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Abstract—In this paper, we focus on designing an online credit
card fraud detection framework with big data technologies, by
which we want to achieve three major goals: 1) the ability
to fuse multiple detection models to improve accuracy; 2) the
ability to process large amount of data and 3) the ability to
do the detection in real time. To accomplish that, we propose
a general workflow, which satisfies most design ideas of current
credit card fraud detection systems. We further implement the
workflow with a new framework which consists of four layers:
distributed storage layer, batch training layer, key-value sharing
layer and streaming detection layer. With the four layers, we
are able to support massive trading data storage, fast detection
model training, quick model data sharing and real-time online
fraud detection, respectively. We implement it with latest big data
technologies like Hadoop, Spark, Storm, HBase, etc. A prototype
is implemented and tested with a synthetic dataset, which shows
great potentials of achieving the above goals.
Index Terms—Online Credit Card Fraud Detection Frame-

work, Big Data, Model Fusion, Hadoop, Spark, Storm, HBase

I. INTRODUCTION

With the rapid development of Internet and E-commerce,

online payment has become one of the most important ways

for trading. Credit card, for its convenient usage online, has

gotten an explosive growth in recent years. According to the

2013 Federal Reserve Payments Study, the total number of

credit card transactions in the U.S. was 26.2 billion in 2012,

up from 21 billion in 2009. Seven of the largest card issuers –

American Express, JP Morgan, Capital One, Bank of America,

Citigroup, Discover and U.S. Bancorp – reported more than

$490 billion in total credit card payments made in the fourth

quarter of 2014 alone. In Amazon, net sales increased 20% to

$107.0 billion, compared with $89.0 billion in 2014.

However, the increasing amount of online trading could

also attract criminal activities. In online trading, the credit

cards are usually used as virtual card[1]. An attacker only

needs to obtain few important information of the card (e.g.,

card ID, secure code) to make a fraudulent transaction on the

Internet while the genuine cardholder often does not notice

that his card information has been leaked, which may cause

a significant financial loss both to the cardholder and credit

card company. In the past decades, financial companies and

researchers have developed many Credit Card Fraud Detection

Systems (CCFDS).

Although, the main challenge for most CCFDS is how

to improve detection accuracy, the computational capacity

of CCFDS have become more and more important with the

explosive growth of trading data. The growing number of users

and payment transactions has brought heavy workloads to

these systems. The speed of new transactions coming into the

system can reach millions per second while the size of stored

historical transactions can reach several PBs or even EBs. In

this case, processing detection tasks and model training on so

many incoming transactions with a low delay is very hard for

most traditional systems.
According to the recent trends, Big Data technology seems

to be the key of solving the challenge of computational

capacity. For example, before using Big Data technology,

the Visa company could only analyze 2% of its historical

transactions, and make one update of its detection model every

2 or 3 days. However, with the help of Hadoop, their new

CCFDS can now analyze the whole historical transactions in

time while support 16 models doing detection concurrently

and make updates of these models every 1 to 2 hours.
However, the above case only considers the traditional

scenarios in which physical cards are used more frequently

than virtual cards. In E-commerce, virtual cards are used

more frequently than physical cards, which makes the payment

much easier and creates many small but frequent transactions.

Thus, simply applying single Big Data tool can not solve the

real challenge. In this paper, we try to address this challenge

through a hybrid solution and have made the following three

major contributions:

• We propose a credit card fraud detection workflow, which

can fuse different detection models to improve accuracy.

It contains most of the common design ideas in latest C-

CFDSs, which make it much easier to integrate detection

algorithms into the workflow;

• We design a four-layer framework which includes dis-

tributed storage layer, batch training layer, key-value

sharing layer and streaming detection layer, to support

massive trading data storage, fast detection model train-

ing, quick model data sharing and real-time online fraud

detection, respectively;

• We implement the framework with the latest big data

technologies like Hadoop, Spark, Storm, HBase, etc. With

these technologies, we are able to handle the burst amount

of data and build a scalable and reliable system. Experi-

mental results show that this system has the potential to

achieve a sustainable performance.
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This paper is organized as follows: Section II introduces

the related work of this paper; Section III gives the design of

our proposed fraud detection workflow; Section IV describes

our framework for real-time online fraud detection; Section V

shows how we implement the framework with the latest Big

Data technologies; Section VI gives the experimental results

of our framework; Finally, Section VII concludes this paper

and sheds light on our future work.

II. RELATED WORK

A. Fraud Detection Algorithms

Fraud detection has drawn a lot of researchers’ interest

in the past few years and many new algorithms have been

developed[2]. Most algorithms can be divided into two cate-

gories: supervised algorithms which use labeled training data,

and unsupervised algorithms, using unlabeled training data[3].

Popular supervised algorithms include neural network, lo-

gistic regression models, etc. Ghosh and Reigh[4] use a three-

layer neural network to detect fraud transactions. Syeda[5] pro-

poses a parallel granular neural network to speed up process.

Logistic regression models are often used as components in

CCFDS[6], [7].

Compared with supervised algorithms discussed above, un-

supervised approaches are also widely used in CCFDS. Bolton

and Hand [8] use peer group analysis to monitor behavioral

fraud. They also recommend break point analysis to identify

changes in spending behavior. Abhinav et al[1] use hidden

Markov model(HMM) to detect fraud transactions. If the

incoming transaction does not have a rather higher transferring

probability, it will be regarded as fraud.

Instead of developing new algorithms to get a higher accu-

racy, we try to achieve that goal by fusing existing algorithms.

Each algorithm may have their own advantages in detecting

certain kinds of frauds. If they can be integrated into our

system, we should have a better chance to detect most frauds.

B. Model Fusion Methods

The idea of fusing different algorithms is not new. Many

researchers use meta-learning to create hybrid CCFDS. Peter

et al[9] use an evolution-fuzzy detection system to classify

suspicious and non-suspicious credit card transactions. This

system is composed by a genetic programming (GP) search

algorithm and a fuzzy expert system. It first clusters data into

three groups, namely ’high’, ’medium’ and ’low’. GP part

evolves a series of variable-length rules, which characterize

the differences of data. They conclude that the use of evolution

with fuzzy logic has higher accuracy.

Panigrahi et al[10] propose a fusion system using Dempster-

Shafer theory and Bayesian learning. Their system consists

of four components: rule-based filter, Dempster-Shafer adder,

transaction history database and Bayesian learner. Rule-based

filters first generates a suspicious score. If it can’t determine

whether an incoming transaction is fraud or not, Bayesian

model will further detect the transaction, and give the final

result.

Krishna and Lata[11] combine BLAST and SSAHA algo-

rithms to do credit card fraud detection. These two algorithms

are efficient sequence alignment approaches. In this two-

stage system, a profile analyzer (PA) first determines the

similarity of an incoming transaction with the past genuine

spending sequence. Then the fraud transactions are passed to

a subsequent deviation analyzer (DA) for possible alignment.

Our work concentrates on solving performance challenges

of CCFDS with Big Data technologies. Due to a limited com-

putational resources, the past systems can only fuse limited

algorithms. But Big Data technologies provide an easy and

scalable way to fuse more detection algorithms.

C. Big Data Technologies

One of the biggest challenge for fraud detection systems is

the tremendous growing amount of transactions. Current fraud

detection systems need to be more effective and scalable in

order to handle such large amount of incoming data. Hence,

using Big Data technology is the best solution for this problem.

Many Big Data platforms are released to store and process

data in recent years. The MapReduce framework was proposed

in 2004[12]. Apache Hadoop1 is presented as the most popular

open-source implementation of MapReduce and DFS for large-

scale data processing and storing. However, Hadoop has a poor

performance on iterative and online computing. Apache Spark2

allows users to persist the data in memory and is the most

popular batch processing platform for iterative computing.

Storm3 is the most widely used real-time streaming processing

system. Storm’s applications are submitted as topologies.

These topologies usually contain two components, which are

called spout and bolt. Spout is the source of streams in

topology. It reads tuples from external source and sends them

into the topology. Bolt processes the data once a tuple. HBase4

is an open source distributed key-value store developed on top

of the distributed storage system HDFS.

Many researchers have used these Big Data technologies to

improve the performance of applications. Zhao and Shang [13]

implement user-based collaborative-filtering recommendation

on MapReduce to solve the scalability problem. Wu et al[14]

considers the problem of doing data mining with Big Data

technology. Jacinto Arias et al[15] apply MapReduce to im-

plement a scalable learning of K-dependence Bayesian Clas-

sifiers. Sergio Ramrez-Gallego et al[16] develop a distributed

entropy minimization discretizer for Big Data Analysis with

Apache Spark.

In this paper, we propose a hybrid framework with Big Data

technologies to solve performance challenges faced by online

CCFDS. As a real time system, we not only need to consider

the performance issues during data storing, model training,

data sharing and fraud detection, but also take care of the

integration problems of them since any slow component could

become a bottleneck of the whole system.

1http://hadoop.apache.org/
2https://spark.apache.org/
3http://storm.apache.org/
4http://hbase.apache.org/
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Fig. 1: Credit card fraud detection workflow

III. FRAUD DETECTION WORKFLOW

In this section, we illustrate our proposed credit card fraud

detection workflow. The goal is to fuse different detection

models and algorithms together. Thus it should assimilate main

design ideas of CCFDS in recent years.

A. Workflow Components

Table I shows the meaning of all variables used in this

section. Figure 1 shows the proposed workflow. Given an

incoming transaction T , it will be processed through the

following components:

1) Quick Filter (QF): QF consists of many unsupervised

algorithms for quick fraud detection. Each algorithm

trains models for every cardholder to capture their

consumption patterns by using their own historical

transactions. A fraud score fQi (t), which represents the
probability of whether this transaction is fraudulent or

not, can be calculated based on the models. Typical algo-

rithms include DBSCAN[10], HMM[1], Self-Organizing

Map(SOM)[17];

2) Dempster-Shafer Adder (DSA): DSA combines different

fraud scores, then generates a merged result. For exam-

ple, if there are two fraud scores f1(t) and f2(t), DSA
will generate a merged score f(t) as follows:

f(t) = f1(t) ⊕ f2(t) =

∑
x
⋂
y=tm1(x) ∗m2(y)

1 −∑
x
⋂
y=φm1(x) ∗m2(y)

3) θL and θU : they are two threshold values where θL is
the upper bound of genuine and θU is the lower bound
of fraudulent. When f(t) < θL, it will be regarded as
genuine transaction. When f(t) > θU , it is fraud. When
θL < f(t) < θU , the transaction is suspicious (non-
determined);

4) Explicit Filter (EF): EF contains several supervised algo-

rithms to further decide whether a transaction is fraud-

ulent or not. Each algorithm learns the fraud pattern by

training with all historical transactions. Then the fraud

score fEi (t) can be calculated for an incoming transac-
tion based on the fraud pattern. Typical algorithms in-

clude Logistic Regression[7], Decision Tree[18], Naive

Bayes[7] and Neural Networks[7], [5];

TABLE I: Variable list

Variable meaning

T incoming transaction

θL upper bound of genuine

θU lower bound of fraudulent

fQi (t) fraud score of t in ith quick filter

fEi (t) fraud score of t in ith explicit filter

5) Manual verification: in case of needs for more accurate

results, manual verification could be added into the

system. Those suspicious transaction can be sent here

to be further checked;

6) Historical transaction database: there are two types of

database to store historical transactions. One is Genuine

Transactions Data (GTD), which stores all genuine his-

torical transactions. The other one is Fraudulent Transac-

tions Data (FTD), which stores all fraudulent historical

transactions.

B. Design Ideas

This workflow contains many design ideas of the latest

CCFDSs:

1) Fuse different algorithms for higher accuracy[9], [10],

[11]: Apply Dempster-Shafer Theory to aggregate fraud

scores can provide higher accuracy[10]. In the proposed

workflow, both QF and EF consist of several different

algorithms and we use two DSAs to merge the fraud s-

cores. In this way, any other efficient detection algorithm

could also be fused into our workflow;

2) Combine both supervised and unsupervised approaches

for a better cover of fraud types: In unsupervised fraud

detection, if a new transaction does not fit the past be-

havior model, it is considered as potentially fraudulent.

Thus, unsupervised methods have the ability to detect

undiscovered types of fraud but they may also have

many false alarms[19]. On the other hand, supervised

approaches can only be used to detect frauds of a type

that have previously occurred but its accuracy could be

higher[20]. Thus, a combination of them could lead to

a better cover of most types of fraud;

3) Combine quick filter and explicit filter for better perfor-

mance : since QF detection only involves the behavior

model of each cardholder, its computational performance

is much higher than that of EF detection which involves

the whole model built with all historical data. By using a

faster filter first to find fewer suspicious transactions and

then using a accurate filter to double confirm the fraud,

the system can achieve a better performance without

hurting the accuracy.

However, the current workflow does the model training in

offline. A better design should be able to train models used in

detection with the latest data and then update them frequently.

Thus, we need to consider batch training and model sharing

during implementation.
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Fig. 2: Hybrid framework for CCFDS workflow.

IV. HYBRID FRAMEWORK

The explosion of users and payment transactions brings sev-

eral challenges to online CCFDS: performance, fault tolerance,

system scalability, etc. Each of them would be far beyond the

research scopes of fraud detection. Luckily, with the support

of Big Data technologies, we can achieve the above goals

with much less effort. But a proper design is certainly the

key to success. In this case, we propose a hybrid framework

to represent our previous workflow properly, which is shown

in Figure 2. The whole framework consists of four layers. We

will analyze the performance challenges in each layer and then

choose appropriate Big Data tools to solve them.

A. Distributed Storage Layer

This layer is responsible for storing both Genuine Trans-

action Data (GTD) and Fraudulent Transaction Data (FTD).

Since the transaction data is increasing very fast, this layer

has to offer enough storage capacity to store them. Meanwhile,

fault-tolerance is important since credit card transaction data

is very valuable. Once the data is stored, it will be seldom

changed but might be visited a lot. Thus the IO access pattern

of this layer is a write-once, read-many-times pattern. We

find that HDFS is very suitable for this layer since it is fault

tolerant, scalable, and has a high read-write throughput.

B. Batch Training Layer

This layer is responsible for fast training of detection

models. As described in previous section, this layer needs to

train two types of models which are contained in QF and EF

respectively. Models in QF are prepared for each cardholder.

Thus, it should have the ability of training models separately.

On the other hand, models in EF involves all historical data.

Thus, it needs to iteratively train the models. Based on these

requirements, we find that Hadoop is best suited for QF

model training as we can assign each map and reduce task

to process one cardholder’s transaction data. Spark should be

a good candidate for EF model training since it has very high

performance in dealing with iterative tasks.

C. Key-value Sharing Layer

This layer is responsible for quick sharing of all model

data. As in the training stage, both Hadoop and Spark need

to frequently do sequential write and update operations to the

models. In the detection stage, these models also need to be

visited frequently. Thus, it is very important to have a data

sharing layer for both model training and fraud detection. We

find that HBase is a proper candidate for this task since its

key-value storage supports very fast and scalable data sharing.

D. Streaming Detection Layer

This layer is responsible for processing the detection in real-

time. Since the payment transactions are coming continuously

and rapidly, the system has to process them on time. Otherwise

there would be more and more un-processed data in the

system. Thus there are two constraints here: scalability and low

delay. Spark Streaming and Storm are two popular scalable

streaming processing engines. Spark Streaming processes the

incoming data in mini-batch mode and the delay can be

reduced to seconds while Storm processes a tuple once a time

and can reduce delay to milliseconds. Thus, we choose Storm

to implement this layer.
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Fig. 3: MapReduce workflow for QF’s training phase

V. IMPLEMENTATION

In this section, we give details on how we implement

batch model training and online fraud detection with Big Data

technologies, especially with Hadoop, Spark and Storm.

A. Separate Model Training with Hadoop

Figure 3 shows the workflow of QF training, which consists

of two stages:

• Map Stage: for a given transaction record from the

distributed storage layer, it is formated as a key/value

pair, in which the key stands for the card ID and the

value consists of payment attributes. Then the key/value

pairs are shuffled to Stage 2 based on their key;

• Reduce Stage: pairs with the same key are aggregated

together since they correspond to the same cardholder’s

historical transactions. Then they are used to train the

same model. After the training, the model will be stored

in the key-value sharing layer, in which the key still

represents card ID while the value contains the model.

The implementation of the two stages on Hadoop is very

straightforward, as shown in Algorithm 1 and 2.

Algorithm 1 Mapper function for key aggregation on Hadoop.

Input: tji //the jth transaction of Card i;
Output: < i, tji > //card ID and its transaction;

i = splitCardId(tji )
< i, tji >= generateKV Pair(i, tji )
Emit < i, tji >

Algorithm 2 Reducer function for model training on Hadoop.

Input: list(< i, tji >) //list of all transactions of Card i;
Output: < i,modeli > //trained model of Card i;

for < i, tji > in list(< i, tji >) do
listi.add(t

j
i )

end for
modeli = train(listi)
< i,modeli >= generateKV Pair(i,modeli)
Emit < i,modeli >
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Fig. 4: Iterative workflow for EF’s training phase.

B. Iterative Model Training with Spark

Figure 4 shows the workflow of EF training, which also

consists of two stages:

• Map Stage: for all input transactions data from the

distributed storage layer, they will be partitioned and each

Map Stage task will handle a part of the data. Then,

each Map Stage task will also update a part of model

parameters in this stage and they will be shuffled to

Reduce Stage;

• Reduce Stage: this stage will aggregate all parts of model

parameters and merge them into one. Then, it will check

whether the convergence condition is satisfied. If the

condition is not satisfied, the temporary model parameters

will updated and Map Stage will be started again. But

when the condition is satisfied, the aggregated parameters

will be stored in the key-value sharing layer.

For QF models, the training is mainly done in the Reduce

Stage since models are trained for each cardholder. However,

for EF models the training is done in Map Stage, since the

big training job needs to be partitioned. By using Spark, the

input transactions data and the temporary model parameters

can be cached in memory to accelerate iterative processing.

The implementation of the two stages on Spark is shown in

Algorithm 3.

Algorithm 3 RDD function for model training on Spark
Input: T //transaction data

Output: TMP //Trained Model’s Parameters

inputRDD = read(T ).cache()
initialize model parameters in array TMP
while convergence condition is not satisfied do
tmpParamsRDD = inputRDD.map(TMP )
TMP = tmpParamsRDD.reduce()
end while
save params
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C. Streaming Fraud Detection with Storm

Figure 5 shows the streaming workflow for fraud detection,

which contains several stages called bolts:
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Fig. 5: Storm topology

• QF Bolt contains different QF detection algorithms. They

calculate fraud scores independently based on their own

models;

• QF DSA Bolt merges the fraud scores from different QF

Bolts and then decide whether a transaction is suspicious

or not. Those suspicious transactions will be sent to EF

Bolts for further detection;

• EF Bolt contains different EF detection algorithms. They

also calculate fraud scores based on their own models;

• EF DSA Bolt merges the fraud scores from different EF

Bolts and then decides whether a transaction is fraud or

not.

• Fraudulent Bolt is used to handle fraudulent transactions

properly;

• Genuine Bolt is used to store genuine transactions in

distributed storage layer;

• Suspicious Bolt is responsible for accepting suspicious

transactions from EF DSA Bolt and handle them proper-

ly(e.g., manual verification).

Since each bolt is running different tasks, the system needs

to dynamically allocate computational resources for them.

Meanwhile, since the connections between bolts are very

complicated, the system also needs to have the ability of

dynamic scheduling. We have implemented this streaming

detection layer with Storm. Due to space limitation, we would

not give the pseudo-codes here.

VI. EXPERIMENT

A. Test Environment

We evaluate all experiments in a cluster with 11 nodes. Each

node holds the following hardware configurations: 2 Intel(R)

Xeon(R) E5645 CPU with 6 cores per processor running at

2.40GHz; Intel(R) PRO/1000 Network Connection (1Gbps); 3

x 1 TB SATA disk; 64 GB RAM. The software configurations

for each node are as the follows: Apache Hadoop 2.5.0,

Apache Spark 1.5.1, Apache HBase 1.1.4, Apache Storm

0.10.0, Apache ZooKeeper 2.4.6.

B. Transaction Dataset

Due to a limited access to credit card transaction data,

many researchers use synthetic data to simulate real workload

on CCFDS. In this paper, we also use Markov Modulated

Poisson Process Model (MMPPM) [10] to generate a simu-

lated transaction dataset. In MMPPM, there are two states:

genuine state G and fraudulent state F . qgf and qfg are two
transform possibility between these two states. If MMPPM is

at good state, it will generate a genuine transaction. Otherwise,

a fraudulent transaction is generated.

In our simulation, each transaction consists of 20 payment

attributes. We apply one attribute called ”transaction interval”

(the interval between current and previous transaction of a

credit card) to represent transaction frequency. The attribute

”transaction interval’ follows Poissonian distribution. The oth-

er attributes are generated randomly. We generate 5 transaction

dataset which contains 10,000, 30,000, 100,000, 300,000 and

1,000,000 credit cards’ transactions within one year.

C. Detection Algorithms

In this experiment, we choose two unsupervised algorithms

(DBSCAN[10], HMM[1]) in QF and one supervised algorithm

(Logistic Regression[7]) in EF, which are all widely used in

credit card fraud detection. It should be noted that the goal

of this experiment is to evaluate our hybrid framework to

see whether it has the ability to handle a bursting amount

of transactions in real-time. Therefore, the chosen algorithms

here are only used to simulate the computation workload and

we do not give further discussion about accuracy issues.

D. Distributed Storage Throughput
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Fig. 6: Throughput of sequential write and read on HDFS

We evaluate the throughput of Distributed Storage Layer

when the number of a transaction’s attributes vary from 20

to 160 to simulate possible transactions with different length.

We use 10 clients to write transactions into HDFS and use

70 clients to read data from HDFS in parallel. The HDFS

cluster consists of 11 nodes. Figure 6 shows the overall

throughput of both sequential read and write on Hadoop. The

x axis represents the length of each transaction and the y

axis represents the throughput which shows the number of

transactions done within one second. From the figure we can

find that the throughput will decrease when transaction length

is increasing. However, the system is able to write up to a

million of transactions per second and read up to 100 millions

transactions per second.
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TABLE II: Training Time on Hadoop

Number of credit card HMM / s DBScan / s LR / s

10,000 63 36 323

30,000 109 43 574

100,000 145 79 1253

300,000 347 240 3489

1,000,000 992 575 13030

TABLE III: Training Time on Spark

Number of credit card HMM / s DBScan / s LR / s

10,000 72 66 18

30,000 138 120 54

100,000 444 192 78

300,000 600 378 204

1,000,000 1125 780 300

E. Batch Training Performance

In the evaluation of Batch Training Layer, we use a sim-

ulated one year transaction data to train models in QF and

EF on our Hadoop and Spark cluster whose number of credit

cards varies from 10,000 to 1,000,000. Both the Hadoop and

Spark cluster consist of 11 nodes. During training, the number

of iterations of each algorithm is fixed to make sure that the

computation workload are the same for both platforms. The

Batch Training Layer is an off-line module. There is no need

to train and update models in realtime manner.

Table II and Table III give the training time of different

algorithms on Hadoop and Spark Clusters. For HMM and

DBScan, each cardholder owns a model. In LR, there is only

one model, which is trained by all the transaction data. When

the number of credit cards reaches 1,000,000, the throughput

of the training phase in QF is about 1,000 models per second,

and the throughput in EF is 0.003 models per second.
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Fig. 7: Speed up of Spark over Hadoop for model training.

Figure 7 illustrates the speed-up of Spark over Hadoop to

train models in Batch Training Layer. The training process

of models in EF is completed by muliple iterative jobs.

Transaction data and temporary model parameters are stored

on disks in Hadoop, while they can be cached into memory

in Spark. This is the reason why Spark outperform Hadoop

on training models in EF. When training models in QF,

each model is trained by only one cardholder’s historical

transactions, the training process can be completed within one

job. The transferring time between map and reduce tasks are

overlapped by the computation time of map tasks in Hadoop,

while generated key/value pairs will not be transferred to the

next stage until the current stage has completed in Spark. Thus

Hadoop performs better when training models in QF. The re-

sults match our analysis that Spark suits iterative computation

more than Hadoop while Hadoop gets less overhead when

dealing with single-job computation.

F. Key-Value Sharing Throughput
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Fig. 8: Throughput of sequential write and random read on

HBase.

Since detection models are sequentially updated by Batch

Training Layer, and randomly read by Streaming Detection

Layer frequently, we put the trained models in Key-value

Sharing Layer using HBase. The HBase cluster consists of

11 nodes, of which one is HMaster and the others are HRe-

gionServer. Figure 8 shows the throughput of sequential write

and random read when the size of each model varies from 0.5

KB to 8 KB. We can find that the throughput of sequential

write drops linearly when the model’s size increases, while the

throughput of random read only drops a little. This is because

disk seek time is a main part of total time spent in random

read, while data transferring time is key part of sequential

write.

G. Streaming Detection Performance
The streaming detection layer is deployed on an 11-node

Storm cluster. The submitted topology is configured as 10

workers and 240 executors. Figure 9 shows the delay of

the streaming detection layer when the speed of incoming

transactions varies from 2,500 trans/s to 40,000 trans/s. When

the speed of incoming transactions is less than 10,000 trans/s,

the delay is only one second. Assume that each cardholder has

a credit card payment every 24 hours and the total number

of cardholder is 100,000,000, the average speed of incoming

transactions is 11,574 trans/s (100,000,000 trans/ 24 hours).

It means our system can support near real-time detection for

100,000,000 cardholders. For an increasing incoming transac-

tions, the delay will increase significantly, due to a limited

amount of computing resources.
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Fig. 9: Detection delay of Streaming Detection Layer on Storm

H. Overall Performance Analysis

Basically, the system can be divided into two stages: de-

tection stage and training stage. In the detection stage, the

Streaming Detection Layer can support a throughput of 10,000

trans/s with a very low delay. The throughput of random

read in Key-Value Sharing Layer has a higher throughput

of nearly 50,000 models/s. In the Distributed Storage Layer,

the throughput of sequential write is much higher. Therefore,

the Streaming Detection Layer is the performance bottleneck

in the detection stage. In the training stage, the throughput

of the Batch Training Layer is less than that of sequential

read in Distributed Storage Layer and sequential write in

Key-Value Sharing Layer. Thus, the Batch Training Layer

is the bottleneck in the training stage. However, since the

system is highly scalable, we should allocate more computing

resources to Streaming Detection Layer and Batch Training

Layer to improve the overall performance during real system

deployment.

VII. CONCLUSION

Online fraud detection is challenging due to the burst

amount of trading transactions that are happening everyday.

In this paper, we design a hybrid framework to solve this

problem. Our framework aims at fusing different detection

algorithms to improve accuracy and using a four-layer design

to handle data storage, model training, data sharing and online

detection. We implement the framework with latest Big Data

technologies, which help to build a scalable, fault-tolerant and

high performance system. The hybrid framework can also be

applied in other similar application fields, for example internet

advertising fraud detection, telecom fraud detection and so on.

However, this work still has a lot things to be done, e.g., better

integration of more detection algorithms and other Big Data

tools, test with real transaction data, systematic optimizations

to all components in the framework, etc. We will try them in

our future work.
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