where dis-

crete devices are connected through the PCI-E bus. A GPU
has multiple Streaming Multiprocessors (SMs). SMs share
GDDR5 memory through an interconnect network as device
memory. Memory requests are distributed to multiple mem-
ory controllers according to address. A GPU also has a uni-
fied L2 data cache for all SMs.

The SM is the main execution unit. Threads from one
TB are grouped into warps in hardware. Each warp has 32
threads, which is the SIMD width of the GPU. A SM can

359

, starts waits , completes, starts
time

(a) Current software’s solu-
tion

starts waits completes, starts
time

(b) Current OS’s solution

starts , spatially partition SMs
time

(c) Current architecture solu-
tion with preemption and spa-
tial partitioning

starts , share all SMs
time

(d) SMK solution with pre-
emption and per SM sharing

Figure 2: Evolution of multitasking GPU.

hold only a certain number of warps due to resource lim-
itations. It has one or more warp schedulers to fetch, de-
code and issue instructions. Each warp scheduler governs
32 ALUs, which is the size of a warp. Warps are equally
assigned to different schedulers that decide how to schedule
the warps. Registers, shared memory and caches are shared
by the warps being scheduled.

SMs can switch to different warps without any overhead
because they do not need to switch warp context. Other
warps can be executed while one warp is stalled by mem-
ory or other operations. As a result, the latency of the stalled
warp is hidden and does not have impact on throughput.

3. RELATED WORK
Initial support for kernel concurrency relies on the pro-

grammer to define parallelizable streams of kernels, each
stream being a sequence of kernels with dependencies. Hyper-
Q [12] improves that approach by providing hardware queues
for streams so they can launch from different queues and co-
run on the same GPU. User-defined static parallelism is suit-
able for a single application with multiple kernels, but it is
not appropriate for multiple applications. MPS [13] is a run-
time mechanism to insert kernels from different processes
into Hyper-Qs. However, once kernels are in the Hyper-Qs,
MPS has no control over how the TBs are dispatched. As
pointed out previously [14], the hardware would mostly se-
rialize two parallelizable kernels since there is no control of
TB dispatch. Moreover, MPS does not implement resource
management. Co-running kernels compete for resources in
an uncontrolled manner, which harms fairness. Addition-
ally, these approaches do not enable sharing for dynamically
arriving GPU jobs, as once launched, kernels cannot be pre-
empted and resumed later.

More sophisticated software-based schemes workaround
hardware limitations by merging two kernels into one with
compiler techniques [5][7][14]. The execution path is con-
trolled by conditional statements [15][16]. Although par-
allelizing different applications is possible, such static ap-
proaches do not facilitate dynamic sharing, as illustrated in
Fig. 2a. Further, since kernels from different applications are
fused together, the hardware sees only one kernel, and hence,
the approach could produce unfair scheduling among differ-
ent kernel threads. Also, kernel source code must be avail-
able prior to execution which can be problematic. Hence,
these schemes only work when the kernels to execute are
known in advance (e.g., embedded systems).

There have been many efforts in OS or hypervisor of a vir-
tual machine to enhance multitasking in a GPU [17][18][19].

The typical approach is to intercept kernel launch requests
and change to another kernel as demanded [20]. The main
limitation is an already launched kernel cannot be preempted,
so a new kernel must wait for the completion of the execut-
ing one, as illustrated in Fig. 2b. Hence, no sharing is sup-
ported and resource utilization is not improved.

Recently, architectural extensions have been proposed for
sharing the GPU with kernel preemption. A context switch is
achieved by hot-swapping kernel contexts in one SM with a
new kernel via the main memory, or draining all running TBs
on one SM and then loading in a new context [9]. Chimera [8]
reduces swap overhead by dropping running TBs of one SM
if the kernel is idempotent [21]. These techniques allow
multiple kernels to share the GPU via spatially partitioning
SMs (Spart), as illustrated in Fig. 2c. However, each SM
in Spart still executes one kernel at a time while resource
under-utilization mainly occurs within an SM. Our proposed
SMK on the contrary enables multiple kernels to share each
SM (Fig. 2d), and hence, can achieve better resource utiliza-
tion and higher GPU throughput.

4. MOTIVATION
In this section, we first give a brief introduction of spatial

partitioning, and discuss its limitation. Then, we discuss the
heterogeneity of kernels, which motivates our work.

4.1 Sharing Granularity
As discussed above, state-of-the-art kernel preemption swaps

context at the granularity of an entire SM [8][9]. This pre-
emption scheme has two drawbacks. First, preemption over-
head is high. Each context includes hundreds of kilobytes
of registers, scratchpad memory and other execution status,
which generates high memory traffic volume during context
switch. This traffic not only blocks the current kernel being
swapped, but may also stall other concurrent kernels that are
not swapped, because the memory bandwidth is saturated by
the context switch.

Second, preempting at the granularity of a whole SM re-
sults in a sharing mode of spatially partitioning SMs among
different kernels. This sharing is limited by the number of
SMs in a GPU, and works well only when SMs are abundant.
However, the number of SMs has been relatively constant
for recent GPU generations. Table 1 shows the number of
SMs and the resources in each SM for recent GPU genera-
tions. The number of SMs started from 30, went down to 16
in Fermi and maintained that level in following generations.
Instead of increasing the number of SMs, each SM is indeed
becoming more powerful. For example, the number of warp

360

Table 1: The resources of the GPU of ascending generations. The resources are for each SM.
Generation # of SMs # of ALU in SM Registers Shared Memory Thread Number Limit TB Limit

Tesla(GTX280) 30 8 64KB 16KB 1024 8

Fermi(GTX580) 16 32 128KB 48KB 1536 16

Kepler(GTX780 Ti) 15 192 256KB 48KB 2048 16

Maxwell(GTX980) 16 128 256KB 96KB 2048 32

Table 2: Resource usage on Nvidia GTX980. The limiting resource is in bold.
Kernel Registers Shared Memory Thread Number Type Stall Cycles

lattice6overlap 87.5% 67.1% 100% Compute Intensive 54.5%

StreamCollide 92.3% 0% 52.7% Memory Intensive 89.9%

mysgemmNT 94.5% 5.7% 68.8% Compute Intensive 52.5%

spmvjds 46.9% 0% 93.8% Memory Intensive 91.2%

block2Dregtiling 75.0% 0% 100% Memory Intensive 91.2%

genhists 76.6% 94.8% 87.5% Compute Intensive 60.2%

instructions that can be issued per cycle increased from 2
(at width of 16 threads) to 4 (at width of 32) for GTX580
and GTX980 respectively. Hence, one SM in GTX980 has
similar computing capability as four SMs in GTX580. One
possible reason for decreasing the number of SMs is that the
on-chip interconnection is not yet ready for a large number
of SMs. Currently, SMs are connected through a crossbar,
which faces scalability challenges. Hence, Spart is restricted
by the fact that the number of SMs is non-increasing. More-
over, Spart cannot address low utilization, which will be ex-
acerbated with more powerful SMs, as discussed next.

4.2 Kernel Heterogeneity
Resource usage and runtime behavior change from kernel

to kernel. We examined all benchmarks from Parboil and
Rodinia and observed low resource utilization across nearly
all of them for a recent GPU generation, Nvidia GTX980.
Table 2 reports resource usage and runtime behavior of a
few representative cases.

The table shows that resource usage of different kernels
is dramatically different, partly due to different thread or-
ganizations decided by the programmer. StreamCollide and
mysgemmNT fully use registers but leave shared memory al-
most entirely unused. On the contrary, block2Dregtiling and
lattice6overlap are limited by hardware constraints on the
number of threads, which causes registers and shared mem-
ory to be under-utilized. This problem cannot be solved by
partitioning SMs among kernels because each SM can only
be assigned to one kernel at a time. Resources are still under-
utilized within the partition of SMs.

Runtime behavior of the kernels is also different. lat-
tice6overlap, mysgemmNT and genhists are compute inten-
sive with high IPC, while the other kernels are memory in-
tensive. Kernels with high IPC utilize shared memory to
cache frequently accessed data, reducing stall cycles. Memory-
intensive kernels use thread concurrency to hide long mem-
ory access latency, and stall cycles are much larger than in
compute-intensive kernels. However, overlapping compute
cycles with memory stall cycles happens only among threads
within one SM.

If multiple kernels can be assigned to one SM, kernels
with different resource demands or runtime behavior can be
placed in the same SM. This strategy increases utilization
and may improve performance. Assume we have two ker-

nels (K1 and K2) for a SM with 3K registers and 3KB shared
memory. K1 demands 1K registers and 2KB shared mem-
ory per TB, while K2 demands 2K registers and 0B shared
memory per TB. If we use spatial partitioning, each SM can
hold only one TB from either kernel. However, if we could
dispatch two kernels to one SM, then each SM can hold one
TB from K1 and one TB from K2. Resource utilization and
TLP increases in this circumstance. More importantly, the
total throughput of the GPU may be improved if K1 and K2

can hide each other’s stall cycles. For example, suppose K1

is compute intensive and K2 is memory intensive. Then K1

may be scheduled to execute while K2 is stalled on memory,
reducing the overall stall cycles.

In conclusion, the current sharing mechanism, Spart, is
increasingly limited with the advancement of GPU architec-
tures. The inherit heterogeneity of kernels offers an oppor-
tunity to design a new sharing mechanism truly suitable for
modern GPUs to improve resource utilization and total GPU
throughput.

5. SIMULTANEOUS MULTIKERNEL
To enable sharing, SMK dynamically considers a general

scenario where the GPU is currently executing a kernel K
which has exhausted at least one type of GPU resource. To
allow a pending kernel, newK, to co-execute with K on each
SM, preemption must be supported to swap a portion of K’s
context on each SM with a portion of the new context of
newK so that the aggregated resources of both still fit in the
SM. This approach is in contrast to Spart where all context
of K on a SM is swapped out so that the SM will host only
newK. Hence, the first issue we consider is the design of
partial context switching. This is immediately followed by
the question of how much of K’s context should be swapped
with newK, or how to allocate resources of an SM between
K and newK. This decision is critical to achieving high over-
all GPU throughput, while being fair to co-running kernels.
Furthermore, the execution of warps within one SM can be
imbalanced because the warp schedulers are not aware of
multiple kernels. To this end, we discuss the proposed de-
sign of partial context switching, resource allocation with
fairness, and warp scheduling with multiple kernels.

5.1 Partial Context Switching
In the base GPU, a centralized SM driver is in charge of

361

SM Driver

MC

Active
Queue

Preempted
TB Queue

Preemption
Engine

iii. starts on

Preemption
Engine

ii. Load ’s context to
with flow control

①Evict
from

③Save ’s context to
memory with flow control

i. ’s context
pointer in memory

②Drain

④Keep track of ’s
context pointer in memory

Figure 3: SMK-supported SM. Added components are
shaded. SM Driver controls the SMs and the Preemption En-
gine. It can issue commands to Preemption Engine to swap
TBs into a SM or swap TBs out of a SM.

receiving commands, such as launching kernels and memory
operations, from the CPU; initializing the SM for kernel ex-
ecution; and dispatching TBs of a kernel onto different SMs.
In each cycle, the SM driver searches an Active Queue con-
taining a sequence of TBs belonging to the kernel to find a
candidate TB for dispatch.

We assume a general execution model where applications
do not necessarily arrive at the GPU at the same time. The
kernels of applications are issued to the GPU on a first-come-
first-serve basis. When newK arrives, K (of different ap-
plications) is partially preempted such that newK can co-
execute with K. This depends on how many resources are
needed to dispatch TBs of newK. We choose to swap con-
texts of kernels in TB units in line with what the driver uses
when dispatching newK. Hence, the context of K is saved
to memory one TB at a time, until enough resources are re-
leased to host one TB of newK. For example, if only 10%
of static resources are vacant in the SM before starting newK
and one TB of newK requires 15%, then SMK swaps out sev-
eral TBs of K to free at least 5% of static resources. Hence,
we term our preemption mechanism Partial Context Switch-
ing (PCS).

The main distinctive feature of PCS is that preemption
takes place without blocking the SM, i.e., the SM continues
executing the remaining TBs of K while switching contexts.
In Spart, an SM does not make progress during a context
switch. PCS leads to not only forward progress in kernel ex-
ecution during a context switch, but also less overhead. We
next describe the steps of PCS.

We use the same base GPU execution engine as previous
work [8][9], which covers the basic preemption and multi-
tasking support. We discuss only the essential components
relevant to our design. As shown in Figure 3, we add a Pre-
emption Engine (PreEng) per SM to perform PCS. When the
SM driver decides to swap TBx from SMi, it sends this infor-
mation to PreEng in SMi (�). Next, PreEng stops fetching
new instructions for TBx, and drains all currently executing
instructions from its pipeline, including pending memory re-
quests (�). Once draining is complete, PreEng initiates PCS
by sending memory store requests directly to the memory
controller for the context of TBx, namely for register con-
tents, shared memory values, barrier information and SIMT
stack (�). Once PCS is complete, PreEng sends the mem-
ory address, a pointer, of TBx’s context to the Preempted TB

Queue (�), which maintains the TBs that the SM driver may
select from and dispatch in the near future.

Swapping in a TB’s context is symmetric to swapping
out context, as illustrated by swapping in a TBy to SM j in
Figure 3. The SM driver first reads memory locations of
TBy’s context from the Preempted TB Queue and sends it to
PreEng in SM j (i). This PreEng then issues memory load
requests to the memory controller with the pointer to TBy’s
context (ii). Once the context is fully loaded, TBy starts ex-
ecuting on SM j (iii). Because all executing instructions of
a TB are drained before context switching and the resources
of TBs are statically isolated, there will be no data hazard in
context switching.

In summary, the goal of PCS is to use the least amount of
context switch overhead to maximize resource utilization of
each SM, while ensuring preempted kernels progress.

5.2 Resource Usage
With the capability of putting multiple kernels in a single

SM, the next issue is to determine which kernel’s TB should
be dispatched to which SM to increase resource utilization.
This process is done in the SM driver by examining resource
usage of kernels and SMs. The driver makes dispatch de-
cisions with the objective of improving overall throughput
while being fair to all kernels. We note that these two goals
can lead to contradictory decisions. For example, to achieve
high GPU throughput, the SM driver could continuously dis-
patch a compute intensive kernel (IPC is high) while starv-
ing a memory intensive one. Hence, it is critical to enforce a
fair-share policy during dispatch for SMK to be valuable.

In Spart, kernels are allocated to an integer number of
SMs. Fairness is ensured by allocating an equal number
of SMs to kernels. In SMK, however, there are multiple
static resources to allocate, and different kernels stress re-
sources differently. Some kernels may use registers more
heavily than shared memory, and other kernels may do the
opposite. Hence, it is not straightforward to “equally” divide
resources.

We adopt Dominant Resource Fairness (DRF), a general-
ized metric for multiple resource usage [22]. It was orig-
inally proposed for job scheduling in clusters. The intu-
ition behind DRF is that multi-resource allocation should be
determined by a kernel’s dominant resource share, i.e., the
maximum share that a kernel requires of any resource. In
GPUs, there are four kinds of resources allocated during TB
dispatch of a kernel: registers, shared memory, number of
active threads and number of TBs [1]. These resources limit
the total number of TBs that can be dispatched. If kernel A
mostly uses registers and kernel B mostly uses shared mem-
ory, then DRF tries to equalize A’s share of registers with
B’s share of shared memory. The dominant resource share
of the kernels (rK) and SMs (rSM) is computed as:

rK (rSM) = max{r(Register),r(T hreads),
r(SharedMemory),r(T B)},

where r(x) =
xtaken

xlimit

Consider an example. Suppose one TB of kernel A uses

362

10% of the registers, 20% of the shared memory, 30% of
the thread count limit and 3% of the TB count limit of one
SM. The number of threads is the dominant resource for A.
Every time kernel A has a TB to dispatch, it takes 30% of
the thread count resource of the SM. The resource usage of
a SM is calculated similarly. If 30% of the registers, 15%
of the shared memory, 20% of the thread count limit and
10% of the TB count limit of the SM are taken, the resource
usage of the SM is 30%. To calculate resource usage of a
kernel, we use the amount of resources it has occupied on
the GPU. Keeping track of the kernel and SM resource usage
is trivial as the resource demand of each TB in the kernel
is determined at compile time. The SM driver is also fully
aware of the TB status in each SM. Hence, the SM driver can
use this resource information to determine a fair allocation.

5.3 Fair Resource Allocation
Once kernel and SM resource usage are defined, the next

issue is resource allocation with fairness. The objective is
to equalize resource usage of each kernel (denoted as rK)
as much as possible. This can be quantified as minimizing
the difference between the maximum and minimum of rK of
all kernels, which is termed the range of rK. This criteria is
used by the SM driver when dispatching a TB onto an SM.

We first develop a naïve dispatch algorithm, termed on-
demand resource allocation, which is a simple heuristic of
the Knapsack problem. This algorithm forms the basis of
the second algorithm, resource partitioned algorithm, which
applies the same heuristic within a partition of resources.

5.3.1 On-Demand Resource Allocation

Choose a kernel with
lowest as , and a SM
with lowest as

Enough resources on
for a TB from ?

Yes Is there previously
preempted TB of ?

Yes

Swap in a TB Dispatch a TB

No

No

Choose a SM with highest
(excluding) as , and a

kernel on it with highest as

Will the range of reduce
if is preempted?

Yes Swap out some
TBs of

No
Do nothing

Enough resources
on for a TB

from ?

Yes

No

Figure 4: On-demand Resource Allocation.

On-Demand Resource Allocation allocates resources for
one TB during dispatch. The approach identifies a victim
TB on a SM and checks whether applying PCS to that TB
would reduce the range of rK. The algorithm’s flow chart is
shown in Figure 4. The SM driver first selects a kernel with
the lowest rK as a candidate kernel, Kc. Then, the driver
selects an SM with the lowest resource usage as a candidate
SM, SMc. Next, the driver checks whether there are enough
resources in SMc to receive a TB from Kc. If yes, the driver
swaps in a TB from the Preempted Thread Block Queue,
if there are any, or dispatches a new TB of Kc. The SM
driver prioritizes previously preempted TBs over new ones
to reduce the memory footprint of storing preempted TBs.

If there are not enough resources in SMc, the SM driver
continues to search for a victim SM, SMv, with the highest

rSM of all SMs. When calculating rSM, if kernel Kc has TBs
on SMv, then this resource usage is excluded from rSM, such
that a victim kernel other than Kc can be found. A victim
kernel Kv is the one with the highest rK in SMv. Then, the
range of rK on SMv is calculated to check if preempting Kv’s
TB would reduce the range. If so (implying preemption will
improve fairness), a preemption is performed. TBs of Kv are
swapped out and one TB of Kc is swapped in. Otherwise, no
preemption is done.

Using the range of rK to determine when to do preemp-
tion is critical to the performance of the algorithm. Note
that once the range is relatively small, indicating that the
resource allocation between different kernels is fairly bal-
anced, then preemption will not be performed. This criteria
helps to stabilize the algorithm and throttles overly frequent
preemption, as observed in our study.

5.3.2 Allocation with Resource Partitioning

Figure 5: The TB distribution of cutcp+stencil with On-
Demand Allocation.

On-demand Resource Allocation aims to achieve global
resource balance between kernels. For example, if regis-
ter usage is the dominant resource of a kernel, then that
kernel’s rK is calculated by summing register usage across
all SMs divided by the total register capacity of all SMs.
We have observed that the algorithm cannot control the lo-
cal resource allocation within each SM. To realize SMK,
kernels of complementary resource usage should share re-
sources within one SM. However, the on-demand algorithm
cannot enforce such sharing. Consequently, the algorithm
often generates an allocation with many SMs, each running
only one kernel, close to what Spart would produce. Fig-
ure 5 shows an example of running cutcp+stencil with On-
Demand Resource Allocation. As shown in the figure, SM
0-4 run stencil exclusively, and SM 7-11 run cutcp exclu-
sively. There are only 2 SMs sharing two kernels, limiting
the effect of SMK. Note that the allocation scheme gener-
ated by the algorithm may not be unique. To achieve fair-
ness in SMK, we propose to allocate the resources for each
kernel before their TBs are dispatched. We term this strategy
as resource partitioning, and the allocated resources for one
kernel is called a resource partition.

To create resource partitions on one SM, the SM Driver
applies the DRF policy [22]. It aims to equalize rK for
all kernels on one SM. As depicted in Figure 6, partition-
ing starts with an empty SM where rK of each kernel is 0.
Then the driver picks an initial kernel, say K1, and updates
rK1 assuming that a TB of K1 was dispatched. Next, a kernel
with the lowest rK, say K2, is picked and its rK is updated
assuming that one more TB of K2 was dispatched to the SM.
This procedure iterates until no more TBs can be dispatched

363

Assume is empty

Choose a kernel with
lowest on as

Can dispatch one
more TB?

Yes

No

Increase the number of TBs
for by 1, and update
resource usage on

Use the number of TBs
for each kernel as its

partition on

Figure 6: Calculating resource partitions on one SM.

to this SM. That is, at least one type of resource in the SM
has been exhausted. At this time, the resource partitions of
all kernels have naturally been created – the resources occu-
pied by each kernel through this iterative procedure form the
resource partitions for those kernels. The procedure always
attempts to reduce the range of rK: On every iteration, a TB
from the kernel with the lowest rK is dispatched so its rK
moves toward the highest rK, contracting the range.

Choose a kernel with
lowest as , and a SM
with lowest as

Is there a resource
partition for on ?

Yes

Is there previously
preempted TB of ?
Yes

Swap in a TB Dispatch a TB

NoNo
Yes

Do nothing

Enough resources in that
partition for a TB from ?

Recalculate resource
partitions on

Enforce resource
partitions by evicting

and relocating TBs

No

Figure 7: TB dispatch with resource partitioning.

The TB dispatch algorithm, which uses resource partition-
ing, is shown in Figure 7. The SM driver first identifies Kc
and SMc similar to On-demand Resource Allocation. Then,
the SM Driver checks whether there is already a resource
partition for Kc on SMc. If there is one and there is room in
that partition, dispatch (swap in) a TB. If there is a resource
partition for Kc on SMc but there is no room in that partition,
do nothing.

If there is no resource partition for Kc on SMc, the driver
initiates resource partitioning on SMc. The new partitions
are enforced by evicting and relocating existing TBs on SMc
to make TBs within one resource partition aligned. Relo-
cation is done by swapping TBs out and swapping them in.
Even with this overhead, we still observe good speedup over
Spart. This preemption overhead can be mitigated with extra
storage within a SM.

Figure 8 illustrates an example of resource partitioning.
Assume the SM Driver needs to create resource partitions
for two kernels on one SM, K1 and K2. The rK of one TB
of K1 and K2 are 10% and 6% respectively. Iteration 0 is
the initial state when the SM is empty. In iteration 1, one
TB from K1 is selected to run in the SM, increasing rKK1 to
10%. At this time, K2 has lower rK, so its TB is chosen next
to add to the SM in iteration 2, which increases rKK2 to 6%.
The dominant resource of the SM is the register file, and
rSM is increased to 13% (sum of register usage). Now K2

= 0 TB(rK = 0)
= 0 TB(rK = 0)

rSM = 0

= 1 TB(rK = 10%)
= 0 TB(rK = 0)
rSM = 10%

= 1 TB(rK = 10%)
= 1 TB(rK = 6%)
rSM = 13%

= 1 TB(rK = 10%)
= 2 TBs(rK = 12%)
rSM = 16.66%

……= 6 TBs(rK = 60%)
= 12 TBs(rK = 72%)

rSM = 100%

TB of : 10% Register, 0% Shared memory, 6.66% Thread Number
TB of : 3% Register, 6% Shared memory, 5% Thread Number

Figure 8: An example of resource partitioning for 2 kernels.

Table 3: Resource and performance fairness with fair re-
source allocation (higher is better).

Pair Type Resource Performance
Compute+Memory 0.94 0.49
Compute+Compute 0.94 0.64
Memory+Memory 0.88 0.55

All 0.92 0.54

still has the lowest rK, so in iteration 3, one TB from K2 is
added to the SM, and rKK2 becomes 12%. At this iteration,
the dominant resource of the SM is the number of threads,
and rSM is increased to 16.66%. Although not shown in
iteration 4, one TB from K1 will be added to the SM. This
process iterates until rSM is 100%, i.e., when SM resource,
active thread count in this case, is fully saturated. At this
time, resource partitions for K1 and K2 are formed: K1 can
dispatch up to 6 TBs and K2 can dispatch up to 12 TBs.

With partitioned resource allocation, every SM has a ded-
icated partition for each kernel, guaranteeing that multiple
kernels can co-execute within one SM. Our experimental re-
sults show that this allocation greatly improves GPU through-
put, demonstrating the benefit of SMK.

5.4 Fair Allocation on Dynamic Resource via
Warp-Scheduling

Both on-demand and partitioned resource allocation target
static resources, such as registers. At runtime, warps of TBs
from different kernels are scheduled by the warp scheduler
to use computing cycles. There are many warp scheduling
policies [23][24]. However, these policies are all designed
to improve performance of a single kernel. When multiple
kernels co-execute, we have observed that the kernels can
incur severe contention for computing cycles, even though
the kernels have a fair share of static resources. For exam-
ple, a compute-intensive kernel may monopolize computing
cycles, slashing execution opportunities for other concurrent
kernels. A memory-intensive kernel may fill the miss sta-
tus holding register (MSHR), blocking requests from other
kernels that might be memory non-intensive but stalled on
memory. Warps of the stalled kernels cannot resume exe-
cution to hide latencies of other warps. Hence, fair share
of static resources may not result in fairness in performance
achieved by different kernels.

To quantify fairness, we adopt the metric defined in [25],
which is the smallest normalized IPC (normalized to iso-

364

lated execution) divided by the largest normalized IPC of
all kernels. We extend this metric to static resource fairness,
which is the smallest rK divided by the largest rK. Table 3
shows the averages of resource and performance fairness us-
ing the resource partitioning allocation, over different pair-
ings of kernels (e.g., compute- and memory-intensive ker-
nels in the first row). A value of 1 indicates perfect fairness,
and a value of 0 means complete starvation of one kernel.
As we can see, the algorithm can achieve good fairness for
static resource allocation, but the performance fairness val-
ues are in general quite low and do not even have a similar
trend as resource fairness. Hence, we need to further en-
hance the algorithm with allocating the dynamic resource,
i.e., the computing cycles.

To achieve performance fairness, we define a fair alloca-
tion of computing cycles as one where a kernel has a share of
cycles that is proportional to the amount required when the
kernel is executed exclusively on one SM. The proportion is
determined by the ratio of resources allocated in SMK (i.e.,
number of TBs) to resources used in isolated execution. In-
tuitively, if a kernel has T TBs per SM when run in isolation,
and x% of the cycles are used to issue instructions, then the
percentage of cycles the kernel should be allocated in SMK,

denoted as Ck, is x%× S
T , where S is the number of TBs al-

located in SMK using resource partitioning. The sum of Ck
for all kernels should not exceed 100%. Hence, each kernel
should get its own share proportionally, which is defined as
Quotak:

Quotak =
Ck

∑ f or all k Ck

To implement this allocation, we need to obtain x and
T from isolated execution of a kernel. This can be done
by assigning a dedicated SM to each kernel for profiling.
The benefit of this profiling outweighs the loss from hav-
ing fewer SMs for SMK, as indicated by our experiments.
Tracking computing cycles of kernels directly is impracti-
cal because the execution of kernels are overlapped. In-
stead, we use Warp Instructions per Cycle (WIPC) per warp
scheduler over a period of time to approximate computing
cycles. Then, during each epoch of execution, each warp
scheduler allocates Quotak ×E poch_length number of in-
structions for kernel k. This allocation is distributed evenly
among all warp schedulers since TBs are evenly distributed
across warp schedulers when they are dispatched to an SM.
When a warp scheduler issues an instruction from a kernel,
its quota is decremented by 1. If one kernel’s quota reaches
zero, the warp scheduler will stop issuing new instructions
from that kernel. If all quotas reach zero, new quotas will
be calculated using the most recent WIPC, and assigned to
each kernel.

For example, suppose there are two kernels, K1 and K2.
Both can run 8 TBs in isolated execution. In SMK, sup-
pose K1 has 2 TBs and K2 has 4 TBs in one SM. WIPCs per
warp scheduler for K1 and K2 are 0.4 and 0.5 respectively.

Then, C1 = 0.1, and C2 = 0.25. And so Quota1 = 0.1
0.35 and

Quota2 = 0.25
0.35 .

The proposed allocation of cycles ensures that the number
of issued instructions is related to the number of TBs of the

kernel present in an SM. As a result, warps of kernels can
be relatively fairly scheduled by warp schedulers. We use
a linear estimation of execution time in this design for sim-
plicity, although this may overestimate kernel performance.
However, it does not impact the allocation much because all
kernels are overestimated. The objective here is to achieve
a balance of core compute cycles among kernels, instead of
exact measurement.

Figure 9: L1/L2 cache hit rate and fairness for different num-
ber of kernels coexisting within one SM. The 4 kernels used
are lbm, sgemm, stencil, and tpacf.

5.5 Increasing Number of Concurrent Kernels
The algorithms described in Sections 5.3 and 5.4 are gen-

erally applicable to arbitrary number of concurrent kernels
per SM. However, there could be potential issues with more
kernels sharing an SM. The first issue is the possibility of
higher contention on the L1/L2 cache. We observed that the
L1/L2 cache hit rate does not always decrease with more
sharing kernels, as shown in Figure 9 for one example ker-
nel mix. This situation happens because the warp sched-
ulers can capture the intra-kernel locality and keep their cor-
responding working set in L1/L2 cache. Hence, the over-
all L1 hit rate does not necessarily decrease. The second
issue is the possibility of resource fragmentation in regis-
ters and shared memory due to the disparity in kernel re-
source demand. Having more kernels may lead to more in-
ternal fragmentation of resources. Fortunately, our Resource
Partitioning Allocation guarantees that there is no fragmen-
tation within one kernel’s resource partition by relocating
non-aligned TBs. Vacancies occur only between adjacent
kernel allocations. Hence, in our evaluation, we did not ob-
serve significant fragmentation that would threaten the per-
formance of kernels.

However, we observe a drop in fairness as the number of
concurrent kernels per SM increases. This drop is due to the
performance estimation by profiling SMs, and linear scal-
ing has some inaccuracies. This could cause over-estimation
or under-estimation of the Quota for each kernel. If the
warp scheduling policy is not fair for warps (in this case,
the greedy-then-oldest policy), it may favor some kernels
over others, resulting in over-performing kernels and under-
performing kernels. As the number of concurrent kernels
per SM increases, the performance of the kernel with least
share of execution becomes worse because there are more
kernels taking its share of execution, resulting in worse fair-
ness. A more accurate performance estimation, e.g., offline
profiling, or a fair warp scheduling policy, e.g. round-robin,
can be used to mitigate this problem. Our study shows that 2
kernels per SM gives the best fairness and turnaround time.

If we limit the number of kernels within one SM to two,

365

rK can be extended to include the number of running SMs
for a kernel. This will produce equal number of SMs among
sharing kernels because the number of SMs are also taken
into account when considering the fairness. For example, for
3 kernels, K1, K2 and K3, running on 3 SMs, the generated
sharing scheme may be (K1, K2) on SM1, (K2, K3) on SM2,
and (K1, K3) on SM3.

Table 4: Simulation parameters for GPGPU-Sim.
GPU Parameter Value SM Parameter Value

Core Clock 1216MHz Registers 256KB
Memory Clock 7GHz Shared Memory 96KB
Number of SMs 16 Threads 2048

MC 4 TB limit 32
Sched. Policy GTO Warp Scheduler 4

6. EXPERIMENTAL EVALUATION

6.1 Methodology
We evaluate our design using the latest version of GPGPU-

Sim [11], a widely adopted GPU simulator. The simulation
parameters in Table 4 are from the specifications of Nvidia
Geforce GTX980 [26] to reflect that each SM is larger in re-
cent architectures. We used 10 benchmarks from Parboil [6]
and we enumerate all pairs, a total of 45, to simulate multi-
programmed workloads. bfs is excluded because it uses only
a small portion of GPU resources, and can coexist with other
kernels with little interference of performance. We ran the
benchmarks with the largest datasets in Parboil, except for
the experiments that evaluate preemption overhead. When
measuring this overhead, we used small data sets to exten-
uate the effect of preemption. We modified GPGPU-Sim to
support running multiple kernels on the same SM. We as-
sume that the registers and the shared memory in each SM
are linearly addressed as described in [27].

We first evaluate the different variations of SMK: On-
demand Resource Allocation (SMK) and Allocation with
Resource Partitioning (SMK-P). We apply Dynamic Resource
Allocation via Warp-Scheduling on top of SMK-P(SMK-
(P+W)). The epoch length for SMK-(P+W) is 10k cycles.
Then, we compare the most efficient approach, SMK-(P+W),
with spatial partitioning (Spart), which we implemented ac-
cording to the description in [9]. In the evaluation, we used
the three metrics proposed in [25]: system throughput (STP),
fairness, and average normalized turnaround time (ANTT).
System throughput for a pair of benchmarks is the sum of
the normalized IPCs of the benchmarks (normalized to the
IPC of isolated execution). Similarly, turnaround time is the
arithmetic average of normalized turnaround time. Fairness
(a value between 0 and 1) is the smallest normalized IPC
divided by the largest normalized IPC of all kernels.

We ran 2M cycles for each pair in our evaluation, since
according to [10], the results are accurate when the simula-
tion is longer than 1M cycles. If one program ends before
2M cycles, it is re-executed. If the benchmark has multiple
kernels or the kernel is executed multiple times, we add the
instructions and cycles of all kernels to calculate the IPC.

For comparison, the 45 pairs of benchmarks are divided
into three groups. We report the average in each group:

group “C+C” has pairs where both benchmarks are compute
intensive (such as cutcp, mri-q, sgemm and tpacf), group
“M+M” has pairs where both benchmarks are memory in-
tensive (such as histo, lbm, mri-g, sad, spmv and stencil),
and group “C+M” has pairs where one benchmark is com-
pute intensive and the other is memory intensive. We only
show the details of STP for the “C+M” group, as the results
are most interesting for this group.

(a) STP (b) Fairness (c) ANTT

Figure 10: Comparison of the SMK designs.

Figure 11: STP for kernel pairs in the “C+M” group.

6.2 Results of SMK Designs
Figures 10 and 11 show the results for the different vari-

ations of SMK. As SMK is designed for sharing kernels of
complementary resource usage, it is most effective for the
“C+M” group. On average, SMK, SMK-P, SMK-(P+W) im-
proves throughput over isolated kernel execution by 38%,46%,
and 52%, respectively. The overall average of the three de-
signs are 28%, 34%, and 37%. SMK-P improves over SMK
because more within-SM sharing is enforced through resource
partitioning. In most cases, SMK-(P+W) creates more over-
lapped execution by balancing the execution of kernels, fur-
ther improving the throughput. However, there are cases that
the opportunities of overlapping are limited because SMK-
(P+W) may limit the execution of one kernel to achieve fair-
ness.

From the fairness standpoint (Figure 10b), SMK-(P+W)
is also the best because it ensures that each kernel in one
SM receives a fair chance of executing. In the figure, the
closer the bars are to 1.0, the better the fairness, indicating
that the performance changes with and without SMK across
different kernels are roughly the same. On average, SMK,
SMK-P and SMK-(P+W) achieve fairness of 0.6, 0.54 and
0.74. SMK-(P+W) is very effective in improving fairness
among co-running kernels. For example, we observed that

366

fairness values of SMK-P in mri-g+sgemm and sad+sgemm
(not shown in the figure) are extremely low – 0.121 and
0.124 – but the values are improved significantly to 0.81 and
0.56 with SMK-(P+W).

For ANTT, a value close to 1 is better, meaning that the
response time in SMK is closer to isolated execution. If
throughput and fairness are both good, then ANTT (Fig-
ure 10c) should also be good. If one of them is weak, then
ANTT will be weak too. Since SMK-(P+W) is best for both
throughput and fairness, its ANTT value is also the lowest
among the three. SMK-P, on the other hand, is weak in fair-
ness, and thus, also weak in ANTT.

(a) STP (b) Fairness (c) ANTT

Figure 12: Comparison of SMK-(P+W) and Spart.

Figure 13: STP of SMK-(P+W) vs. Spart for the “C+M”
group.

6.3 Comparison with Spatial Partitioning
Figures 12 and 13 compare SMK-(P+W) with Spart [9].

In general, SMK-(P+W) outperforms Spart for most pairs,
with the highest improvement being 61.3%. In the cases
where Spart outperforms SMK-(P+W), the throughput dif-
ference is less than 5%.

SMK-(P+W) does best in the “C+M” group since compute-
intensive and memory-intensive kernels naturally compen-
sate each other especially in execution cycles. For exam-
ple, in lbm+tpacf, the system throughput of SMK-(P+W) is
larger than Spart by 20% (see Figure 13). This improve-
ment comes from two factors. First, memory utilization is
better with SMK-(P+W) because the TBs of the memory-
intensive kernel, lbm, are distributed evenly to SMs. This
distribution fully utilizes the SM memory access compo-
nents (like MSHR). Second, the compute-intensive kernel,
tpacf, has many low-latency instructions that hide the long
memory latency of the memory-intensive kernel. On aver-
age, the “C+M” group improves throughput by 52% over
the isolated execution, in contrast to 30% achieved by Spart.

The improvement of SMK-(P+W) over Spart can be even
larger when one kernel of a pair is cache-sensitive. Specifi-
cally, in Spart, each SM is assigned with one kernel, and the
maximum number of TBs of that kernel. However, this be-
havior may cause thrashing in the cache when TBs compete
for cache space. For a compute-intensive kernel, the cache
resource is wasted because it utilizes the shared memory to
cache data. With SMK, cache-sensitive kernels (such as sad
and stencil) and compute-intensive kernels can be effectively
paired so that the cache-sensitive kernel occupies most of the
cache (achieving a high hit rate) without affecting the other
kernel. The most significant improvements in our evalua-
tion come from this effect of complementary pairing. For
example, stencil is cache sensitive, and it has very good per-
formance when paired with a cache-insensitive kernel.

Kernels in the “C+C” group also benefit from SMK (not
shown due to space limits). The thread-level parallelism is
increased by fully utilizing GPU resources because there are
more opportunities to interleave memory access and other
instructions. The pair cutcp+mri-q is such an example that
has a 15% improvement over Spart.

However, for kernels in the “M+M” group, sharing an
SM does not increase thread-level parallelism and the mem-
ory subsystem remains a bottleneck. SMK may degrade
throughput slightly in a few cases, but the overall average
remains higher than Spart by 5.1%, as shown in Figure 12a.

Figure 12b and 12c show that our design also improves
fairness and turnaround time over spatial partitioning. SMK-
(P+W) does best due to fine-grained control over warp exe-
cution; turnaround time is much improved and fairness is
preserved.

Figure 14: Reduction of stall cycles over Spart.

6.4 Stall Cycles
Figure 14 shows the percentage of different types of stall

cycles for “C+M” pairs. Stalls can occur under three condi-
tions: the instruction pipeline is full, there are control haz-
ards or there are data hazards. As we can see, SMK signifi-
cantly reduces the stalls caused by instruction pipeline. This
is because SMK utilizes the instructions from different ker-
nels to have more opportunities to issue different kinds of
instructions. For example, if the SM is executing a compute
intensive kernel, the instruction pipeline will be busy most
of the time, leaving the load/store unit idle. In the case of
SMK, the instructions of another kernel can be issued to uti-
lize the load/store unit, reducing pipeline stalls. SMK also
reduces control stalls by interleaving fetching and execut-
ing. However, SMK has more data hazard stalls than Spart
because it has more pending instructions when fully utilizing
the pipeline. With more pending instructions, there are more

367

(a) System Throughput(STP) (b) Fairness (c) ANTT

Figure 15: SMK-(P+W) vs. Spart for three and four kernels.

entries in the scoreboard, and more chances for data hazard
stalls. Overall, SMK-(P+W) reduces issue stalls by 19.5%,
control stalls by 18.4%, and increases data stalls by 14.5%,
resulting in an overall stall reduction of 8.6%.

6.5 Preemption Overhead

Figure 16: Throughput without preemption overhead.

We also examined the overhead of preemption in SMK-
(P+W) compared with Spart. Preemption not only takes
time to save context to memory, but also puts pressure on
the memory subsystem. We evaluated this overhead by run-
ning an ideal simulation, where the cost of data transfer to
store/retrieve the context is set to zero (no cost). We de-
note the no-cost preemption case as Spart-Ideal and SMK-
(P+W)-Ideal, as shown in Figure 16. We collected these
results for short running programs (using small data sets)
which are more sensitive to preemption overhead than longer
running ones.

As the figure shows, preemption has less impact in SMK
than Spart. The difference between Spart and Spart-Ideal is
5%, while the difference between SMK-(P+W) and SMK-
(P+W)-Ideal is 2%. SMK-(P+W) has less overhead because
it interleaves preemption with normal execution. TBs that
are preempted behave similarly to memory-intensive ker-
nels. Moreover, the results also show that, on average, SMK-
(P+W) with overhead indeed performs better than Spart-Ideal,
demonstrating the effectiveness of our proposed design.

6.6 Three or Four Kernels
To study the scalability of our schemes, we evaluate the

performance of running three or four kernels. We randomly
select 56 combinations of 3-kernel workloads and 70 com-
binations of 4-kernel workloads. The selected combinations
cover all possible mixes of compute and memory intensive
kernels. We experiment with two schemes, SMK-(P+W)K,
which puts as many kernels as possible into one SM, and
SMK-(P+W)2, which limits the number of kernels in one

SM to 2. As shown in Figure 15a, STP scales well for 3 and
4 kernels. The overall improvements are 14.8% and 14.3%
over Spart for 3 and 4 kernels respectively. SMK-(P+W)2
has similar STP to SMK-(P+W)K for 3 kernels, but scales
better for 4 kernels. Hence, for throughput, it is better to
have more kernels running concurrently.

Fairness is a bit lower when more than 2 kernels are allo-
cated to each SM, as shown in Figure 15b. It is more difficult
to control the progress of multiple kernels than two kernels.
And we have discussed the reason in Section 5.5. The fair-
ness of SMK-(P+W)K is the worst among all schemes.

Figure 15c shows the ANTT results. As the number of
kernels increases, ANTT increases sublinearly to the num-
ber of kernels. SMK-(P+W)2 has the best turnaround time
among all schemes.

In summary, SMK has similar STP improvement over Spart
and good fairness in the 2-kernel, 3-kernel and 4-kernel cases.
We conclude that SMK is a scalable design.

6.7 Hardware Overhead
To implement SMK, the SM driver needs to be extended

with new control logic to implement the following: (1) The
TB dispatch algorithm; (2) Signals to control the preemption
engine. Finally, the warp scheduler needs to be extended to
implement the cycle quotas for sharing kernels.

Partial Context Switching has similar overhead to full con-
text switch [9], which requires hardware such as preempted
TB queue etc. to implement preemption. For On-demand
Resource Allocation, the overhead is mostly logic, and the
information that the algorithm needs is already present in
current GPUs. For Resource Partition and Warp Scheduling,
several counters are needed to store the resource partition
and quota information.

Specifically, Resource Partition needs 7 counters to record
the resource partition range of registers, shared memory and
threads, and the number of TBs for each kernel on each SM.
For a GPU with 16 SMs, each supporting 4 kernels, for ex-
ample, the total overhead is 448 (7×4×16) counters. Sim-
ilarly, the Warp Scheduling scheme needs 4 counters (1 for
profiling, 1 for tracking epoch, 2 for storing quota) to track
profiling and quota information. Hence the total overhead is
256 counters. Overall, the majority of overhead is in logic,
and the storage overhead is only about 2.8KB if the counters
are 32-bit.

7. CONCLUSIONS

368

State-of-the-art GPUs do not yet support preemptive schedul-
ing, which is essential for modern systems. Previous work
on this issue provides preemption mechanisms and strate-
gies to share GPUs, but still leaves GPUs under-utilized. We
propose a novel design to enable fine-grain sharing of mul-
tiple co-executing kernels for GPUs. Moreover, we propose
several strategies to fully exploit the potential of this mech-
anism. We not only maintain resource fairness among ker-
nels, but also ensure that kernel execution is done in a fair
manner. Our results show that our design significantly im-
proves system throughput with good fairness.

8. ACKNOWLEDGEMENTS
We thank the anonymous reviewers. This work is par-

tially sponsored by the National Basic Research 973 Pro-
gram of China (No. 2015CB352403), the National Natural
Science Foundation of China (NSFC) (No. 61261160502,
No. 61272099), the Program for Changjiang Scholars and
Innovative Research Team in University (IRT1158, PCSIRT),
the Scientific Innovation Act of STCSM (No. 13511504200),
and the EU FP7 CLIMBER project (No. PIRSES-GA-2012-
318939). This work is supported in part by NSF grants CNS-
1012070, CNS-1305220, CCF-1422331 and CCF-1535755.
This work was carried out while Zhenning Wang visited the
University of Pittsburgh on a CSC scholarship.

9. REFERENCES
[1] Nvidia, “Programming Guide,” 2014.

[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid,” in ACM
SIGGRAPH 2003 Papers, SIGGRAPH ’03, pp. 917–924, ACM,
2003.

[3] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU Cluster
for High Performance Computing,” in Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, SC ’04, IEEE Computer
Society, 2004.

[4] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A
MapReduce Framework on Graphics Processors,” in Proceedings of
the 17th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’08, pp. 260–269, ACM, 2008.

[5] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving
GPGPU Concurrency with Elastic Kernels,” in Proceedings of the
Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’13,
pp. 407–418, ACM, 2013.

[6] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput
computing,” Center for Reliable and High-Performance Computing,
2012.

[7] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU resource utilization through alternative thread
block scheduling,” in High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, pp. 260–271,
Feb 2014.

[8] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative
Preemption for Multitasking on a Shared GPU,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 593–606,
ACM, 2015.

[9] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and
M. Valero, “Enabling Preemptive Multiprogramming on GPUs,” in
Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, pp. 193–204, IEEE Press, 2014.

[10] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte, “The case for
GPGPU spatial multitasking,” in High Performance Computer

Architecture (HPCA), 2012 IEEE 18th International Symposium on,
pp. 1–12, Feb 2012.

[11] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on, pp. 163–174, April 2009.

[12] T. Bradley, “Hyper-Q example,” 2012.

[13] NVIDIA, “Sharing a GPU between MPI processes: multi-process
service(MPS),” 2012.

[14] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and
Exploiting Flexible Task Assignment on GPU through SM-Centric
Program Transformations,” in ICS’ 15, 2015.

[15] G. Wang, Y. Lin, and W. Yi, “Kernel Fusion: An Effective Method
for Better Power Efficiency on Multithreaded GPU,” in Green
Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l
Conference on Int’l Conference on Cyber, Physical and Social
Computing (CPSCom), pp. 344–350, Dec 2010.

[16] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-grained
resource sharing for concurrent GPGPU kernels,” in 4th USENIX
Workshop on Hot Topics in Parallelism (HotPar). Berkeley, CA, 2012.

[17] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel,
“PTask: Operating System Abstractions to Manage GPUs As
Compute Devices,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11,
pp. 233–248, ACM, 2011.

[18] K. Menychtas, K. Shen, and M. L. Scott, “Disengaged Scheduling
for Fair, Protected Access to Fast Computational Accelerators,” in
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’14, pp. 301–316, ACM, 2014.

[19] Kato, Shinpei and Lakshmanan, Karthik and Rajkumar, Raj and
Ishikawa, Yutaka, “TimeGraph: GPU scheduling for real-time
multi-tasking environments,” in Proc. USENIX ATC, pp. 17–30,
2011.

[20] K. Menychtas, K. Shen, and M. L. Scott, “Enabling OS Research by
Inferring Interactions in the Black-Box GPU Stack.,” in USENIX
Annual Technical Conference, pp. 291–296, 2013.

[21] S. W. Kim, C.-l. Ooi, R. Eigenmann, B. Falsafi, and T. N.
Vijaykumar, “Reference idempotency analysis: A framework for
optimizing speculative execution,” in PPoPP ’01, pp. 2–11, ACM,
2001.

[22] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types.,” in NSDI, vol. 11, pp. 24–24, 2011.

[23] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU Performance via Large Warps and
Two-level Warp Scheduling,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO-44, pp. 308–317, ACM, 2011.

[24] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO-45, pp. 72–83, IEEE Computer Society, 2012.

[25] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE micro, vol. 28, no. 3, pp. 42–53,
2008.

[26] NVIDIA, “NVIDIA Geforce GTX980 Whitepaper,” 2014.

[27] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
Warp Formation and Scheduling for Efficient GPU Control Flow,” in
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 40, pp. 407–420, IEEE Computer
Society, 2007.

369

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

