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ABSTRACT

Online voting is an emerging feature in social networks, in which

users can express their attitudes toward various issues and show

their unique interest. Online voting imposes new challenges on rec-

ommendation, because the propagation of votings heavily depends

on the structure of social networks as well as the content of vot-

ings. In this paper, we investigate how to utilize these two factors

in a comprehensive manner when doing voting recommendation.

First, due to the fact that existing text mining methods such as

topic model and semantic model cannot well process the content of

votings that is typically short and ambiguous, we propose a novel

Topic-Enhanced Word Embedding (TEWE) method to learn word

and document representation by jointly considering their topics

and semantics. Then we propose our Joint Topic-Semantic-aware

social Matrix Factorization (JTS-MF) model for voting recommenda-

tion. JTS-MF model calculates similarity among users and votings

by combining their TEWE representation and structural informa-

tion of social networks, and preserves this topic-semantic-social

similarity during matrix factorization. To evaluate the performance

of TEWE representation and JTS-MF model, we conduct extensive

experiments on real online voting dataset. The results prove the

efficacy of our approach against several state-of-the-art baselines.
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1 INTRODUCTION

Online voting [31] has recently become a popular function on so-

cial platforms, through which a user can share his opinion towards

various interested subjects, ranging from livelihood issues to en-

tertainment news. More advanced than simple like-dislike type of

votings, some social networks, such as Weibo1, have empowered

users to run their own voting campaigns. Users can freely initiate

votings on any topics of their own interests and customize voting

options. These votings are visible to the friends of initiator, who

can then choose to participate to make the votings further seen by

∗M. Guo is the corresponding author.
1http://www.weibo.com.
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Fig. 1: Propagation scheme of online voting.

their friends or simply retweet the votings to their friends. In such

a way, in addition to the system recommendation, a voting can

widely propagate over the network along social paths. The voting

propagation scheme is shown in Fig. 1.

Facing a large volume of diversified votings, a critical challenge

is to present “right” votings to the “right” person. An effective

recommender system is desired to be able to deal with information

overload [2] by precisely locatingwhat votings favor each usermost,

thus improves user experience and maximizes user engagement in

votings. Such a recommender system can also benefit a variety of

other online services such as personalized advertising [26], market

research [11], public opinion analysis [17], etc.

Despite the great importance, there is little prior work consider-

ing recommending votings to users in social networks. The chal-

lenges are two-fold. First, the propagation of online votings relies

heavily on the structure of social networks. A user can see the

votings initiated, participated or retweeted by his followees, which

implies that the user is more likely to be exposed to the votings

that his friends are involved in. Moreover, in most social networks,

a user can join different interest groups, which is another type

of social structure that potentially affects users’ voting behavior.

Though several prior works [3, 6, 10, 12, 25, 29, 31, 32] have been

proposed to leverage social network information in recommenda-

tion, it is still an open question how to comprehensively incorporate

structural social information into the task of voting recommenda-

tion considering its propagation pattern. Second, users’ interest

in votings is strongly connected with voting content presented in

question text (e.g., “Who is your favorite movie star?”). Topic model

[1] is regarded as a possible approach to mine the voting interests

through discovering the latent topic distribution of relevant voting

text. However, the voting questions are typically short and lack

sufficient topic information, leading to severe performance degra-

dation of topic models. Alternatively, semantic analytics [21] can

also possibly be used to mine voting interests through learning text

representations. However, such semantic models typically repre-

sent each word using a single vector, making them indiscriminative
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for homonymy and polysemy, which are especially common in

voting questions (e.g., “Do you use apple products?” and “Do you

peel apple before eating?”). In brief, these inherent defects of the

above models limit their power in the scenario of social voting

recommendation.

To address aforementioned challenges, in this paper, we propose

a novel Joint Topic-Semantic-aware Matrix Factorization (JTS-MF)

model for online voting recommendation. JTS-MF model considers

social network structure and representation of voting content in

a comprehensive manner. For social network structure, JTS-MF

model fully encodes the information of social relationship and group

affiliation into the objective function. We will further justify the

usage of social network structure in Section 3. For representation

of voting content, we propose a Topic-Enhanced Word Embedding

(TEWE) method to build a multi-prototype word and document2

representation, which jointly considers their topics and semantics.

The key idea of TEWE is to enable each word to have different rep-

resentations under different word topics and different documents.

We will detail TEWE in Section 5. Once obtaining TEWE repre-

sentation for each document, JTS-MF model combines them with

the structural information of social networks to calculate the topic-

semantic-social similarity among users and votings. The reason

of calculating such similarity is that, inspired by Locally Linear

Embedding [23], we try to preserve the similarity among users

and votings during matrix factorization, as it contains abundant

proximity information and can greatly benefit feature learning for

users and votings. JTS-MF model is detailed in Section 6.

We conduct extensive investigation on JTS-MF with real online

voting dataset. The experimental results in Section 7 demonstrate

that JTS-MF model achieves substantial gains compared with base-

lines. The results also prove that TEWE is able to well combine

topic and semantic information of texts and generates a better kind

of document representation.

In summary, the contributions of this paper are as follows:

• We formally formulate the online voting recommendation

problem, which has not been fully investigated yet.

• We indicate that user’s voting behavior is highly correlated

with social network structure by conducting thorough sta-

tistical measurements.

• We propose a novel Topic-Enhanced Word Embedding

model to jointly consider topics and semantics of words

and documents to learn their representation. TEWE takes

advantages of both topic model and semantic model, and

consequently learns more informative embeddings.

• We develop a novel matrix factorization based models,

named JTS-MF, for online voting recommendation. JTS-

MF is able to preserve the topic-semantic-social similarity

among users and votings from original embedding space

during learning process.

• We carry out extensive experiments on real online voting

dataset, the results of which reveal that JTS-MF signif-

icantly outperforms baseline (variant) methods, say for

example, surpassing basic matrix factorization model with

2In this paper, a “document” can be related to a voting, a user or a group. A voting
document is the content of its question, a user document is formed by aggregating
all the documents of votings he participates, and a group document is formed by
aggregating all the documents of users who join the group.

57%, 38% and 25% enhancement in terms of recall for top-1,

top-5 and top-20 recommendation, respectively.

2 RELATEDWORK

2.1 Recommender Systems

Roughly speaking, existing recommender systems can be catego-

rized into three classes [2]: content-based, collaborative filtering,

and hybrid methods. Content-based methods [14, 34] make use of

user profiles or item descriptions as features for recommendation.

Collaborative filtering methods [22, 25, 28, 31] use either explicit

feedback (e.g., users’ ratings on items) or implicit feedback (e.g.,

users’ browsing records about items) data of user-item interactions

to find user preference and make the recommendation. In addition,

various models are incorporated into collaborative filtering, such

as Support Vector Machine [30], Restricted Boltzmann Machine

[24], and Stacked Denoising Auto Encoder [27]. Hybrid methods

[9, 16] combine content-based and collaborative filtering models

in many hybridization approaches, such as weighted, switching,

cascade and feature combination or augmentation.

2.2 Social Recommendation

Traditional recommender systems are vulnerable to data sparsity

problem and cold-start problem. To mitigate this issue, many ap-

proaches have been proposed to utilize social network information

in recommender systems [3, 6, 10, 12, 25, 29, 31, 32]. For exam-

ple, [12] represents a social network as a star-structured hybrid

graph centered on a social domain which connects with other item

domains to help improve the prediction accuracy. [10] investi-

gates the seed selection problem for viral marketing that considers

both effects of social influence and item inference for product rec-

ommendation. [29] studies the effects of strong and weak ties in

social recommendation, and extends Bayesian Personalized Rank-

ing model to incorporate the distinction of strong and weak ties.

However, the above works only utilize users’ social links without

considering the topic and semantic information for mining the

similarities among users and items, which we found quite help-

ful for voting recommendation tasks. Another difference between

these works and ours is that we also take social group affiliation

into consideration, which can further improve the performance of

recommendation.

2.3 Topic and Semantic Language Models

Latent Dirichlet Allocation (LDA) [1] is a well-known generative

topic model that learns the latent topic distributions for documents.

LDA is widely used in sentiment analysis [20], aspects and opin-

ions mining [33], and recommendation [5]. Word2vec [21] is gen-

erally recognized as a neural network model, which learns word

representations that capture precise syntactic and semantic word

relationships. Word2vec as well as associated Skip-Gram model are

extensively used in document classification [15], dependency parser

[4], and network embedding [8]. However, LDA and Word2vec are

not directly applicable in the scenario of voting recommendation

because the content of voting is usually short and ambiguous. As

a combination, [18] tries to learn topical word embeddings based

on both words and their topics. The difference between [18] and

ours is that we also take topics of documents into consideration,
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Table 1: Basic Statistics of Weibo Dataset.
# users 1,011,389 # groups 299,077

# users with votings 525,589 # user-voting 3,908,024

# users with groups 723,913 # user-user 83,636,677

# votings 185,387 # user-group 5,643,534

which enables our model to learn a even more discriminative and

informative representations for words and documents.

3 BACKGROUND AND DATA ANALYSIS

In this section, we briefly introduce the background ofWeibo voting

and present detailed analysis of Weibo voting dataset.

3.1 Background

Weibo is one of the most popular Chinese microblogging website

launched by Sina corporation, which is akin to a hybrid of Twitter

and Facebook platforms. Users on Weibo can follow each other,

write tweets and share with his followers. Users can also join

different groups based on their attributes (e.g., region) or interests

of topics (e.g., career).

Voting3 is one of the embedded features of Weibo. As of January

2013, more than 92 million users have participated in at least one

voting and more than 2.2 million ongoing votings are available on

Weibo every day. Any user can freely initiate, retweet and partici-

pate a voting campaign in Weibo. As shown in Fig. 1, votings can

propagate in two ways. The first way is through social propagation:

a user can see the voting initiated, retweeted or participated by his

followees and potentially participates the voting. The second way

is through Weibo voting recommendation list, which consists of

popular votings and personalized recommendation for each user.

3.2 Data Measurements

Our Weibo voting dataset comes from the technical team of Sina

Weibo, which contains detailed information about votings from No-

vember 2010 to January 2012, as well as other auxiliary information.

Specifically, the dataset includes users’ participation status on each

voting4, content of each voting, social connection between users,

name and category of each group, and user-group affiliation.

3.2.1 Basic statistics. The basic statistics are summarized in

Table 1. From Table 1 we can learn that, each user has 165.4 fol-

lowers/followees, participates 3.9 votings, and joins 5.6 groups on

average. If we only count users who participate at least one vot-

ing and users who join at least on group, the average number of

votings and average number of joined groups of each user is 7.4

and 7.8, respectively. Fig. 2 depicts the distribution curves of the

above statistics, where the meaning of each subfigure is given in

the caption.

To get an intuitive understanding of whether user’s voting be-

havior is correlated with his social relation and group affiliation,

we conduct the following two sets of statistical experiments:

3.2.2 Correlation between the number of common votings of user

pairs and the types of user pairs. We randomly select ten million

user pairs from the set of all users, and count the average number

3http://www.weibo.com/vote?is all=1.
4We only know whether a user participated a voting or not, rather than user voting
results, i.e., we do not know which voting option a user chose.
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Fig. 2: (a) Distribution of the number of votings participated

by a user; (b) Distribution of the number of participants of a

voting; (c) Distribution of the number of followers/followees

of a user; (d) Distribution of the number of users in a group;

(e) Distribution of the number of votings (may contain du-

plicated votings) participated by all users in a group; (f) Dis-

tribution of the number of groups joined by a user.

of votings that the two users both participate under the following

four circumstances: 1) one of the users follows the other in the

pair, i.e., they are social-level friends; 2) the two users are in at

least one common group, i.e., they are group-leven friends; 3) the

two users are neither social-level friends nor group-level friends;

4) all cases. The results are plotted in Fig. 3a, which clearly shows

the difference among these cases. In fact, the average number of

common votings of social-level friends (3.54 × 10−4) and group

level friends (1.79× 10−4) are 17.4 and 8.8 times higher than that of

“strangers” (2.04 × 10−5). The results demonstrate that if two users

are social-level or group-level friends, they are likely to participate

more votings in common.

3.2.3 Correlation between the probability of two users being

friends and whether they participate common voting. We first ran-

domly select ten thousand votings from the set of all votings. For

each sampled voting vj , we calculate the probability that two of

its participants are social-level or group-level friends, i.e., pj =
# of social/group-level friends among participants of vj

nj×(nj−1)/2 , wherenj is the num-

ber of vj ’ participants. We calculate pj over all sampled votings

and plot the average result (blue bar) in Fig. 3b. For comparison, we

also plot the result for randomly sampled set of users (green bar)

in Fig. 3b. It is clear that if two users ever participated common

voting, they are more likely to be social-level or group-level friends.

In fact, probabilities of two users being social-level or group-level
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Fig. 3: (a) Average number of common votings participated

by user ui and uk in four cases: 1. ui follows/is followed by

uk ; 2. ui and uk are in at least one common group; 3. ui and
uk have no social-level and group-level relationship; 4. all

cases; (b) Probability of twousers being social-level or group-

level friends in two cases: 1. they ever participated at least

one common voting; 2. they are randomly sampled.

friends are raised by 5.3 and 3.6 times given the observation that

they are with common voting.

The above two findings effectively prove the strong correlation

between voting behavior and social network structure, which mo-

tivates us to take users’ social relation and group affiliation into

consideration when making voting recommendation.

4 PROBLEM FORMULATION

In this paper, we consider the problem of recommending Weibo

votings to users. We denote the set of all users, the set of all votings,

and the set of all groups by U = {u1, ...,uN }, V = {v1, ...,vM },
and G = {G1, ...,GL}, respectively. Moreover, we model three

types of relationship in Weibo platform: user-voting, user-user, and

user-group relationship as follows:

(1) The user-voting relationship for ui and vj is defined as

Iui ,vj =

{
1, i f ui participates vj ;

0, otherwise .
(1)

(2) The user-user relationship for ui and uk is defined as

Iui ,uk =

{
1, i f ui f ollows uk ;

0, otherwise .
(2)

We further use F +i to denote the set of ui ’s followees, and
use F−

i to denote the set of ui ’s followers (“+” means “out”

and “−” means “in”).

(3) The user-group relationship for ui and Gc is defined as

Iui ,Gc
=

{
1, i f ui joins Gc ;

0, otherwise .
(3)

Given the above sets of users and votings as well as three types

of relationship, we aim to recommend a list of votings for each user,

in which the votings are not participated by the user but may be

interesting to him.

5 JOINT-TOPIC-SEMANTIC EMBEDDING

In this section, we explain how to learn the embeddings of users,

votings, and groups in a joint topic and semantic way, and apply the

embeddings to calculate similarities. We first introduce the methods

of learning topic information and semantic information by LDA and

Skip-Gram models, respectively, and propose our method which

combines these two models to learn more powerful embeddings.

5.1 Topic Distillation

In this subsection, we introduce how to profile users, votings, and

groups in terms of topic interest distribution by performing topic

distillation on the associated textual content information.

In general, LDA is a popular generative model to discover latent

topic information from a collection of documents [1]. In LDA, each

document d is represented as a multinomial distribution Θd over a

set of topics, and each topic z is also represented as a multinomial

distribution Φz over a number of words. Subsequently, each word

position l in document d is assigned a topic zd,l according to Θd ,

and the wordwd,l is finally generated according to Φzd,l . By LDA

approach, the topic distribution for each document and the topic

assignment for each word can be obtained, which would be utilized

later in our proposed model.

Here, we discuss how to apply LDA in the scenario of Weibo

voting. According to the Weibo voting dataset, each voting vj
associates a sentence of question, which can be regarded as doc-

ument dvj
5. The document dui for user ui can thus be formed by

aggregating the content of all votings he participates, i.e., dui =
∪{dvj |Iui ,vj = 1}, and the document dGc

for groupGc is formed by

aggregating documents of all itsmembers, i.e.,dGc
= ∪{dui |Iui ,Gc

=

1}. Note that though our target is to learn the topic distributions of

all users, votings, and groups, it is inadvisable to train LDA model

on dui ’s and dvj ’s because: (1) the entitled sentence associated with
a single voting is typically short-presented and topic-ambiguous;

(2) even with user-level voting content aggregation, some docu-

ments of inactive users are not long enough to accurately extract

the authentic topic distribution, yet showing relatively flat distribu-

tion over all the topics. Therefore, we choose to feed group-level

aggregated documents dGc
’s to LDA model as training samples.

The process of group-level voting content aggregation will cover

all the content the affiliated users are interested in and help better

identify their interests in terms of voting topic.

Denote Dir(α ) as the Dirichlet prior of Θd , and Dir(β) as the
Dirichlet prior of Φz . Given α and β , the joint distribution of

document-topic distributions Θ, topic-word distributions Φ, topics
of words z, and a set of wordsw is

p(Θ,Φ,z,w |α , β)
=
∏

z p(Φz |β) ·∏d

(
p(Θd |α )∏l

(
p(zd,l |Θd )p(wd,l |Φzd,l )

))
,

(4)

where d traverses all group-level aggregated documents. In general,

it is computationally intractable to directly maximize the joint

likelihood in Eq. (4), thus Gibbs Sampling [7] is usually applied

to estimate the posterior probability p(z |w,α , β) and solve Θ, Φ

iteratively. Denote θ
(z)
d

the z-th component of Θd , and ϕ
(w )
z the

w-th component of Φz . With the sampling results, Θd and Φz can

be estimated as:

θ
(z)
d
=
(
n
(z)
d
+ α (z)

)/( ∑z (n(z)d
+ α (z))), z = 1, ...,Z ,

ϕ
(w )
z =

(
n
(w )
z + β (w ))/( ∑w (n(w )

z + β (w ))), w = 1, ...,V ,
(5)

5dvj is segmented by Jieba (https://github.com/fxsjy/jieba) and all stop words are

removed.
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where α (z) is the z-th component of α , β (w ) is thew-th component

of β , n(z)
d

is the observation counts of topic z for document d , n
(w )
z

is the frequency of wordw assigned as topic z, Z is the number of

topics and V is vocabulary size.

So far, we have obtained the topic assignment for each word and

topic distribution for each group. Topic distributions for users and

votings can thus be inferred by using the learned model and Gibbs

Sampling, which is similar to the calculation of θ
(z)
d

in Eq. (5).

5.2 Semantic Distillation

In this subsection, we introduce how to profile users, votings, and

groups in terms of semantic information. Word embedding, which

represents each word using a vector, is widely used to capture

semantic information of words. Skip-Gram model is a well-known

framework for word embedding, which finds word representation

that are useful for predicting surrounding words in a document

given a target word in a sliding window [21]. More formally, given

a word sequence D = {w1,w2, . . . ,wT }, the objective function of

Skip-Gram is to maximize the average log probability

L(D) = 1

T

T∑
t=1

∑
−k≤c≤k

c�0

logp(wt+c |wt ), (6)

where k is the training context size of the target word, which

can be a function of the centered work wt . The basic Skip-Gram

formulation defines p(wi |wt ) using the softmax function as follows:

p(wi |wt ) =
exp(w�

i wt )∑
w ∈V exp(w�

wt ) , (7)

where wi and wt are the vector representation of context wordwi

and target wordwt , respectively, andV is the vocabulary. To avoid

traversing the entire vocabulary, hierarchical softmax or negative

sampling are used in general during learning process [21].

5.3 Topic-Enhanced Word Embedding

In this subsection, we propose a joint topic and semantic learning

model, named Topic-Enhanced Word Embedding (TEWE), to ana-

lyze documents of users, votings, and groups. The motivation of

proposed TEWE is based on the following two observations: (1)

The voting content typically involves short texts. Even we infer

the topic distribution for each voting based on the learned topic-

word distribution from group-level aggregated documents, it is

still topic-ambiguous to some extent. (2) The Skip-Gram model

for word embedding assumes that each word always preserves a

single vector, which sometimes is indiscriminate under different

circumstances due to the homonymy and polysemy. Therefore, the

basic idea of TEWE is to preserve topic information of documents

and words when measuring the interaction between target wordwt

and context wordwi . In this way, a word with different associated

topics has different embeddings, and a word in documents with

different topics has different embeddings, too.

Specifically, rather than solely using the target wordw to predict

context words in Skip-Gram, TEWE also jointly utilizes zw , the

topic of the word in a document, as well as zdw , the most likely

topic of the document that the word belongs to. Recall that in Sec-

tion 5.1, we have obtained the topic of each word zw and topic

predict predict

(a) Skip-Gram

predict predict

(b) TEWE

Fig. 4: Comparison between Skip-Gram and TEWE. The

gray circles in (a) indicate the embeddings of original words,

while the blue circles in (b) indicate the TEWE representa-

tion of pseudo words, which preserves semantic and topic

information of words and documents.

distributions of each document Θd , thus z
d
w can be calculated

as zdw = argmaxz θ
(z)
d

, where θ
(z)
d

is the probability that docu-

ment d belongs to topic z, as introduced in Eq. (5). TEWE regards

each word-topics triplet 〈w, zw , zdw 〉 as a pseudo word and learns a

unique vector wz,zd for it. The objective function of TEWE is as

follows:

L(D) = 1

T

T∑
t=1

∑
−k≤c≤k

c�0

logp(〈wt+c , zt+c , z
d
t+c 〉|〈wt , zt , z

d
t 〉), (8)

where p(〈wi , zi , z
d
i 〉|〈wt , zt , z

d
t 〉) is a softmax function as

p(〈wi , zi , z
d
i 〉|〈wt , zt , z

d
t 〉) =

exp
(
w
z,zd

i
�
w
z,zd

t

)
∑

〈w,z,zd 〉∈〈V ,Z ,Z 〉 exp
(
w
z,zd �

w
z,zd

t

) .
(9)

The comparison between Skip-Gram and TEWE is shown in Fig.

4. Instead of solely utilizing the target and context words as in Skip-

Gram, TEWE further preserves word topic and document topic

along with these words, and incorporates both topic and semantic

information in embedding learning.

Once obtaining TEWE representation for each pseudo word, the

representation of each document can be correspondingly derived

by aggregating the embeddings of its containing words weighted

by term frequency-inverse document frequency (TF-IDF) coefficient.

Specifically, for each document d , its TEWE can be calculated as

ed =
∑
w ∈d TF-IDF(w,d) ·wz,zd , (10)

where TF-IDF(w,d) is the product of the raw count ofw in d and

the logarithmically scaled inverse fraction of the documents that

contains w , i.e., TF-IDF(w,d) = fw,d · log |D |
|d ∈D :w ∈d | (D is the set

of all documents). TEWE document representations can be used in

measuring inter-document similarities. For example, the similarity

of two user documents dui and duk can be calculated as the cosine

similarity between their TEWE representations, i.e.,
e
�
ui
euk

‖eui ‖2 ‖euk ‖2 .
This similarity encodes both topic and semantic proximity informa-

tion of user documents, which implicitly reveals the similarity of

voting interests between two users.

6 RECOMMENDATION MODEL

In this section, we present our Joint Topic-Semantic-aware Matrix

Factorization (JTS-MF) model for online social votings, in which

social relationship, group affiliation, and topic-semantic similarities
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Fig. 5: Graphic Model of JTS-MF.

are combined and taken into account for voting recommendation in

a comprehensive manner. Motivated by Locally Linear Embedding

[23] which tries to preserve the local linear dependency among

inputs in the low-dimensional embedding space, we expect to keep

inter-user and inter-voting topic-semantic similarities in latent

feature space as well. To this end, in JTS-MF model, while the

rating Ri, j is factorized as user latent featureQi and voting latent

feature Pj , we deliberately enforceQi and Pj to be dependent on

their social-topic-semantic similar counterparts, respectively. The

graphic model of JTS-MF model is as shown in Figure 5.

6.1 Similarity Coefficients

In order to characterize the influence of inter-user common interests

and inter-voting content relevance, we first introduce the following

three similarity coefficients:

• Normalized social-level similarity coefficient of users: Ŝi,k ,
where uk is the social-level friend of ui ;

• Normalized group-level similarity coefficient of users: Ĝi,k ,

where uk is the group-level friend of ui ;

• Normalized similarity coefficient of voting: T̂j,t , where vj
and vt are two distinct votings.

Generally speaking, in JTS-MF, the latent featureQi for user ui
is tied up with the latent feature of his social-level and group-level

friends who are weighted through Ŝi,k ’s and Ĝi,k ’s. Likewise, the

latent feature Pj for voting vj is tied up with the latent feature of

its similar votings, which are weighted through T̂j,t ’s.

6.1.1 Normalized social-level similarity coefficient of users. Social-

level similarity coefficient of users is represented by matrix SN×N ,

which incorporates both social relationship and user-user topic-

semantic similarity. Specifically, for each ui , the social-level simi-

larity coefficient with respect to uk is defined as

Si,k = Iui ,uk ·
√

d−
k
+ d

d+i + d
−
k
+ d

· e
�
ui euk

‖eui ‖2‖euk ‖2
, (11)

where Iui ,uk indicates whether ui follows uk as described in Eq. (2),

d+i is the out-degree of ui in the social network (i.e., d+i = |F +i |),
d−
k
is the in-degree of uk in the social network (i.e., d−

k
= |F −

k
|), d

is the smoothing constant (d = 1 in this paper), and
e
�
ui
euk

‖eui ‖2 ‖euk ‖2
is the topic-semantic similarity between user ui and user uk as

mentioned in Section 5.3.

√
d−
k
+d

d+i +d
−
k
+d

incorporates the information

of local authority and local hub value to differentiate the impor-

tance of different users [19]. Essentially, Si,k counts the closeness

between two users from both topic-semantic interests and their

social influence perspectives.

To avoid the impact of different numbers of followees, we use

the normalized social-level similarity coefficient of users in JTS-MF,

which is defined as

Ŝi,k =
Si,k∑

k ∈F+i Si,k
, (12)

where F +i denotes the set of ui ’s followees in social network.

6.1.2 Normalized group-level similarity coefficient of users. Group-

level similarity coefficient of users is represented by matrixGN×N ,

which actually measures the topic-semantic similarity among users

from viewpoint of groups. For each ui , the group-level similarity

coefficient with respect to uk is defined as

Gi,k =
∑

G ∈G Iui ,G · Iuk ,G · e
�
ui eG

‖eui ‖2‖eG ‖2 , (13)

where G represents the set of all groups, Iui ,G and Iuk ,G indicate

whether ui and uk join group G respectively as described in Eq.

(3), and the last term is the topic-semantic similarity between user

ui and group G. Essentially speaking, Gi,k reflects the interest

closeness between user ui and its group-level friend uk by using

ui ’s topic-semantic engagement extent to the corresponding group.

We also normalize the group-level similarity coefficient of users as

Ĝi,k =
Gi,k∑

k ∈Gi Gi,k
, (14)

where Gi is the set of ui ’s group-level friends in social network.

6.1.3 Normalized similarity coefficient of votings. Similarity coef-

ficient of votings is represented by matrixTM×M , which is directly

defined as the topic-semantic similarity among votings, i.e.,

Tj,t =
e
�
vj evt

‖evj ‖2‖evt ‖2
. (15)

Since the number of votings is typically huge, we only consider

the similarity between two votings with sufficiently high coefficient

value. Specifically, for each voting vj , we define a set of votingsVj

containing those votings whose similarity coefficients with vj ex-
ceed a threshold, i.e.,Vj = {vt |Tj,t ≥ threshold}. Correspondingly,
the similarity coefficient of votings are normalized as

T̂j,t =
Tj,t∑

t ∈Vj
Tj,t
. (16)

6.2 Objective Function

Using the notations listed above, the objective function of JTS-MF

can be written as

L =
1

2

N∑
i=1

M∑
j=1

I ′i, j
(
Ri, j −QiP

�
j

)2
+
α

2

N∑
i=1

��Qi −
∑
k∈F+

i

Ŝi,kQk

��2
2

+
β

2

N∑
i=1

��Qi −
∑
k∈Gi

Ĝi,kQk

��2
2
+
γ

2

M∑
j=1

��Pj − ∑
t∈Vj

T̂j,t Pt
��2
2
+
λ

2

(
‖Q ‖2F + ‖P ‖2F

)
.

(17)

The basic idea of the objective function in Eq. (17) lies in that,

besides considering explicit feedback between users and votings,

we also impose penalties on the discrepancy among features of
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similar users and similar votings. We give detailed explanation as

follows. The first term of Eq. (17) measures the mean squared error

between prediction and ground truth, where I ′i, j is the training

weights defined as

I ′i, j =
{
1, i f ui participates vj

Im , otherwise
. (18)

The reason we do not directly use Iui ,vj defined in Eq. (1) as the

training weights is because we found a small and positive Im makes

the training processmore robust and can greatly improve the results.

Ri, j is the actual rating of user ui on voting vj , and QiP
�
j is the

predicted value of Ri, j . Without loss of generality, in JTS-MF model,

we set Ri, j = 1 if ui participates vj and Ri, j = 0 otherwise.

The second, third, and fourth terms of Eq. (17) measure the

penalty of discrepancy among similar users and similar votings. In

particular, the second term enforces user ui ’s latent featureQi to

be similar to the weighted average of his like-minded followees’

profilesQk ’s. Weight Ŝi,k ’s address both the followee uk ’s social
influence on ui as well as the degree of common voting interests

shared between uk and ui . The third term enables user ui ’s latent
feature Qi to be similar to the weighted average of all his group

peers’ profilesQk ’s. Weight Ĝi,k ’s emphasize both the same group

affiliation of usersui anduk and also the tie strength betweenui and
the associated group with respect to voting interests. This implies

that, among all group-level friends, ui would have more similar

latent feature with the users who frequently join those groups ui is
interested in. The fourth term ensures voting vj ’s latent feature Pj
to be similar to the weighted average of votings that share similar

topic-semantic information with vj .
Finally, the last term of Eq. (17) is the regularizer to prevent

over-fitting, and λ is the regularization weight.

The trade-off among user social-level similarities, user group-

level similarities, and voting similarities is controlled by the pa-

rameters α , β , and γ , respectively. Obviously, users’ social-level
similarity, users’ group-level similarity, or votings’ similarity is/are

ignored if α , β , or γ is/are set to 0, while increasing these values

shifts the trade-off more towards their respective directions.

6.3 Learning Algorithm

To solve the optimization in Eq. (17), we apply batch gradient

descent approach tominimize the objective function6. The gradients

of loss function in Eq. (17) with respect to each variableQi and Pj
are as follows:

∂L

∂Qi
=

M∑
j=1

−I ′i, j
(
Ri, j −QiP

�
j

)
Pj

+ α

( (
Qi −

∑
k∈F+

i

Ŝi,kQk
)
+

∑
t∈F−

i

−Ŝt,i
(
Qt −

∑
k∈F+t

Ŝt,kQk
) )

+ β

( (
Qi −

∑
k∈Gi

Ĝi,kQk
)
+
∑
t∈U

−Ĝt,i
(
Qt −

∑
k∈Gi

Ĝt,kQk
) )
+ λQi ,

(19)

6Note that it is impractical to apply Alternating Least Squares (ALS) method here
because it requires calculating the inverse of two matrices with extremely large size.

∂L

∂Pj
=

N∑
i=1

−I ′i, j
(
Ri, j −QiP

�
j

)
Qi

+ γ

( (
Pj −

∑
t∈Vj

T̂j,t Pt
)
+

∑
k∈Vj

−T̂k, j
(
Pk −

∑
t∈Vk

T̂k,t Pt
) )
+ λPj .

(20)

To clearly understand the gradients in Eq. (19) and (20), it is

worth pointing out thatQi appears not only in the i-th sub-term

in the second and third lines of Eq. (17) explicitly, but also exists

in other t-th sub-terms followed by Ŝt,i or Ĝt,i , where ui plays as
one of the followees or group members of other users. The case is

similar for Pj . Given the gradients in Eq. (19) and (20), we list the

pseudo code of the learning algorithm for JTS-MF as follows:

(1) Randomly initializeQ and P ;
(2) In each iteration of the algorithm, do:

a) update eachQi : Qi ← Qi − δ ∂L
∂Qi

;

b) update each Pj : Pj ← Pj − δ ∂L
∂Pj

;

until convergence, where δ is an configurable learning rate.

7 EXPERIMENTS

In this section, we evaluate our proposed JTS-MF model on the

aforementioned Weibo voting dataset7. We first introduce base-

lines and parameter settings used in the experiments, and then

present the experimental results of JTS-MF and the comparison

with baselines.

7.1 Baselines

We use the following seven methods as the baselines against JTS-

MF model. Note that the first three baselines are reduced versions

of JTS-MF, which only consider one particular type of similarity

among users or votings.

• JTS-MF(S) only considers social-level similarity of users,

i.e., sets β,γ = 0 in JTS-MF model.

• JTS-MF(G) only considers group-level similarity of users,

i.e., sets α ,γ = 0 in JTS-MF model.

• JTS-MF(V) only considers similarity of votings, i.e., sets

α , β = 0 in JTS-MF model.

• MostPop recommends the most popular items to users,

i.e., the votings that have been participated by the most

numbers of users.

• Basic-MF [13] simply uses matrix factorization method

to predict the user-voting matrix while ignores additional

social relation, group affiliation and voting content infor-

mation.

• Topic-MF [1] is similar to JTS-MF except that we substi-

tute Θd for ed when calculating similarities in Eq. (11),

(13), and (15). Note that Θd can also be viewed as the em-

bedding of document with respect to topics. Therefore,

Topic-MF only considers the topic similarity among users

and votings.

• Semantic-MF is similar to JTS-MF except that we use

the Skip-Gram model in [21] directly to learn the word

embeddings. Therefore, Semantic-MF only considers the

semantic similarity among users and votings.

7Experiment code is provided at https://github.com/hwwang55/JTS-MF.
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Fig. 6: Convergence of JTS-MF models with respect to Re-

call@10.

7.2 Parameter Settings

We use GibbsLDA++8, an open-source implementation of LDA

using Gibbs sampling, to calculate topic information of words and

documents in JTS-MF and Topic-MF models. We set the number of

topics to 50 and leave all other parameters in LDA as default values.

For word embeddings in JTS-MF and Semantic-MF models, we use

the same settings as follows: length of embedding dimension as 50,

window size as 5, and number of negative samples as 3.

For all MF-based methods, we set the learning rate δ = 0.001 and

regularization weight λ = 0.5 by 10-fold cross validation. Typically,

we set Im = 0.01 in Eq. (18). Taking into consideration the balance

of experimental results and time complexity, we run 200 iterations

for each of the experiment cases. To conduct the recommendation

task, we randomly select 20% of users’ voting records in the dataset

as test set and use the remaining data as the trainning examples for

our JTS-MF model as well as all baselines. The choice of remaining

hyper-parameters (trade-off parameters α , β , γ , and dimension of

latent features dim) is discussed in Section 7.4.

To quantitatively analyze the performance of voting recommen-

dation, in our experiment, we use top-k recall (Recall@k), top-k

precision (Precision@k), and top-k micro-F1 (Micro-F1@k) as the

evaluation metrics.

7.3 Experiment Results

7.3.1 Study of convergence. To study the convergence of JTS-

MF model, we run the learning algorithm up to 200 iterations for

JTS-MF(S) with α = 10, JTS-MF(G) with β = 140, JTS-MF(V) with

γ = 30, JTS-MF with α = 10, β = 140, γ = 30 (dim = 10 forQi and

Pj in all models), then calculate Recall@10 for every 10 iterations.

The result of convergence of JTS-MF models is plotted in Fig. 6.

From Fig. 6 we can see that, the recall of JTS-MF models rises

rapidly before 100 iterations, and starts to oscillate slightly after

around 150 iterations. The same changing pattern is observed for

all four JTS-MF variants. Therefore, we set the number of learning

iterations as 200 to achieve a balance between running time and

performance of models.

7.3.2 Study of JTS-MF. To study the performance of JTS-MF

model and the effectiveness of three types of similarities, we run

JTS-MF model as well as its three reduced versions onWeibo voting

dataset, and report the results of Recall, Precision, and Micro-F1 in

8GibbsLDA++: http://gibbslda.sourceforge.net

Fig. 7. The parameter settings of α , β , γ , and dim are the same as in

Section 7.3.1. Fig. 7a, 7b, and 7c consistently demonstrate that JTS-

MF(S) performs best and JTS-MF(G) performs worst among three

types of reduced versions of JTS-MF. Note that JTS-MF(S) only con-

siders users’ social-level similarity and JTS-MF(G) only considers

users’ group-level similarity. Therefore, it could be concluded that

social-level friends are more helpful than group-level friends when

determining users’ voting interest. This is in accordance with our

intuition, since a user typically has much more group-level friends

than social-level friends, which inevitably dilutes its effectiveness

and brings noises into group-level relationship. In addition, the

result in Fig. 7 also demonstrates the effectiveness of the usage of

votings’ similarity. Furthermore, it can be evidently observed that

JTS-MF model outperforms its three reduced versions in all cases,

which proves that the three types of similarities are well combined

in JTS-MF model to achieve much better results.

7.3.3 Comparison of Models. To further compare JTS-MF model

with other baselines, we gradually increase k from 1 to 500 and

report the results in Table 2 with the best performance highlighted

in bold. The value of α , β , and γ for JTS-MF and its reduced models

are the same as in Section 7.3.1. The parameter settings are α = 2,

β = 60, γ = 15 for Topic-MF, α = 8, β = 120, γ = 20 for Semantic-

MF, and dim = 10 for Qi and Pj in all MF-based methods. The

above parameter settings are the optimal results of fine tuning for

given dim. In Table 2, several observations stand out:

• MostPop performsworst among all methods, becauseMost-

Pop simply recommends the most popular votings to all

users without considering users’ specific interests.

• Topic-MF and Semantic-MF outperforms Basic-MF, which

proves the usage of similarities with respect to topic and se-

mantic helpful for recommending votings. Besides, Semantic-

MF outperforms Topic-MF. This suggests that semantic

information is more accurate than topic information when

measuring similarities through mining short-length texts.

• JTS-MF outperforms Topic-MF and Semantic-MF. This is

the most important observation from Table 2, since it jus-

tifies our aforementioned claim that joint-topic-semantic

model can benefit from both topic and semantic aspects

and achieve better performance.

• The significance of JTS-MF over other models is evident for

smallk . However, thismargin becomes smaller whenk gets
larger, and JTS-MF is even slightly inferior to JTS-MF(S)

when k ≥ 50. This means that users’ group-level simi-

larities and votings’ similarities “drag the feet” of JTS-MF

model when k is large. However, JTS-MF is still preferred

in practice, since a real recommender system would only

recommend a small set of votings to users in general.

7.4 Parameter Sensitivity

We investigate parameter sensitivity in this subsection. Specifically,

we evaluate how different value of trade-off parameters α , β , γ , and
different numbers of latent feature dimensions dim can affect the

performance.

7.4.1 Trade-off parameters. We fix dim = 10, keep two of the

trade-off parameters as 0, and vary the value of the left trade-off
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Fig. 7: (a) Recall@k, (b) Precision@k, and (c) Micro-F1@k of JTS-MF models.
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Table 2: Result of Recall@k, Precision@k, and Micro-F1@k for JTS-MF model and baselines.

Model Metric
k

1 2 5 10 20 50 100 500

Recall 0.0097 0.0172 0.0346 0.0558 0.0846 0.1529 0.2229 0.4392

JTS-MF(S) Precision 0.007416 0.006575 0.005300 0.004271 0.003238 0.002341 0.001707 0.000672

Micro-F1 0.008401 0.009511 0.009192 0.007935 0.006238 0.004612 0.003387 0.001343

Recall 0.0065 0.0133 0.0275 0.0457 0.0752 0.1360 0.2051 0.4216

JTS-MF(G) Precision 0.004944 0.005092 0.004212 0.003500 0.002877 0.002082 0.001570 0.000645

Micro-F1 0.005601 0.007365 0.007306 0.006503 0.005542 0.004102 0.003116 0.001289

Recall 0.0071 0.0149 0.0314 0.0502 0.0789 0.1387 0.2049 0.4176

JTS-MF(V) Precision 0.005439 0.005685 0.004805 0.003846 0.003021 0.002124 0.001568 0.000639

Micro-F1 0.006161 0.008223 0.008335 0.007145 0.005819 0.004184 0.003112 0.001277

Recall 0.0099 0.0178 0.0381 0.0606 0.0908 0.1520 0.2187 0.4297

JTS-MF Precision 0.007614 0.006823 0.005834 0.004637 0.003475 0.002327 0.001674 0.000658

Micro-F1 0.008625 0.009868 0.010118 0.008615 0.006695 0.004585 0.003322 0.001314

Recall 0.0042 0.0085 0.0191 0.0313 0.0517 0.0974 0.1455 0.3086

MostPop Precision 0.003221 0.003261 0.002921 0.002403 0.001972 0.001482 0.001119 0.000469

Micro-F1 0.003637 0.004721 0.005062 0.004468 0.003804 0.002925 0.002218 0.000937

Recall 0.0063 0.0129 0.0274 0.0446 0.0727 0.1368 0.2050 0.4198

Basic-MF Precision 0.004845 0.004944 0.004192 0.003411 0.002783 0.002094 0.001569 0.000643

Micro-F1 0.005489 0.007151 0.007271 0.006337 0.005361 0.004125 0.003114 0.001283

Recall 0.0076 0.0147 0.0311 0.0495 0.0781 0.1395 0.2076 0.4210

Topic-MF Precision 0.005834 0.005636 0.004766 0.003787 0.002991 0.002136 0.001589 0.000644

Micro-F1 0.006609 0.008152 0.008266 0.007035 0.005761 0.004207 0.003154 0.001287

Recall 0.0093 0.0169 0.0333 0.0545 0.0860 0.1471 0.2142 0.4293

Semantic-MF Precision 0.007120 0.006476 0.005102 0.004173 0.003293 0.002252 0.001639 0.000657

Micro-F1 0.008065 0.009368 0.008849 0.007752 0.006342 0.004437 0.003254 0.001313

parameter. Then we report Recall@10 in Fig. 8a, 8b, and 8c, respec-

tively.

As shown in Fig. 8a, the Recall@10 increases constantly as α gets

larger and reaches a maximum of 0.0558 when α = 10. This suggests

that the usage of users’ social-level similarity do help to improve the

recommendation performance. However, when α is too large (α =

12), the learning algorithm of JTS-MF is misled to wrong direction

when updating latent features of users and votings, resulting in

performance deterioration. The similar phenomenon are observed

in Fig. 8b and Fig. 8c, too. According to the results, when the

other two trade-off parameters are set to 0, Recall@10 reaches

the maximum when α = 10, β = 140, and γ = 30, respectively.
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Therefore, in previous experiments we adopt these optimal settings

for JTS-MF(S), JTS-MF(G), and JTS-MF(V), respectively, and use

their combination as the parameter settings in JTS-MF.

7.4.2 Dimension of latent features. We fix α = 10, β = 0, γ = 0

and tune the dimension of latent features of users and votings from

5 to 90. The result is shown in Fig. 8d. From the figure, we can

see clearly that the recall is increasing when dim gets larger, this

is because latent features with larger number of dimensions have

more capacity to characterize users and votings. But a larger dim
leads to more running time in experiments. Moreover, we notice

that the improvement of performance stagnates after dim reaches

80. On balance, we set dim = 10 in our experiment scenarios to

ensure the experiments can complete within rational time duration.

8 CONCLUSIONS

In this paper, we study the problem of recommending online vot-

ings to users in social networks. We first formalize the voting

recommendation problem and justify the motivation of leveraging

social structure and voting content information. To overcome the

limitations of topic models and semantic models when learning rep-

resentation of voting content, we propose Topic-Enhanced Word

Embedding method to jointly consider topics and semantics of

words and documents. We then propose our Joint-Topic-Semantic-

aware social Matrix Factorization model to learn latent features of

users and votings based on the social network structure and TEWE

representation. We conduct extensive experiments to evaluate JTS-

MF with Weibo voting dataset. The experimental results prove the

competitiveness of JTS-MF against other state-of-the-art baselines

and demonstrate the efficacy of TEWE representation.
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