
Zero-Chunk: An Efficient Cache Algorithm to
Accelerate the I/O Processing of Data

Deduplication

Hongyuan Gao1, Chentao Wu1∗, Jie Li1,2, and Minyi Guo1
1Shanghai Key Laboratory of Scalable Computing and Systems,

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki, Japan

∗Corresponding Author: wuct@cs.sjtu.edu.cn

Abstract—Data deduplication is a technique to eliminate
duplicated copies of data. It can save the storage space, reduce
the amount of disk I/Os, then improve the system performance.
There have been several popular deduplication algorithms such
as SISL [30], Extreme Binning [1], Sparse Indexing [14], etc.
These schemes use containers to aggregate data chunks for
better performance. However, they either suffer from low cache
hit ratios or inefficient cache utilization.
To address this problem, we design Zero-Chunk, a new

cache algorithm that balances the cache hit ratio and memory
usage. In our method, we choose chunks whose fingerprints
have all-zero remainders as pointers (called zero chunks),
and aggregate the following chunks into their corresponding
containers. And then, when the access patterns change, our
method can eliminate cold data chunks and containers to
maintain a low overhead. To demonstrate the effectiveness
of Zero-Chunk, we conduct several simulations. The results
show that, compared to Sparse Indexing (the most popular
implementation method in data deduplication), Zero-Chunk
improves the cache hit ratio by up to 5.2%, saves the memory
consumption by more than 50.7%, and decreases the total
number of I/Os by up to 17.3%, respectively.

Index Terms—Cache; Deduplication; Backup Systems; Per-
formance Evaluation

I. INTRODUCTION

Nowadays, the total amount of digital bits grow 40%

every year, and will reach 44ZB by 2020 [8]. However, a

large portion of files share common data with each other,

which causes a huge storage waste [26]. One effective

method to solve the problem is data deduplication. It saves

only one unique copy of duplicated data, and largely relieves

the pressure of storage systems.

The most popular way to process duplicated data is

chunk-based deduplication [19] [21] [9]. When comparing

two chunks, fingerprints, which can be calculated by hash

algorithms such as MD5 [23], are usually used to reduce

the cost. For example, a 128-bit fingerprint only occupies

1/256 of the space compared to the original 4KB chunk.

Since it is costly to find duplicated data chunks in the disk,

we sample and cache a small portion of chunks, while these

chunks are the most likely to be duplicated by the incoming

I/O requests.

There have been many cache algorithms that do a tradeoff

to achieve a relatively higher deduplication ratio [11] [29]

without sacrificing too much memory space. SISL [30],

Extreme Binning [1], Sparse Indexing [14] and SiLo [28]

focus on backup systems, where write requests are more

than read requests. It requires a higher deduplication ra-

tio and write efficiency. Primary storage systems include

daily use, containing both write and read. iDedup [25]

and POD [15] are methods for this scenario. Dedupv1

[16], chunkStash [7] and Ordermergededup [6] are solutions

for high-performance systems based on solid-state drives

(SSDs). SSDs have faster random access and lower read

latency, but can suffer from write amplification, so it is

important to reduce the number of write I/Os.

In order to achieve a high deduplication ratio with a

limited number of sampled chunks, the cache algorithm must

be efficient. However, for backup systems, existing methods

have several limitations. First, in SISL [30], a Bloom filter

[2] is used to eliminate chunks which are impossible to be

duplicated, but the filter is less effective if the duplication

ratio is high. It is because most chunks have their own

copies and pass the filter directly. On the other hand, if the

cache hit ratio is low, the looking up processes in the disk

are time-consuming. Second, for Extreme Binning approach

[1], Chunks are grouped into containers by files, and the

chunks with the smallest fingerprint are sampled to point to

the container. In this scenario, many files can share a same

chunk, and it’s not necessary for incoming chunks to find a

proper container. Third, Sparse Indexing [14] uses manifests

to choose a group of segments (a segment can be viewed as

a sequence of chunks). Nevertheless, to duplicate a segment,

many segments have to be loaded into the memory, making

the cache usage inefficient.

To address the above problems, we propose Zero-Chunk,

a new method for chunk grouping and cache replacement.

We choose a sampling parameter N and pick chunks whose

last N digits of fingerprints are all zero. They are called Zero

Chunks (ZCs). Whenever we have a new ZC, the following

chunks are recorded and put into the container pointed by

this ZC. Therefore, the locality of the cache is based on

2016 IEEE 22nd International Conference on Parallel and Distributed Systems

1521-9097/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPADS.2016.87

635

access patterns, which is more reliable and flexible.
We have the following contributions in this paper,

• We use sampled index and maintain a high deduplica-

tion ratio by grouping chunks with zero fingerprints.

• We reduce the memory usage by eliminating cold

chunks and containers, and select proper parameters to

balance the deduplication ratio and the memory usage.

• We implement a sequential containers, which reduces

the overhead of the disk.

The rest of this paper is organized as follows. We provide

background and motivation are presented in Section II.

In Section III, We describe the design and details of our

algorithm. In Section IV, We evaluate the performance of

the algorithm. Finally, we conclude this paper in Section

VI.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the background of existing

cache algorithms for deduplication applications and their

limitations. We also introduce our motivation for Zero-

Chunk.

A. Overview of Data Deduplication
Data deduplication is a technique that stores one copy of

multiple same data chunks. It creates a map between the

reference of duplicated chunks and their unique locations

in the disk. According to different methods to process

duplicated chunks, the techniques of deduplication can be

divided into the following categories.
1) File vs. Sub-file: File-level deduplication [3] is easy

to carry out. Duplicated files can be detected when a hash

collision happens, and file-level fragmentation is not widely

spread [17]. However, the duplication ratio is relatively low

since two files are not viewed as duplicated even if only one

bit is different.
Compared to file-level deduplication, sub-file-level dedu-

plication receives more attention [30] [1] [14] [4] [28] [18]

[24]. The basic unit of data is called a chunk. According

to different methods, data chunks can be fixed-sized of

variable-sized. Fixed-sized chunks are easy to be processed

and managed. However, if a bit is added or removed at

the head of a file, all of the following chunks are changed.

Rabin Fingerprints [22] use variable-sized chunks to solve

the problem, but it has some difficulties in chunking and

management.
2) In-line vs. Post-process: In-line deduplication requires

chunking data and calculating fingerprints as soon as new

I/O requests come. Since the calculation is costly, the

write throughput can be negatively affected and become a

bottleneck if the processor is not fast enough. Sometimes,

an external device is used to assist the work of CPU. [12].
Post processing just stores all new data temporarily,

then processes them when the processor is idle. Therefore,

the hash calculation and duplication processes are spared.

However, duplicated data can be unnecessarily stored in the

disk, which is a huge overhead.

B. A Typical In-line Sub-file Deduplication Workflow

We provide a typical in-line, sub-file deduplication

scheme in Figure 1. It can be divided into three procedures.

1) Chunk Data: As I/O requests come into the chunking

module, files are broken into fixed-sized chunks, and the

size of chunks is the minimum granularity for deduplication.

Afterwards, we calculate their fingerprints and use them in

the next procedure.

2) Deduplicate chunks: We compare the new fingerprints

with existing ones in the memory. Each new fingerprint is

assigned with a corresponding sampled chunk, which points

to a container in the disk. The container is supposed be

highly possible to have duplicated chunks with the those in

I/O requests, so it is loaded into the memory. Actually, we

expect that the container has been loaded previously, so we

can directly begin searching for potential duplicated chunks

in the container.

3) Write in or Update: If duplication happens, it’s not

necessary to write the new chunk into the disk, so we just

update the map table to indicate where the new chunk is

located. Otherwise, we access the disk and store the chunk.

Fig. 1: The work flow of a typical deduplication scheme

C. Existing Cache Algorithms

Using sampled chunks and containers saves the memory

consumption, but the cache hit ratio is also reduced. There

have been several algorithms that solve the hit ratio problem,

and their strengths and weaknesses are shown in Table I.

The scheme proposed by Zhu et al. [30] uses a Bloom

filter as a pre-process module to avoid unnecessary fin-

gerprint lookups. It eliminates chunks that are impossible

to be duplicated, and can save lots of accessing time if

the deduplication ratio is low. Nevertheless, if most of

636

the chunks are duplicated, the Bloom filter becomes less

effective because they can directly pass through the filter.

Extreme Binning [1] utilizes files to arrange containers.

When a file is processed and chunked, the data chunk with

the least fingerprint value is recorded and stored in the

memory. Thus, the two files whose least fingerprints are

equal are highly possible to be the same. If it fails to find

such a collision, then the file is not further duplicated and

processed, which can negatively affect the deduplication

ratio.

Sparse Indexing [14] uses segments, which are viewed as

the most similar to incoming data. It chooses one segment

at a time, until it reaches the maximum allowable number or

candidate manifests are used up. The similarity makes the

chunks loaded in the memory are likely to be duplicated,

but it also causes more overhead since segments are chosen

by looking up manifests and several segments have to be

loaded.

D. Our Motivation

We summarize the existing cache algorithms for data

deduplication in Table I. It is clear that an effective algorithm

should satisfy three requirements, efficiently utilizing memo-

ry space, high deduplication ratio, and low lookup overhead.

However, existing methods have several limitations on these

aspects (introduced in Section II.C), which motivates us to

propose a cache method called “Zero-Chunk”.

III. ZERO-CHUNK CACHE ALGORITHM

In this section, we introduce the Zero-Chunk cache algo-

rithm in detail. Its purpose is to utilize the memory storage

more efficiently. To clearly illustrate our approach, we define

two types of data chunks,

• Zero Chunk (ZC): A data chunk whose last few bits

of its fingerprint are all zero.

• Non-Zero Chunk (NZC): A data chunk that is not a

ZC.

A. Overview of Zero-Chunk

The approach of Zero-Chunk is in Figure 2. It can be

completed in four steps,

Step 1 (Classify Chunks): The Zero Judger checks

whether the remainder of the chunk is zero. If so, the chunk

is a ZC. Otherwise, it is a NZC. The chunk is processed

either by Step 2 or Step 3 according to its category.

Step 2 (Process ZCs): A ZC is sent to the Zero Table.

It checks whether the chunk is duplicated.

TABLE I: Comparison of cache schemes in data deduplication

Schemes Deduplication
Ratio

Memory
Usage

Lookup
Overhead

Zhu et al.’s scheme low moderate moderate
Extreme Binning moderate low high
Sparse Indexing high moderate moderate
Zero-Chunk high low low

Step 3 (Process NZCs): For a NZC, we look for its

duplicated chunk in the container which has been loaded

into the memory.

Step 4 (Eliminate Cold Chunks): The Eliminator

module checks whether the hotness values drop to zero. If

so, it eliminates cold chunks and rebuilds the container.

Fig. 2: The workflow of Zero-Chunk cache algorithm

B. Process ZCs

In Zero-Chunk cache algorithm, we define the sampling

parameter as N . Thus, a ZC is a chunk whose last N digits

of fingerprint is zero. A good fingerprint calculation method

is necessary because it ensures that fingerprints are totally

random and the proportion of ZCs is very close to the ideal

sampling rate, 1/2N . In our experiment (see Section IV),

we use MD5 hash algorithm to calculate fingerprints. On the

other hand, a flawed hash function has the risk causing data

corruption if two different chunks have the same fingerprints

and one is discarded. For massive amounts of data, we can

use complex hash functions with longer hash values such as

SHA-1, to minimize the possibility of corruption. It can be

even lower than undetected hardware errors. [20]

We maintain a Zero Table to store all ZCs in the memory,

unless they are eliminated because of low hotness values.

By choosing an appropriate sampling rate, we can keep

the storage space of the table very small. The ideal space

occupied in the memory can be calculated as the following

equation:

memory space =
hash value size

chunk size
∗ sampling rate

Given the 128-bit MD5 hash function and 4KB chunk

size, the relationship between sampling rate and memory

637

usage per TB of different workloads is shown in Figure 5

on page 6, which is acceptable.

The algorithm of the processing is shown in Algorithm

1. If a new ZC comes, its fingerprint is compared with

existing ZCs in the Zero Table, examining whether there has

been a duplicated ZC. If the chunk doesn’t appear before,

we just insert it into the table, and create a new container.

Simultaneously, the ZC chunk is assigned a default hotness

value, recording the frequency it is accessed. On the other

hand, since it is a new ZC, all other zero chunks are not

accessed at the moment. Thus, their hotness values are all

reduced by 1, marking that they become “colder”.

The container is implemented in C in the form of dynamic

array. It records the following information,

• Fingerprints of all chunks

• Hotness values of all chunks

• Number of current chunks in the container

• Number of cold chunks in the container (”cold” means

that its hotness value is zero)

• Maximum volume of the container

If a duplicated ZC is found in the Zero Table, its hotness

value increases largely, while other ZCs’ hotness values

are reduced. Because of locality, it is possible that a large

portion of incoming data chunks following the ZC are the

same as those existing in the container. Thus, we load the

whole container into the memory.

Algorithm 1: The algorithm for processing ZCs.

if chunk.fp << (len hash - N) == 0 then
for zc in zeroTable do
if chunk.fp == zc.fp then

map.update()
zc.hv += ht
if zc != prevZc then

write(prevZc.address)
load(zc.address)

end
else

zc.hv -= 1
end

end
coldChunkNum.update()
if CacheMiss then

zeroTable.insert(chunk.fp)
writeData(chunk)

end
end

C. Process NZCs

Actually, most fingerprints don’t end with a string of

zeroes. For these NZCs, we do deduplication in the container

in the memory, which is loaded previously. These new

chunks are expected to be duplicated with those in the

container.

The algorithm for NZCs is shown in Algorithm 2. If a

duplicated chunk is found, the map table is updated and

its corresponding hotness value increases, showing that the

chunk has been recently accessed. After that, the scanning

process continues and decreases the hotness values of other

chunks for potential elimination. If a cache miss occurs, the

new chunk is added into the container with all hotness values

reduced, and the number of current chunks in the container

is also updated. Besides, during the process of scanning, the

container updates the number of cold chunks immediately

so that it can know whether the container has become dirty

enough and needs to be cleaned.

Figure 3 shows a circumstance that Zero-Chunk algorithm

outperforms Least Recently Used (LRU) policy. The memo-

ry can cache four chunks. Under LRU, the hit ratio is 3/10.

For Zero-Chunk, we choose 2 as the sampling parameter,

so the first chunk 4 is a ZC. Thus, 2 and 3, the two NZCs

following 4, are cached by the container of 4. Though the

container is cleared because a new ZC 0 comes, it is loaded

again when another 4 (the 8th chunk) is accessed. Therefore,

2 and 3 can be hit by the 9th and 10th chunk.

Algorithm 2: The algorithm for processing other

chunks.

if chunk.fp << (len hash - N) == 0 then
for nzc in cache do
if chunk.fp == nzc.fp then

map.update()
nzc.hv += ht

else
nzc.hv -= 1

end
end
coldChunkNum.update()
if CacheMiss then

cache.insert(chunk.fp)
writeData(chunk)

end
end

D. Eliminate cold chunks

Because of locality, data chunks from new I/O requests

are expected to have their duplicated copies in the memory,

but not all chunks in the container are frequently accessed

after they are put in. These chunks occupy a large amount

of storage space in the cache, and increase the overhead

of searching for duplicated chunks. Moreover, some ZCs

appear rarely in the requests, making its container unlikely

to be loaded again. Thus, the Zero Table is polluted by too

many cold ZCs.

To erase cold chunks in a container, we check their

hotness values and calculate the number of cold chunks

after a new NZC is processed. Since hotness values are

updated as the chunks are scanned, it doesn’t cause extra

overhead. If the number of cold chunks is more than half of

the total amount of chunks in the container, a new dynamic

array is created and only hot chunks are put into it. The

new size is the double of hot chunks. It ensures sequential

638

(a) LRU

(b) Zero-Chunk

Fig. 3: An example where Zero-Chunk has a higher cache hit ratio
than LRU.

scanning of the container, avoiding fragmentation due to the

change of chunks. The elimination can be also triggered

when the container is full. Since the maximum volume has

been recorded, we can know if a larger container should be

created. Only hot chunks are moved into the new container,

and its new size is also the double of hot chunks. However,

doubling a container doesn’t occur often. When we scan a

container, the location of the first cold chunk is recorded. If

a new unique chunk comes, it takes the place of the recorded

chunk, instead of being attached at the end of the container.

That reduces the frequency of rebuilding containers.

The number of cold containers are checked when a

ZC is processed. As ZCs in the Zero Table are scanned,

their hotness values are updated. This procedure is like

eliminating NZCs. If more than half of ZCs are marked cold,

a new Zero Table is created with only hot ZCs. Similarly,

cold ZCs and their containers are cleared when the Zero

Table is full, and they can also be replaced by newly arrived

ZCs.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the cache hit ratio, memory

usage and I/O performances of Zero-Chunk compared to

other approaches, including LRU, FIFO, LFU and Sparse

Indexing [14], to show its advantages on these aspects.

A. Evaluation Methodology

The property of our environment is shown in Table II. To

evaluate the disk performance, we use DiskSim 4.0 [5] as the

simulator, and choose the Barracuda model. We implement

FIFO, LRU and LFU in C, and compile them with GCC

4.2.1; For Sparse Indexing, we simulate it with Destor [10].

We use three traces from IODedup [13] and SRCMap [27]

collected by Florida International University.

• Homes-21: is a subtrace of Homes, which includes

Research group activities such as developing, testing,

experiments, technical writing and plotting.

• Web: is made up of CS department webmail proxy and

online course management.

• Web Research: contains web-based management of 10

FIU research projects using Apache web server.

Each of the trace is a set of MD5 hash values, instead

of raw data. It includes write and read requests collected

by Florida International University. The properties of each

request are arriving time, process ID, process name, logical

block number, operation (write or read), major and minor

device number. The specifications of the traces are shown

in Table III.

TABLE II: Evaluation environment

Item Description

CPU Intel Core i7 2.2GHz
RAM 16GB DDR3 1600
Disk 256GB SSD
Language C
Compiler GNU Compiler Collection (GCC) 4.2.1
Other Tools DiskSim 4.0, Destor

TABLE III: Specifications of the traces

Name Size Write Req. Read Req.

Homes-21 1.94GB 507136 1616
Web 54.53GB 11177702 3116456
Web Research 1.62GB 424512 88

The hotness value helps to control both the number of

ZCs in the Zero Table and NZCs in containers. For instance,

we set the sampling parameter N as 8, then the sampling

rate is 1/256. Ideally, the average number of NZCs between

two ZCs in I/O requests is 255. In other words, only about

255 chunks could be accessed after their container is loaded.

Thus, to maintain balanced total hotness values, every chunk

is assigned an initial hotness value of 255, and the value

increases by 255 if the chunk is accessed.

B. Experimental Results

1) Cache Hit Ratio: Figure 4 demonstrates the cache hit

ratio under the three traces and different sampling rates. In

all traces, Zero-Chunk largely outperforms the three classic

639

��

���

���

���

���

����

�	�� �	��� �	�
� �	
�� �	����

��� ��� ��� ������������ ������� �!

(a) Homes-21

��

���

���

���

���

����

�	�� �	��� �	�
� �	
�� �	����

��� ��� ��� ������������ ������� �!

(b) Web

��

���

���

���

���

����

�	�� �	��� �	�
� �	
�� �	����

��� ��� ��� ������������ ������� �!

(c) Web Research

Fig. 4: Comparison on the cache hit ratio under different sampling rates and traces (the digitals in X-axis are different sampling rates).

�

��

��

��

��

���� ����� ���
� ��
�� ������

�	
������� ���������

(a) Homes-21

�

��

��

��

��

���� ����� ���
� ��
�� ������

�	
������� ���������

(b) Web

�

��

��

��

��

���� ����� ���
� ��
�� ������

�	
������� ���������

(c) Web Research

Fig. 5: The memory usage of Zero-Chunk compared to Sparse Indexing. The segment size of Sparse Indexing is 5MB (the digitals in
X-axis are different sampling rates).

algorithms, FIFO, LRU and LFU. Its result is also a little

better than that of Sparse Indexing.

For Homes-21 and Web, compared to classic algorithms,

the superiority of Zero-Chunk varies from 22.4% to 87.7%,

depending on the sampling rate. It also increases the hit ratio

by up to 4.9% compared to Sparse Indexing.

For Web Research, traditional algorithms work rather well,

achieving a cache hit ratio higher than 60% even under the

1/1024 sampling rate. That is because one chunk appears

many times in the trace. We reckon that it is a chunk whose

content is all zero, and calculate the MD5 value of the 4KB

file with full of zeroes. The result validates our prediction.

These empty chunks appear so often that they are very likely

to be found in the cache even using classic algorithms. Zero-

Chunk outperforms Sparse Indexing under all sampling rates

except 1/512, because Sparse Index uses manifests to get

more information for deduplication.

2) Memory Usage: Compared with Sparse Indexing, a

main advantage of Zero-Chunk is that it uses less memory

for the same deduplication ratio. In our approach, cold

chunks and containers are immediately cleared, and the size

of containers can also be controlled.

In this experiment, We use the three traces to test the

memory usage of Zero-Chunk and Sparse Indexing with

different sampling rates. Zero-Chunk only uses up to 49.3%

of the memory space compared to Sparse Indexing.

3) Number of I/Os: A well-designed cache replacement

algorithm maximizes the usage of memory. It also helps to

reduce negative effects of disk I/Os, which largely slows

down the system. Zero-Chunk is an inline deduplication

solution, so duplicated data chunks are discarded in the

memory directly, without written in the disk. Thus, it’s

necessary to access the disk only when the container is

written back.

Figure 6 shows the comparison of the number of I/Os.

Zero-Chunk shows better results just as in the cache hit

ratio experiment. Compared to the traditional policies, Zero-

Chunk reduces at most 64.1% of I/Os. Zero-Chunk also

outperforms Sparse Indexing by up to 17.3% in three of

the traces.

4) Average Response Time: To test the average response

time, we modify the traces to simulate the overhead of write

and read operations in the disk. When a new ZC comes, the

current container is written back to the disk, so we add write

operations to the traces and test them in DiskSim. Similarly,

if a new container is loaded in the memory, all chunks of

the container are added to the traces in the form of read

operations.

640

�

���

����

����

����

����

����

���� ����	 ����� ����� ������

��� ��� ��� ������������ ������� �!

(a) Homes-21

�

���

����

����

����

����

���� ����� ����� ����� ������

	
	� �� �	� �������
���� ����������

(b) Web

�

���

���

���

���

����

����

����

���� ����� ����� ����� ������

	
	� �� �	� �������
���� ����������

(c) Web Research

Fig. 6: Comparison on the I/O numbers per GB data for the three traces under different sampling rates (the digitals in X-axis are
different sampling rates).

��

��

��

��

��

���� ����� ����� ����� ���	��

�
� ��
� ������������ ���������"

(a) Homes-21

 �

 �

��

��

���� ����� ����� ����� ���	��

��� ��� ��� ������������ ������� �!

(b) Web

�

�

�

�

�

�	�� �	��� �	��� �	��� �	����

�	�
 �� �� �������	���� ���������"

(c) Web Research

Fig. 7: Comparison on the average response time (ms) using different sampling rates and traces under the disk model of Barracuda [5]
(the digitals in X-axis are different sampling rates).

Figure 7 demonstrates the average response time under

Barracuda model of DiskSim 4.0 [5]. Under Homes-21 and

Web Research, Zero-Chunk reduces more than 13.9% of

the response time compared to classic algorithms. For Web,

the difference is not so much (8.4% at least) because the

deduplication ratio is relatively low in this trace, and all

the algorithms need numerous I/O operations. Compared to

Sparse Indexing, Zero-Chunks saves the overhead of loading

champions, reducing up to 2.9% of the average response

time.

C. Analysis

Compared to other popular cache algorithms, Zero-Chunk

has high performance gains, which are shown in Table IV

and V. There are several reasons to achieve these advan-

tages. First, Zero-Chunk collects the history information of

access patterns, which improves the accuracy of prediction.

Second, it dynamically eliminates cold data chunks and

keeps the cache efficient. Third, Taking the advantage of the

hotness value, Zero-Chunk can achieve a balance between

deduplication ratio and memory usage, making the algorithm

suitable for various deduplication applications.

V. CONCLUSIONS

In this paper, we propose Zero-Chunk, a cache algorithm

for deduplication in backup systems. Our experiments show

that Zero-Chunk has the following advantages compared to

other data deduplication schemes: 1) increases the cache hit

ratio by up to 5.2%; 2) eliminates cold data chunks and

reduces the memory usage by at least 50.7%; 3) reduces the

total I/Os and average response time by up to 17.3% and

2.9% respectively.

VI. ACKNOWLEDGEMENTS

We thank anonymous reviewers for their insightful com-

ments. This work is partially sponsored by the National 973

Program of China No.2015CB352403), the National 863

Program of China (No. 2015AA015302), the National Nat-

ural Science Foundation of China (NSFC) (No. 61332001,

No. 61303012, No. 61572323 and No. 61628208), the

Scientific Research Foundation for the Returned Overseas

Chinese Scholars, and the CCF-Tencent Open Fund.

REFERENCES

[1] D. Bhagwat et al. Extreme binning: Scalable, parallel deduplication
for chunk-based file backup. In Proc. of the IEEE MASCOTS’09,
2009.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[3] W. J. Bolosky et al. Single instance storage in windows 2000. In
Proc. of the USENIX Windows Systems Symposium’00, 2000.

[4] J. Bonwick. ZFS deduplication, 2009. URL
http://blogs.sun.com/bonwick/entry/zfs dedup.

641

TABLE IV: Improvements of Zero-Chunk on memory consumption compared to Sparse Indexing

Trace Homes-21 Web Web Research
Sampling Rate 1/64 1/128 1/256 1/512 1/1024 1/64 1/128 1/256 1/512 1/1024 1/64 1/128 1/256 1/512 1/1024

Improvements 56.98% 62.08% 73.33% 75.72% 79.10% 65.81% 67.98% 75.87% 73.57% 81.34% 54.29% 50.67% 64.21% 70.91% 72.35%

TABLE V: Improvements of Zero-Chunk on total I/O numbers compared to FIFO, LRU, LFU and Sparse Indexing

Trace Homes-21 Web Web Research
Sampling Rate 1/64 1/128 1/256 1/512 1/1024 1/64 1/128 1/256 1/512 1/1024 1/64 1/128 1/256 1/512 1/1024

FIFO 63.22% 59.44% 59.86% 61.87% 59.95% 42.14% 41.64% 41.01% 42.96% 42.69% 29.09% 28.37% 31.39% 28.64% 33.24%
LRU 64.10% 60.24% 60.23% 62.20% 60.62% 40.38% 39.28% 39.80% 42.08% 41.84% 22.22% 15.02% 21.32% 21.21% 23.24%
LFU 63.74% 59.92% 60.08% 61.92% 60.07% 39.22% 38.85% 39.25% 41.57% 41.43% 17.54% 9.59% 13.95% 10.72% 17.02%
Sparse Indexing 17.34% 8.89% 10.68% 10.28% 5.80% 3.26% 1.98% 3.37% 2.49% 1.21% 4.68% 1.54% 1.35% -0.77% 0.32%

[5] J. Bucy et al. The DiskSim simulation environment version 4.0
reference manual. Technical Report CMU-PDL-08-101, Carnegie
Mellon University, 2008.

[6] Z. Chen et al. Ordermergededup: Efficient, failure-consistent dedu-
plication on flash. In Proc. of the USENIX FAST’16, 2016.

[7] B. K. Debnath et al. ChunkStash: Speeding up inline storage
deduplication using flash memory. In Proc. of the USENIX ATC’10,
2010.

[8] EMC Corporation. Executive summary - data growth, business op-
portunities, and the IT imperatives. http://www.emc.com/leadership/
digital-universe/2014iview/executive-summary.htm, 2014.

[9] G. Forman et al. Finding similar files in large document repositories.
In Proc. of the ACM SIGKDD’05, pages 394–400. ACM, 2005.

[10] M. Fu et al. Design tradeoffs for data deduplication performance in
backup workloads. In Proc. of the USENIX FAST’15, 2015.

[11] D. Harnik et al. Estimation of deduplication ratios in large data sets.
In Proc. of the IEEE MSST’12, 2012.

[12] J. Kim et al. Deduplication in SSDs: model and quantitative analysis.
In Proc. of the IEEE MSST’12, 2012.

[13] R. Koller et al. I/O deduplication: Utilizing content similarity to
improve I/O performance. ACM Transactions on Storage, 6(3):13,
2010.

[14] M. Lillibridge et al. Sparse Indexing: Large scale, inline deduplication
using sampling and locality. In Proc. of the USENIX FAST’09, 2009.

[15] B. Mao et al. POD: Performance oriented I/O deduplication for
primary storage systems in the cloud. In Proc. of the IEEE IPDPS’14,
2014.

[16] D. Meister et al. dedupv1: Improving deduplication throughput using
solid state drives (ssd). In Proc. of the IEEE MSST’10, 2010.

[17] D. T. Meyer et al. A study of practical deduplication. ACM
Transactions on Storage, 7(4):14, 2012.

[18] K. Miller et al. XLH: More effective memory deduplication scanners
through cross-layer hints. In Proc. of the USENIX ATC’13, 2013.

[19] A. Muthitacharoen et al. A low-bandwidth network file system.
35(5):174–187, 2001.

[20] W. C. Preston. Risk of hash collisions in data deduplica-
tion. http://www.backupcentral.com/mr-backup-blog-mainmenu-47/
13-mr-backup-blog/145-de-dupe-hash-collisions.html, 2007.

[21] S. Quinlan et al. Venti: A new approach to archival storage. In Proc.
of the USENIX FAST’02, 2002.

[22] M. Rabin. Fingerprinting by random polynomials. Aiken Computa-
tion Laboratory, 1981.

[23] R. Rivest. The MD5 message-digest algorithm. 1992.
[24] S.Mandal et al. Using hints to improve inline block-layer deduplica-

tion. In Proc. of the USENIX FAST’16, 2016.
[25] K. Srinivasan et al. iDedup: latency-aware, inline data deduplication

for primary storage. In Proc. of the USENIX FAST’12, 2012.
[26] Y. Tian et al. Last-level cache deduplication. In Proc. of the ACM

ICS’14, 2014.
[27] A. Verma et al. SRCMap: Energy proportional storage using dynamic

consolidation. In Proc. of the USENIX FAST’10, 2010.
[28] W. Xia et al. Silo: A similarity-locality based near-exact deduplication

scheme with low ram overhead and high throughput. In Proc. of the
USENIX ATC’11, 2011.

[29] F. Xie et al. Estimating duplication by content-based sampling. In
Proc. of the USENIX ATC’13, 2013.

[30] B. Zhu et al. Avoiding the disk bottleneck in the data domain
deduplication file system. In Proc. of the USENIX FAST’08, 2008.

642

