
Towards Scalable and Reliable In-Memory Storage
System: A Case Study with Redis

Shanshan Chen∗†, Xiaoxin Tang∗, Hongwei Wang∗, Han Zhao‡ and Minyi Guo∗
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

†School of Overseas Education, Nanjing University of Posts and Telecommunications, China
‡School of Computer Science & Technology, Huazhong University of Science and Technology, China

Email: ∗{moistcss, tang.xiaoxin, 77877156, myguo}@sjtu.edu.cn, ‡zhaohan.miven@gmail.com

Abstract—In recent years, in-memory key-value storage sys-
tems have become more and more popular in solving real-time
and interactive tasks. Compared with disks, memories have much
higher throughput and lower latency which enables them to
process data requests with much higher performance. However,
since memories have much smaller capacity than disks, how to
expand the capacity of in-memory storage system while maintain
its high performance become a crucial problem. At the same time,
since data in memories are non-persistent, the data may be lost
when the system is down.
In this paper, we make a case study with Redis, which is

one popular in-memory key-value storage system. We find that
although the latest release of Redis support clustering so that data
can be stored in distributed nodes to support a larger storage
capacity, its performance is limited by its decentralized design
that clients usually need two connections to get their request
served. To make the system more scalable, we propose a Client-
side Key-to-Node Caching method that can help direct request
to the right service node. Experimental results show that by
applying this technique, it can significantly improve the system’s
performance by near 2 times.
We also find that although Redis supports data replication

on slave nodes to ensure data safety, it still gets a chance of
losing a part of the data due to a weak consistency between
master and slave nodes that its defective order of data replication
and request reply may lead to losing data without notifying the
client. To make it more reliable, we propose a Master-slave Semi
Synchronization method which utilizes TCP protocol to ensure
the order of data replication and request reply so that when a
client receives an “OK” message, the corresponding data must
have been replicated. With a significant improvement in data
reliability, its performance overhead is limited within 5%.
Index Terms—In-Memory, Key-Value, Storage System, Scala-

bility, Reliability, Key-to-Node Caching, Semi Synchronization.

I. INTRODUCTION

Due to the increasing capacity and high throughput of

main memory, in-memory computing has become a new

trend for today’s Big Data processing. Especially in recent

years, in-memory key-value storage systems have been widely

deployed in many real-time and interactive tasks, e.g., context-

aware peer classification[1], geographical feature analysis[2],

program constraints analysis[3], [4], cloud-based evolutionary

algorithms[5], social graph analysis[6], presidential election

analysis[7], wireless communications[8], etc.

However, due to the relatively smaller capacity of main

memory compared with disks, single-node in-memory storage

systems do not have a big enough capacity for today’s Big

Data challenge. Although key-value storage model, or non-

relational database (or NoSQL, not only SQL), has made

it easy to scale the storage systems out, they still face the

challenges like single-node failure, data non-consistency, etc.

To overcome these limitations, the systems have to make

tradeoffs in their design and implementation.
Meanwhile, since data in main memories are non-persistent,

data may be lost during unexpected system crash, which

makes the system unreliable. To overcome this problem, there

are several techniques that can be applied. For example, the

system can periodically save the data as image files, or save

update logs onto disks to ensure data safety. However, disk

operations may significantly hurt the performance. The system

can also use data replication which duplicates data on other

nodes to improve system reliability. Nevertheless, the data

consistency issue between master and slave nodes could also

cause performance degradation.
In this paper, we make a case study with Redis[9], which

is a very popular in-memory key-value storage system[1],

[2], [3], [5], [7], [8]. Although Redis can provide stable

performance as a single-node service, its clustering service

still faces the problems of low scalability and reliability. By

adding more nodes to the clustering service, we expect the

system’s performance to be improved linearly. However due

to a decentralized design, it may also hurt the performance

because of an inefficient data indexing mechanism. As in a

distributed environment, node failure could happen quite easily

and the system has to take it into considerations carefully.

Yet we still find that the current design get a high chance

of losing data during system crash. This paper addresses the

above problems with the following novel contributions:

• We propose a Client-side Key-to-Node Caching method
which enables clients to cache the key-to-node mapping

status. This can help direct data requests to the right

service node and reduce the overhead caused by false

connections. Experimental results show that it can im-

prove the system’s throughput by up to 2 times;

• We propose a Master-slave Semi Synchronization
method to ensure reliable data replication with limited

overhead. This method can not only guarantee that no

data would be lost during system crash, but also can limit

the performance overhead by no more than 5%;

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.253

1661

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.253

1661

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.253

1661

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.253

1661

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.253

1660

2016 IEEE TrustCom-BigDataSE-ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom.2016.253

1660

�

Fig. 1. Overview of a typical client-server structure for Redis distributed storage service.

This paper is organized as follows: Section II gives an

introduction to the background of Redis and explains our mo-

tivation in detail; Section III describes our proposed methods

and explains how we are able to improve system scalability

and reliability; Section IV gives the experimental results of

our methods; Section V introduces the related work of this

paper; Finally, Section VI concludes this paper.

II. BACKGROUND

According to the famous CAP theory[10], a system can

only hold two of the three properties at the same time:

consistency, availability and partition-tolerance. Although a

distributed design of a storage system is the key to its scalable

capacity, its performance scalability and data reliability are

very challenging to handle properly. It is very important to

achieve a good balance between the CAP properties. But not

until recently does Redis release its stable cluster version

(Redis 3.0 Beta), which shows how hard it is.

Fig. 1 gives a typical topology of a distributed Redis storage

service, in which we mainly focus on how the system can be

scaled out with good performance and how the system can

ensure data safety. There are usually multiple machines that

are providing data storage services together, which are called

“Node”. Each node may take certain amount of memory space

on each machine and is responsible for storing parts of the

data. Different clients can visit these nodes to get and set (read

and write) data independently. To ensure data safety, there are

also at least one slave node (two in the figure) for each master

node to replicate data so that when the master is down, the

slave node can replace it to restore the service. We will give

a more detailed description in the following sub-sections.

A. Data Distribution Design of Redis

For a given distributed storage system, we need to first

solve how data are distributed on different nodes. Since Redis

is a key-value storage system, the main problem becomes

how to schedule different keys to nodes. To build a stable

and dynamically adjustable system, Redis uses a key-slot-node

mapping strategy to maintain the data distribution status.

key hash hash
value

slot 1
slot 2

slot N

Node 1

Node 2

Node C

slot
mapping

node
mapping

Fig. 2. A three stage mapping from key to node.

Fig. 2 shows how the keys are mapped to each node. In the

hash stage, for a given key, Redis will calculate its hash value.

In Redis, all hash values are evenly assigned to each slot and

there are 16382 slots in total. Then in the slot mapping stage,

we can find the corresponding slot for the key based on its

hash value. In Redis, all slots can be dynamically assigned

to different nodes. In this case, if any node is under heavy

workloads, we can move parts of its slots to other nodes

or even new nodes to improve system’s overall performance.

Thus in the third step, we can find the corresponding node of

the given key based on the slot-node mapping status.

166216621662166216611661

B. System Scalability Design of Redis

In addition to the data distribution status, there are other

important info that needs to be maintained like number of

nodes, their IP address and port numbers, current working

status, etc. These info can be stored on a central node of

the cluster, which could simplify the design of the distributed

system. But when this node is down or its performance is slow,

the whole cluster may fall in trouble.

Fig. 3. A decentralized design for Redis by using Gossip protocol.

To avoid this single-node failure issue, Redis takes a fully

decentralized design, which uses the Gossip protocol[11] to

maintain these important info on all nodes. As shown in Fig.

3, all nodes in the system are fully connected and know the

current state of the system. Every time when the system’s

status is changed, this new info will be propagated to every

node. Nodes will also randomly send PING messages to other

nodes and expect to receive PONG messages to prove that the

cluster is working correctly. If any node is found not working

properly, all other nodes will start a vote to use a slave node

to replace the crashed master node.

With this design, the system is highly reliable and clients

can connect to any of the master nodes for data storage service.

When a master node receives a key-value request from a client,

it will check whether this key belongs to this node by checking

the key-slot-node mapping mentioned above. If yes, it will

process this request and return the results back to the client.

Otherwise, it will return a MOVED error which contains the

right node for this request. Then after receiving this error, the

client will know which node it should send the request to.

C. Data Reliability Design of Redis

Due to many possible failures in a distributed environment,

Redis has to ensure that the data would not be lost during node

crash. There are mainly two ways to keep data safe in Redis:

data persistence and data replication. Data persistence keeps

data safe by writing the data onto disks while data replication

keeps data safe by replicating the data on other nodes.

Redis supports two types of data persistence: RDB and

AOF. The RDB persistence performs point-in-time snapshots

the data in Redis memory at specified intervals and put the

compact file on disk. RDB is a good choice for data backups,

disaster recovery and fast service restart since the compact

file can be transferred easily. It also brings less overhead

during persistence since Redis can fork one child process to

do the job and the father process would never involve any

disk I/O operations. However, since Redis can not frequently

do snapshot, it still get the chance of losing data after the last

snapshot.

The AOF persistence logs every write operation received

by the server. During restoring the service, these operations

will be played again. The main advantage of AOF over RDB

is that it is more flexible since the system can do logging

more frequently than snapshot. The disadvantage is that AOF

may brings more overhead since the main process needs to do

logging by itself. It also takes more space for logs and cost

longer time to restore the service.

Compared with data persistence on disks, data replication

gets the following advantages: first, since data is replicated on

another node, the crashed service can be restored very quickly

by simply replacing the master node with the slave node while

for data persistence it takes longer time to read data from disks

especially when the data size is big; second, data replication

mainly involves network I/O, which has advantages on latency

and bandwidth over disks, especially for small and random

data read and write. However, data replication still faces the

tradeoff between data reliability and performance since it will

cost longer time to ensure that all data are fully replicated.

The current design of Redis takes an asynchronous replication

strategy and we find that it still has the risk of losing data.

D. Motivation

Based on the above introduction, we can find two major

problems for Redis. One is caused by the decentralized design

that a client needs to take two connections to get its request

served: one connection to ask which node the key belongs to

and the other connection to send the request to the right node

and get it served. If the client is lucky, it can get the request

served by using the first connection only if the key belongs

to the first node. However, when there are many nodes in the

cluster, the chance for the first node to own that key is quite

low. In order to improve the performance, we need to find a

way to help the client so that it can have a better chance to

get the request served in the first connection.

The second problem is how to ensure that no data would

be lost without signicantly hurting the performance. AOF is a

candidate solution for this problem. However, it involves too

many disk I/O operations that can bring more performance

overhead and may take longer time to restore the service.

Thus in this paper, we mainly consider data replication as a

possible solution for this problem. The current implementation

of Redis is a good start point since its master-slave synchro-

nization method can partly ensure data safety. However, due

to performance consideration, it may still lose data during our

test. We will try to find a way to modify the codes to achieve

our goal without making too many changes to Redis.

166316631663166316621662

III. DESIGN AND IMPLEMENTATION

In this section, we will give details on how we solve

the problems mentioned above. We propose two new de-

signs, which are called Client-side Key-to-Node Caching
and Master-slave Semi Synchronization. We will show their

details and how they are implemented in the following sub-

sections.

A. Client-side Key-to-Node Caching

Since each time when client send a key to a service node, the

node will check whether this key belongs to it or not. If not, it

will send a MOVED error back which could guide the client

to the right node. Thus, if we can cache this mapping status

after receiving this error, then next time this client should be

able to find the service node correctly for all keys belong to

the same slot.

�

�������
�������

	
���
�

�����
��������

���������������������

����������
���� ����������!�!
�
�
������"�
����
�#�

���	$
 �
$
���$!��%$
���$���&����

���!
�
��������'(�������

���)*�$
��+$**������&��

������,(�������

-����
��������

�������	�
��
��

���

���

Fig. 4. A use case for client-side key-to-node caching.

Fig. 4 shows how this method works. Initially, we set up a

table which stores the slot-to-node mapping status. An initial

node is set as the default node for all slots. For a given

“key1”, the client calculates its hash value and then decide

which slot this key belongs to in step 1. Here let us assume it

belongs to slot “12345”; then the client searches the table to

see which node this slot belongs to in step 2. Here the table

shows it belongs to “node1”; Then the client sends the request

to “node1” in step 3; However, “node1” finds that this slot

actually belongs to “node3” and send back a MOVED error

to the client in step 4; the client receives this error and update

Algorithm 1 Pseudocode for client-side key-to-node caching.
Require: Node cache[16384];
Ensure: reply
slot = getSlotByKey(cmd);

node = cache[slot];

reply = send(cmd, node);

if reply is a MOVED error then
extract slot and node from reply;

cache[slot] = node;

reply = send(cmd, node);

end if

the table to remember that slot “12345” belongs to “node3”

in step 5; Finally, the client sends the request to “node3” to

gets it served.

Although it takes two connections for the client to get the

request served for the first time, it only takes one connection

for all keys that belong to this slot to get served in the next time

until this slot is moved to another node. The pseudocode for

the caching method is shown in Algorithm 1. Since network

communication takes most of the time for each request, our

caching method is expected to improve the performance by

up to 2 times while it only takes very little extra space and

computation to do the caching job. Thus, this method is a

lightweight but useful supplement to the decentralized design

of Redis.

B. Master-slave Semi Synchronization

In this paper, we mainly consider the problems of using

data replication to keep data safe. Different synchronization

strategies may have influences on the system performance and

data reliability. Here we give an introduction to three possible

strategies.

Client

 accept client’s
request

 return reply to
client

Master
Node

Slave
Node

 send request to
slave

Client

 accept client’s
request

 return client’s
reply

Master
Node

Slave
Node

 send request to
slave

Client

 accept client’s
request

 return reply to
client

Master
Node

Slave
Node

 send request to
slave

 check replication
offset with master

(a) Partial Synchronization

(b) Full Synchronization

(c) Semi Synchronization

Fig. 5. Master-slave synchronization strategies.

As shown in Fig. 5(a), Redis currently uses the partial

synchronization strategy. For a given data write request from

the client in step 1©, the master node processes the request

immediately and then returns the reply back to client in step
2©. After that, the master node sends the replicating request to

the slave in step 3©. The advantage of this strategy is that its

performance is higher since data service and data replication

can be processed independently. The client can get the reply as

soon as possible without being influenced by data replication.

The disadvantage is that it may bring the risk of losing data.

For example, if the system crashes after step 2© but before step
3©, the client would think that its request has been processed

and stored properly but the truth is the request data has not

been replicated yet! In this case, this request data is lost.

166416641664166416631663

To avoid this problem, a full synchronization strategy shown

in Fig. 5(b) could ensure that when the client gets the reply,

the request data has already been properly replicated. Instead

of sending reply back to client immediately after the request

is processed, master node sends the request to slave node in

step 2©. Then, the slave node would process this request and

check replication offset with master node in step 3©. If their

offsets are not the same, it means there are still unprocessed

requests in slave node. The master node will wait until its

offset is the same as the slaves’. Finally, the master sends the

reply back to client in step 4©. With this strategy, if the system

crashes, the client would not receive any reply, in which case

client would be able to handle this error. However, due to a

full synchronization between master and slave, the system’s

performance would be significantly influenced.

To ensure data safety while minimize the performance

influence, we propose the semi synchronization strategy which

is shown in Fig. 5(c). Unlike the full synchronization strategy

which needs to check the synchronization status between

master and slave to ensure they are fully synchronized, semi

synchronization only ensures that all latest requests have been

sent to the slave nodes in step 2©, which is guaranteed by

reliable TCP data transferring. When this is done, the master

would send the reply back to the client. The assumption behind

this strategy is that as long as all latest requests have been

received by slaves, we can treat them as having already been

replicated properly since these requests have already been

successfully processed on the master node and it is just a

matter of time for the slaves to process them. This strategy

combines the advantages in performance and data reliability

of both partial and full synchronization strategy, which is why

we call it semi synchronization.

The detailed implementation of semi synchronization strat-

egy depends on the event processing framework of Redis

which is responsible for handling the time events and file

events in the system. We have reused many existing APIs and

added no more than 50 lines of codes to Redis. Due to space

limitation, we do not give the details on how it is implemented.

IV. EXPERIMENTAL RESULTS

A. Test Environment

In our experiment, we use Redis 3.0.3 as a baseline for

performance evaluation. Our proposed methods are also im-

plemented based on this version of Redis. We use our own

benchmark implemented in C which is similar to YCSB (Ya-

hoo! Cloud Serving Benchmark)[12] to test the performance

of Redis and evaluate our proposed methods.

The hardware and software configurations for each service

node are listed in Table I. During the experiment, we mainly

use QPS (Queries per Second) to evaluate the throughput.

Here, QPS represents the average number of queries processed

by the system in each second. We set the length of each query

as 100 bytes and set each client to send 10,000 queries to

the server node. Then, we observe how the performance is

changed when the number of clients vary from 1 to 512.

TABLE I
HARDWARE AND SOFTWARE CONFIGURATIONS.

CPU Intel(R) Xeon(R) E5645 CPU 2 X 6 @ 2.40 GHz

Memory 64 GB DDR3 @ 1333 MHz

Disk 3 x 1 TB SATA disk

Network Intel(R) PRO/1000 Network Connection @ 1 Gbps

OS CentOS 6.2

B. Client-side Key-to-Node Caching

� ��� ��� ��� ��� ��� ���
�

�	�

�

�	�

�

�	�

����

�
���������������

�
��

��������
���������
�����������

Fig. 6. System throughput of the original Redis cluster.

In this experiment, we set the read-to-write ratio as 9:1,

which means there are 9 “get” queries and 1 “set” query

among every 10 queries. Data replication is disabled in this

test. Fig. 6 shows the system throughput of the original Redis

cluster. Here we build three clusters which contains one, two

and three nodes respectively. As we can find, there is no

performance improvement at all when the cluster contains

more nodes. Meanwhile, the performance is even slightly

worse when using two or three nodes in the cluster, which

shows a poor scalability in performance of the system. This

result is caused by the default setting of clients since each

client is set to connect to one default node at the beginning.

In this case, this default node becomes the bottleneck of the

system.

To avoid this problem, we apply our proposed Client-

side Key-to-Node Caching method, whose results are shown

in Fig. 7. As we can find, when there is one node in the

cluster, there is no performance improvement compared with

the original Redis cluster. This is because in this case all

data belongs to the same node which makes the caching

method meaningless. However, when there are more nodes

in the system, the performance improvement becomes quite

significant. For example, the throughput with two nodes is

almost 1.7 times over that with one node after using more

166516651665166516641664

� ��� ��� ��� ��� ��� ���
�

�	�

�

�	�

�

�	�

����

�
���������������

�
��

��������
���������
�����������

Fig. 7. System throughput of Redis cluster after applying client-side caching.

than 64 clients. When there are three nodes in the cluster, the

throughput becomes 2 times over that with one node.

This result shows our caching method can improve system

performance not only by reducing connection times but also

by improving the scalability of the system since it can avoid

the single-node bottleneck problem. Notice that when using

more than 128 clients, the system’s throughput becomes flat.

This is due to the limitation that currently we put all clients on

one node. Thus, the network I/O of the client node becomes

the bottleneck. In our future work we will try to distribute the

clients to different nodes to avoid this problem.

C. Master-slave Semi Synchronization

In order to show that our Master-slave Semi Synchroniza-

tion method is able to ensure data safety with limited overhead,

we also implement the full synchronization strategy to make a

comparison. During the test, we set read-to-write ratio as 0:10,

which means all queries are “set” operations. In this worst case

scenario, we should be able to test the system’s reliability to

the limit. We let the system to have one master node and two

slave nodes, as it is a common practice and the possibility for

all three nodes to crash is very small.

To test whether the synchronization strategies are able to

ensure data safety, we set up an experiment as follows: at

the beginning we use 50 clients to continuously send “set”

queries to the master node; then in the middle of the test, we

use Linux’s “kill” command to stop master node’s process to

simulate system crash; once the clients find that the master

node is down due to the failed TCP connection, they will

connect to the slave nodes to check whether the previously

processed queries have been correctly replicated or not by

comparing their values. We find that both full synchronization

and semi synchronization have passed the test but partial

synchronization has failed, which proves our previous analysis.

� �� ��� ��� ��� ��� ���
�

�

�

�

��

��

����

�
���������������

�
��

!"���"���#�$
������#�$
�
����#�$

Fig. 8. System throughput of Redis with different synchronization strategies.

Fig. 8 gives the system throughput results with different

synchronization strategies. Compared with the original syn-

chronization strategy used in Redis (partial sync), our proposed

semi synchronization achieves a very similar performance.

However for full synchronization, its throughput is almost

reduced by half. Fig. 9 further gives the performance ratio of

the two synchronization strategies over partial synchronization.

As we can find, semi synchronization can limit its overhead

within 5%, which is much better than that of full synchro-

nization, i.e. 50%. These results have proved that our semi

synchronization can ensure data safety with a very limited

performance overhead.

� �� ��� ��� ��� ��� ���
��%

��%

��%

&�%

 �%

'�%

���%

�
���������������

��
���

��
"�
$�
�(
"�
��

������#�$
�
����#�$

Fig. 9. Performance ratio of semi and full synchronization over partial
synchronization.

166616661666166616651665

V. RELATED WORK

A. In-memory Storage Survey

There are several survey papers that readers can refer to

to have an overview of in-memory storage systems. Tan et
al.[13] have summarized the primary challenges and potential
solutions from both software and hardware perspectives for in-

memory databases. Zhang et al.[14] have provided a thorough
review of a wide range of in-memory data management,

processing proposals, systems and important technology in

memory management. Cattell[15] have examined a number

of SQL and NoSQL data stores on multiple dimensions.

Carlson[9] gives a detailed introduction on how to use Redis.

B. System Analysis

System analysis is also very important for in-memory

key-value storage studies. Atikoglu et al.[16] have collected
detailed traces from Facebook’s Memcached deployment and

given a detailed analysis on many characteristics of these

caching workload. Cooper et al.[12] present the Yahoo! Cloud
Serving Benchmark (YCSB) framework with the goal of facili-

tating performance comparisons of the new generation of cloud

data serving systems. Zhang et al.[17] analyze the performance
of three in-memory systems including Memcached, Redis and

Spark.

C. Optimizations for Performance

Performance design and optimization is one key to improve

throughput for all these systems. A strategy[18] is imple-

mented in Redis that epoll system call can be invoked to

inform the kernel of the interest events in a manner adaptive

to the current network load so that epoll system calls can be

reduced and the events can be efficiently delivered. Thongpr-

asit et al.[19] proposes a user-space TCP/IP stack that works
on top of Intel DPDK for high performance KVS systems.

Succinct[20] enables efficient queries directly on a compressed

representation of input data and natively supports a wide

range of queries. Zing Database[21] is presented as a high-

performance persistent key-value store designed for optimizing

reading and writing operations. Pilaf[22] is designed to take

advantage of RDMA (Remote Direct Memory Access) to

achieve high performance with low CPU overhead. Li et
al.[23] even seeks for architecting solutions for high perfor-
mance and efficient KVS platforms. HV-tree[24] uses a novel

index structure that contains nodes of different sizes optimized

for a level of memory hierarchy. It can dynamically adjust the

node size to automatically exploit the best performance of all

levels of different storage systems.

D. Data Reliability

HyperDex[25] employs a novel technique called value-

dependent chaining and additional replication to provide

strong consistency and fault tolerance of objects in the pres-

ence of concurrent updates. In ZHT[26] the primary replica

and secondary replica are strongly consistent while other repli-

cas are asynchronously updated after the secondary replica is

complete, causing ZHT to follow a weak consistency model.

Masstree[27] uses logging and check pointing with SSDs to

ensure system consistency and durability.

E. Multicore and Manycore In-memory Store

Masstree[27] is a fast key-value database designed for SMP

machines. It uses optimistic concurrency control which is a

read-copy-update-like technique for lookup and local locking

for updates. MICA[28] takes a holistic approach for multicore

system that encompasses all aspects of request handling,

including parallel data access, network request handling, and

data structure design, which provide high throughput over a

variety of mixed read and write workloads. Berezecki et al.[29]
shows that the throughput, response time, and power consump-

tion of a high-core-count processor operating at a low clock

rate and very low power consumption can perform well when

compared to a platform using faster but fewer commodity

cores. Mega-KV[30] and MemcachedGPU[31] are two GPU-

based high performance KVS systems. MASCOT[32] uses

both CPU memory extended by SSDs and GPU memory as

cache to accelerate SVM cross-validation problem and it also

uses a caching strategy well-suited for its storage framework.

With the support of these high performance processors, it

should be interesting to see how to maintain a good scalability

and reliability for these systems.

VI. CONCLUSIONS

In this paper, we make a case study with Redis, which is

one popular in-memory key-value storage system widely used

in academic research and enterprise environment. Despite its

success in providing single-node service, we find two major

problems in its cluster deployment. The first one is caused

by its decentralized design that a client usually needs two

connections to get its request served. To avoid this problem,

we propose a lightweight Client-side Key-to-Node Caching

method that can help the client to find the right node to

connect to. Our experimental results show that this method has

made Redis more scalable and can improve its performance

by up to 2 times. The second problem is caused by Redis’s

partial synchronization strategy which has the risk of losing

data during system crash. To avoid this problem, we propose

a Master-slave Semi Synchronization method that can ensure

data safety with a limited overhead less than 5%.

VII. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their valuable comments. This work is partially sponsored

by the National Basic Research 973 Program of China (No.

2015CB352403), the National Natural Science Foundation

of China (NSFC) (No. 61261160502, No. 61272099, No.

61572263, No. 61272084), the Program for Changjiang Schol-

ars and Innovative Research Team in University (IRT1158,

PCSIRT), the Scientific Innovation Act of STCSM (No.

13511504200), and the EU FP7 CLIMBER project (No.

PIRSES-GA-2012-318939).

166716671667166716661666

REFERENCES

[1] M. Bardac, G. Milescu, and A. M. Florea, “Deploying a high-
performance context-aware peer classification engine,” in The Sev-
enth International Conference on Networking and Services-ICNS2011,
Venice/Mestre, Italy, 2011, pp. 268–273.

[2] H. Yu, Y. Liu, C. Tian, L. Liu, M. Liu, and Y. Gao, “A cache framework
for geographical feature store,” in Geoinformatics (GEOINFORMAT-
ICS), 2012 20th International Conference on, June 2012, pp. 1–4.

[3] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reducing,
reusing and recycling constraints in program analysis,” in Proceedings
of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 58:1–58:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393665

[4] X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint solutions
to improve symbolic execution,” CoRR, vol. abs/1501.07174, 2015.
[Online]. Available: http://arxiv.org/abs/1501.07174

[5] M. Garcia-Valdez, A. Mancilla, L. Trujillo, J.-J. Merelo, and
F. Fernandez-de Vega, “Is there a free lunch for cloud-based evolutionary
algorithms?” in Evolutionary Computation (CEC), 2013 IEEE Congress
on, June 2013, pp. 1255–1262.

[6] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “Tao: Facebook’s
distributed data store for the social graph,” in Proceedings of the 2013
USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 49–60.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2535461.2535468

[7] M. Song, M. C. Kim, and Y. K. Jeong, “Analyzing the political landscape
of 2012 korean presidential election in twitter,” Intelligent Systems,
IEEE, vol. 29, no. 2, pp. 18–26, Mar 2014.

[8] Z. Ji, I. Ganchev, M. O’Droma, and T. Ding, “A distributed redis frame-
work for use in the ucww,” in Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), 2014 International Conference on,
Oct 2014, pp. 241–244.

[9] J. L. Carlson, Redis in Action. Manning Publications Co., 2013.

[10] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” SIGACT
News, vol. 33, no. 2, pp. 51–59, Jun. 2002. [Online]. Available:
http://doi.acm.org/10.1145/564585.564601

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed Computing, ser. PODC
’87. New York, NY, USA: ACM, 1987, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/41840.41841

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[13] K.-L. Tan, Q. Cai, B. C. Ooi, W.-F. Wong, C. Yao, and H. Zhang,
“In-memory databases: Challenges and opportunities from software and
hardware perspectives,” SIGMOD Rec., vol. 44, no. 2, pp. 35–40, Aug.
2015. [Online]. Available: http://doi.acm.org/10.1145/2814710.2814717

[14] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory
big data management and processing: A survey,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 27, no. 7, pp. 1920–1948, July
2015.

[15] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Rec.,
vol. 39, no. 4, pp. 12–27, May 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978915.1978919

[16] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’12. New York, NY, USA: ACM, 2012, pp. 53–64.
[Online]. Available: http://doi.acm.org/10.1145/2254756.2254766

[17] H. Zhang, B. M. Tudor, G. Chen, and B. C. Ooi, “Efficient
in-memory data management: An analysis,” Proc. VLDB Endow.,
vol. 7, no. 10, pp. 833–836, Jun. 2014. [Online]. Available:
http://dx.doi.org/10.14778/2732951.2732956

[18] X. Wu, X. Long, and L. Wang, “Optimizing event polling for network-
intensive applications: A case study on redis,” in Parallel and Distributed
Systems (ICPADS), 2013 International Conference on, Dec 2013, pp.
687–692.

[19] S. Thongprasit, V. Visoottiviseth, and R. Takano, “Toward fast
and scalable key-value stores based on user space tcp/ip stack,”
in Proceedings of the Asian Internet Engineering Conference, ser.
AINTEC ’15. New York, NY, USA: ACM, 2015, pp. 40–47. [Online].
Available: http://doi.acm.org/10.1145/2837030.2837036

[20] R. Agarwal, A. Khandelwal, and I. Stoica, “Succinct: Enabling
queries on compressed data,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15).
Oakland, CA: USENIX Association, May 2015, pp. 337–350. [On-
line]. Available: https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/agarwal

[21] T. Nguyen and M. Nguyen, “Zing database: high-performance key-
value store for large-scale storage service,” Vietnam Journal of
Computer Science, vol. 2, no. 1, pp. 13–23, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s40595-014-0027-4

[22] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads to build
a fast, cpu-efficient key-value store.” in USENIX Annual Technical
Conference, 2013, pp. 103–114.

[23] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey, “Architecting
to achieve a billion requests per second throughput on a single
key-value store server platform,” in Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: ACM, 2015, pp. 476–488. [Online]. Available:
http://doi.acm.org/10.1145/2749469.2750416

[24] R. Zhang and M. Stradling, “The hv-tree: A memory hierarchy aware
version index,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 397–408, Sep.
2010. [Online]. Available: http://dx.doi.org/10.14778/1920841.1920894

[25] R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: A distributed,
searchable key-value store,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 25–36, Aug 2012. [Online]. Available:
http://doi.acm.org/10.1145/2377677.2377681

[26] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,
Z. Zhang, and I. Raicu, “Zht: A light-weight reliable persistent dynamic
scalable zero-hop distributed hash table,” in Parallel Distributed Pro-
cessing (IPDPS), 2013 IEEE 27th International Symposium on, May
2013, pp. 775–787.

[27] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for
fast multicore key-value storage,” in Proceedings of the 7th ACM
European Conference on Computer Systems, ser. EuroSys ’12. New
York, NY, USA: ACM, 2012, pp. 183–196. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168855

[28] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage,” in 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). Seattle, WA: USENIX Association, Apr 2014, pp. 429–444. [On-
line]. Available: https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/lim

[29] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele, “Many-
core key-value store,” in Green Computing Conference and Workshops
(IGCC), 2011 International, July 2011, pp. 1–8.

[30] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores,” Proc. VLDB Endow., vol. 8, no. 11, pp. 1226–1237, Jul. 2015.
[Online]. Available: http://dx.doi.org/10.14778/2809974.2809984

[31] T. H. Hetherington, M. O’Connor, and T. M. Aamodt, “Memcachedgpu:
Scaling-up scale-out key-value stores,” in Proceedings of the Sixth
ACM Symposium on Cloud Computing, ser. SoCC ’15. New
York, NY, USA: ACM, 2015, pp. 43–57. [Online]. Available:
http://doi.acm.org/10.1145/2806777.2806836

[32] Z. Wen, R. Zhang, K. Ramamohanarao, J. Qi, and K. Taylor, “Mascot:
Fast and highly scalable svm cross-validation using gpus and ssds,” in
2014 IEEE International Conference on Data Mining, Dec 2014, pp.
580–589.

166816681668166816671667

