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Abstract—With the development of cloud computing, disk
arrays tolerating triple disk failures (3DFTs) are receiving more
attention nowadays because they can provide high data reliability
with low monetary cost. However, a challenging issue in these
arrays is how to efficiently reconstruct the lost data, especially
for partial stripe errors (e.g., sector and chunk errors). It is one
of the most significant scenarios in practice. However, existing
cache strategies are not efficient for partial stripe reconstruction
in 3DFTs, which is because the complex relationships among data
and parities are usually ignored during the recovery process.

To address this problem, in this paper, we proposed a compre-
hensive cache policy called Favorable Block First (FBF), which
can speed up the partial stripe reconstruction of 3DFTs. FBF
investigates the relationships among parity chains via allocating
various priorities of shared chunks. Thus in the recovery process,
by giving higher priorities to the chunks which are shared by
more parities chains, FBF can dynamically hold the significant
data in buffer cache for partial stripe reconstruction. Obviously,
it increases the cache hit ratio and reduces the reconstruction
time. To demonstrate the effectiveness of FBF, we conduct several
simulations via Disksim. The results show that, compared to
typical recovery schemes by combining with classic cache policies
(e.g., LRU, LFU and ARC), FBF improves hit ratio by up to
2.47× and accelerates the reconstruction process by 14.90%,
respectively.

Index Terms—RAID; Erasure Codes; Buffer Cache; Partial
Stripe Reconstruction; Parity Chain; Performance Evaluation

I. INTRODUCTION

With the tremendous growth of data, it is typical to employ

numerous number of disks to preserve them in large-scale

data centers. The massive usage of inexpensive disks and

higher capacity for a single disk increases the probability

of data loss or data damage, which affects the reliability

of the storage system adversely. Therefore, in cloud storage

systems, Redundant Arrays of Inexpensive (or Independent)

Disks (RAID), especially disk arrays tolerating triple disk

failures (3DFTs), receives more attention than ever [1], [2],

[4].

Erasure code is a classic implementation method for triple

disk failures (3DFTs). It can be divided into two categories.

One class is Maximum Distance Separable (MDS) codes,

which aims to offer data protection with optimal storage

efficiency. The other class is non-MDS codes, which can

improve the performance or reliability by consuming extra

storage space. For typical erasure codes employed in 3DFTs

such as STAR [5] and Triple-STAR [6], three kinds of parity

chains exist, horizontal, diagonal, and anti-diagonal parity

chains (introduced in Section II in detail). When disk failure

appears, the most frequent case is that a subset of available

data and the remaining redundant data (also referred to as

”parity”) is retrieved by the storage system from the surviving

disks.

Partial stripe error is one of the most significant failures to

affect the reliability of 3DFTs. For example, latent sector error,

as one of the contributors to partial stripe errors, has appeared

in 3.45% of studied disks [7]. Besides, partial stripe errors

are not independent, and literatures [8] [9] show a high level

of spatial and temporal locality. In other words, if a partial

stripe error occurs, additional errors are emerged with high

probabilities nearby or soon afterwards. Furthermore, the disks

with larger capacity are more prone to sector/chunk errors [10].

The inability to either temporarily or permanently access data

from certain sectors/chunks can contribute to the excessive

mean time to data loss (MTTDL). Such partial stripe errors

damage the credibility of storage systems more severely than

we expect and encourage us to take an insight to data failure

on a more subtle level.

However, with the high probabilities of sector/chunk errors,

previous recovery solutions in 3DFTs are not efficient, particu-

larly for partial stripe recovery. There are many reasons. First,

existing partial stripe recovery schemes reconstruct the chunks

use parity chains in the same direction, which sharply de-

creases the efficiency of reconstruction process. For example,

as introduced in Section II, typical recovery method ignores

the fact that some chunks can be shared in multiple chains,

and read I/Os is actually larger than needed. Second, if cache

replaces the chunks in the stripes whose partial errors are

under reconstruction, those evicted chunks have to be fetched

again, which significantly influence the efficiency and recovery

speed. Therefore proper chunk replacement policy has to be

designed for partial stripe error reconstruction, especially when

allocated cache size is restricted.

To address this problem, in this paper, we propose a novel

cache scheme called FBF, to speed up the partial stripe

recovery in 3DFTs. Different from previous cache approaches,

FBF gives a higher priority to blocks involved in several parity

chains and therefore improves cache hit ratio, especially when

cache size is limited for each stripe reconstruction.

The main contributions of this paper are summarized as

below,

• We propose a novel cache scheme called FBF, which can

increase the cache hit ratio dramatically and speed up the
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TABLE I
PARAMETERS AND SYMBOLS USED IN THIS PAPER

Parameters&Symbols Description

n number of disks in a disk array

P a prime number for erasure codes

C(i,j) a chunk at the i-th row and j-th column

PriorityDictionary
priority dictionary referenced by cache

during reconstruction

PartialStripeErrorGroup
a group of partial stripe errors detected

in 3DFTs

PartialStripeError error detected on specific stripe

RequestedChunk
chunk requried during partial stripe

reconstruction

ChunkSpace space allocated in cache for the fetched chunk

FetchedChunk a chunk fetched from disk array

Queue3 queues where chunks’ priority is three

Queue2 queues where chunks’ priority is two

Queue1 queues where chunks’ priority is one

partial stripe error recovery, especially when cache size

is limited.

• We conduct a series of simulations on various cache

methods. Compared to existing cache methods, FBF

achieves higher hit ratio and speeds up the reconstruction

of partial stripe errors in 3DFTs using various erasure

codes.

The remainder of the paper is organized as follows. Section

II reviews the related work and motivation of our work.

Section III illustrates the details of FBF design. Section IV

evaluates the performance of our scheme compared with other

typical cache methods. Finally we conclude our work in

Section V.

II. RELATED WORK AND MOTIVATION

In this section, we discuss several prevailing erasure codes,

cache policies, problems for partial stripe reconstruction in

3DFTs and the motivation of our approach. To simplify the

discussion, we summarize the symbols used in this paper in

Table I.

A. Erasure Codes in 3DFTs

Reliability has been a critical issue in storage systems

since disk failures and sector errors are typical in large data

centers. Erasure coding has been applied in RAID system for

a long time. The advantages/disadvantages of erasure coding

over simple replication are two-fold. On one hand, it can

achieve high reliability with low storage overhead. On the

other hand, it requires long reconstruction time. Researchers

have presented several erasure codes for triple Disk Failure

Tolerant arrays (3DFTs). These codes can be classified into

two categories, MDS and non-MDS codes. Typical MDS codes

include Reed-Solomon codes [11], Cauchy-RS codes [12],

STAR code [5], Triple-Star code [6], Triple-Parity code [15],

HDD1 code [14], RSL-code [16], TIP-code[1], EH-Code[37]

and RL-code [17], and so on. Typical non-MDS codes contain

WEAVER codes [18], HoVer codes [19], T-code [21], Pyramid

codes [3], Local Reconstruction Codes [2], Locally Repairable

Codes [20], etc.

B. Typical Cache Replacement Policies

When doing reconstruction, storage systems usually work

together with the buffer cache. In order to improve the

efficiency of the buffer cache, researchers have proposed many

cache replacement algorithms, such as LRU [25], LFU [26],

FBR [27], LRU-k [28], 2Q [29], LRFU [30] etc. Cached

chunks are examined with different dimensions, like access

intervals and access frequencies to determine sacrificial ones.

Over the past few decades, researchers pay more attention

on the combination of recency and frequency when designing

cache algorithms. Besides, novel policies like Victim Disk

First (VDF) [23] are proposed recently which take more

factor, like miss penalty, into consideration when choosing the

eviction during disk reconstruction.

C. Partial Stripe Errors

There are several types of storage errors that can lead to

partial stripe errors, even with multiple layers of checking

and correction mechanisms. They can be categorized into

two types. The first type is software errors, which is usually

difficult to detect and diagnose, such as misdirect write, torn

write, data path corruption and parity pollution, etc. Academic

studies [32] shows 8.5% of SATA disks would develop silent

corruptions and 13% of them are even missed by background

verification process. The second type is hardware errors, such

as sector errors and chunk errors, which are usually caused

by media imperfections and scratches, rotational vibration,

read/write head hitting a bump or media and off-track reads

or writes etc. [7] These errors are usually repaired by writing

recovered data to spare sectors or blocks instead of replacing

the whole disk. Partial stripe errors as a critical factor in data

reliability. A single partial stripe error can cause data loss

when encountered during RAID reconstruction after a disk

failure. Lakshmi et al. [7] also find that partial stripe errors

like sector errors exhibit a significant amount of spatial and

temporal locality. Between 20% to 60% of all errors have a

neighbor within a distance of less than 10 sectors in logical

sector space. [8]. This probability grows as the disk drive aged.

D. Problems and Our Motivation

Existing recovering methods of partial stripe error relies

on higher level of mechanisms such as RAID reconstruction

to obtain the lost data. Once a specific partial stripe error

is detected, parity chains are made use of to recover the

lost data. However, we find that in 3DFTs arrays, current

recovery methods are not efficient enough and usually ignore

the fact that several chunks1 can be involved among multiple

parity chains during recovery. In order to accelerate the partial

stripe recovery procedure, we proposed a cache scheme called

Favorable Block First, which largely reduces the IOs and

consequently the mean time to data loss(MTTDL).

1In some other research papers [21], chunks are referred to as data blocks
as well.
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Fig. 1. Encoding of TIP-code (P = 5)

Taking TIP-code for an example, Figure 1 illustrates how

chunks are encoded for a 6-disk array(P=5). Different shapes

are used to indicate various sets of parity chains. For faulty

chunks marked with the grey color, there are three ways (Hor-

izontal parity chain, Diagonal parity chain and Anti-diagonal

parity chain) for reconstructing each chunk. Typical partial

stripe recovery [33] is shown in Figure 2(a). In this figure,

parity chains of specific direction are selected to recover all

the designated chunks. On the other hand, if the parity chains

are intelligently selected (as shown in Figure 2(b)), chunks can

be shared by multiple chains, which sharply reduces the total

number of chunks needed to be fetched into buffer, together

with optimized IOs. Similar approaches are introduced by [22]

in order to reconstruct single disk failure.

Fig. 2. Example of How Recovery Parity Chains are Selected by Typical and
FBF Recovery Scheme with TIP-code (P = 5)

Due to the spatial locality of sector/chunk errors [8] [9],

partial stripe reconstruction becomes frequent in 3DFTs. When

a stripe is under reconstruction, at that time, if the cache

evicts the data/parities in the stripe before they are used for

the recovery, the efficiency cannot be guaranteed under the

reconstruction. So on one hand, related data/parities (e.g., in

a same parity chain) should be carefully considered when the

cache decide to replace them. On the other hand, due to the

limited space of cache, proper selection of chunks for partial

stripe recovery is necessary for 3DFTs, especially when the

application workload is high.

Another problem for partial stripe recovery is the low effi-

ciency for cache policies. General cache replacement policies

Fig. 3. Example of How Recovery Parity Chains are Selected by FBF
Recovery Scheme with TIP-code (P = 7)

ignores the special property for partial stripe reconstruction,

where shared chunks have to be evicted before the reuse of

another parity chain. Consequently, the number of read and

write I/Os in practice is much higher than the optimal case. A

unique priority-driven cache replacement policy is proposed

as well to optimize the whole cache scheme.

The aforementioned situation is more visible in 3DFTs with

more disks as Figure 3 indicates. Five sequential chunks are

detected with error on Disk0, instead of reconstructing faulty

chunks by parity chains in the same direction, the scheme

makes full use of parities in three directions. However, when

applying this recovery scheme in a real environment, one

circumstance might appear as Figure 3. Chunks are iden-

tified by (Row Number, Column Number). Chunk(4, 4)
is fetched to cache when reconstructing Chunk(0, 0). When

requested for then second time, it had already been evicted

due to the large amount of recovery I/Os and limited cache

size allocated to reconstruction process. So the cache needs

to fetch Chunk(4, 4) again from disk arrays. Therefore,
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the actual number of I/O is larger than what we expect,

so does the reconstruction time. This situation enlarges the
window of vulnerability (WOV) imperceptibly. Even though

cache algorithms like LRU [25], LFU [26], ARC [24] are

proved to be effective in industry, there is no cache algorithm

designed specifically for this scenario in 3DFTs. Intuitively

those chunks shared by multiple parity chains should be given

a higher priority in case of being evicted ahead of time. This

motivates us to design a cache scheme especially for the

scenario of partial stripe errors reconstruction, by combining

the high cache performance with optimized I/O cost during

reconstruction process via investigating the relationship among

various parity chains.

III. FAVORABLE BLOCK FIRST(FBF) CACHE SCHEME

In this section, we illustrate the Favorable Block First(FBF)

cache scheme in detail, which is an effective cache method to

accelerate partial stripe recovery in 3DFTs.

A. Overview

Main Memory

Partial Stripe Error Data Disk

Application

Buffer Cache

RAID Controller

Replacement Policy

Recovery Method Generator

Partial Stripe Error 
Detected/Discovered

Queueing Method
Priority List

Disk0 Disk1 Disk2 ... Diskn

...

Fig. 4. Overview of the Reconstruction Process in 3DFTs.

A representative reconstruction process of partial stripe

recovery of 3DFTs is shown in Figure 4. Favorable Block

First(FBF) cache scheme is applied in the RAID Controller,

which is transparent to the upper level application. Once partial

stripe errors are detected by proactive measure or discovered

when particular chunks are accessed, the error information

is sent to cache instantly, where lies a Recovery Method

Generator, responsible for generating proper recovery scheme

for those lost data. Soon afterwards, a list of priorities are

created for reference by queuing method. Once designated

chunks are fetched from disks, they are cached in the buffer

waiting for calculation and reconstruction. Once buffer space is

in shortage, replacement policy comes in replacing the chunks

with least accessing possibility with new fetched data.

FBF is proposed to improve the hit ratio of cache during

partial stripe recovery by issuing a smaller number of disk

reads and taking the priority of chunks into consideration.

The basic idea of FBF is authorizing chunks with different

priorities according to the number of shared parity chains,

and the chunks with lower priority have higher chance to be

replaced when cache space is insufficient.

FBF abides by the following steps:

1) Priority Definition: Generate recovery scheme given

failed partial stripe and define priorities for each fetched chunk

based on the recovery scheme.

2) Queueing Method: Inserting chunks to different queues

in cache once fetched from disk arrays.

3) Replacement Policy: Replacing chunks with lowest

priority first when cache space is not enough.

1) Priority Definition: Conventional partial stripe recovery

is inefficient and suboptimal because they only use single

parity column. In order to make full use of the three parity

columns of 3DFTs and create as much overlapped chunks as

possible, we generate parity chains by simply looping parity

chains of three directions.

According to the layout of 3DFTs, each chunk can be

shared by up to three different parity chains, which are

horizontal, diagonal, and anti-diagonal parity chains. Once

recover scheme is generated, RAID controller can detect how

many chains are involved in by setting counter for each chunks

in the scheme. Therefore, during the priority definition step,

chunks shared by three stripe chains are given the highest

priorities, which is because they can decrease the most amount

of I/Os. The chunks shared by two stripe chains have the

medium priorities, and the chunks referenced once are granted

with lowest priorities in FBF. FBF holds the chunks with

the highest priorities because (1) the neighbor chunks have

high probabilities to be fail due to the spatial locality of

sector/chunk errors, (2) the application can access these chunks

during partial stripe reconstruction. The priority definition of

FBF is summarized in Table II.

In order to define the priorities in a recovery scheme, extra

calculation is required. Additional space is needed to store

the corresponding priorities of chunks. Even though FBF has

temporal and spatial overhead (handling/storing the priorities),

the overhead could be negligible due to the following reasons.

Firstly, FBF calculates the priorities in advance, which only

aims at the partial stripes with various continuous chunk

numbers. These priorities can be expanded to all partial stripe
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TABLE II
AN SUMMARIZE OF PRIORITY DEFINITION IN FBF

Priority Number of Shared Parity Chains Reduced I/O(s)

3 ≥Three ≤ 2 I/Os

2 Two ≤ 1 I/Os

1 One 0 I/Os

errors with the same format among all disks. Furthermore,

these priorities can be enumerated once a same format of

partial stripe error is detected again, and no more calculation

is required. Hence the temporal cost is quite limited. Secondly,

priority is only divided into three types, so two bits are enough

to represent priority. Since chunk sizes usually takes at least

KB as unit, an attachment of 2 bits for each fetched chunk is

trivial.
2) Queuing: Since a data can be referenced for up to three

times during reconstruction, FBF needs only three queues in

recovery. In order to clearly indicate this process, we take

recovery scheme in Figure 3 as an example. Similar cache

method can be applied to 3DFTs with various codes.

TABLE III
PRIORITY DEFINITION OF RECOVERY SCHEME EXAMPLE USING

TIP-CODE(P=7, N=8)

Priority Chunks

3 C(1,1)

2 C(4,1), C(4,4)

1 C(0,2),C(0,4),C(0,6),C(1,3),C(1,4),C(1,6),C(1,7),C(2,2),C(2,3),

C(2,6),C(3,3),C(3,6),C(4,3),C(4,6),C(4,7),C(5,2),C(5,4),C(5,5)

After defining priorities for each chunk, according to Figure

3, we can get the priorities of various chunks as shown in Table

III. Once chunks are fetched into cache, different priorities

are added to the chunks in the corresponding queues. In these

queues, various links (referred to as arrows) between chunks

are established based on the priorities. It is clearly indicated in

Figure 5, where C(1,1) and C(4,4) is attached to Queue3 and

Queue2 individually due to their comparatively high priorities.

When a cache hit occurs, a demoting procedure is started

in order to keep the priority queues neatly. Once a chunk

in Queue3 hits, with a history record of referenced twice

in the reconstruction process, it is demoted and inserted to

the start point of Queue2. As shown in Figure 6, LRU

algorithm is used as an example in each queue, the latest

accessed data are attached to the end of each queue. Similar

to Queue3, when the chunk with priority two is hit, it should

be demote to Queue1 in the same way. During the partial

stripe reconstruction, chunks with the lowest priorities have no

effectiveness on helping the recovery of another parity chain,

they are kept in the lowest cache level and waiting for the I/O

requests of applications. Figure 6 shows how C(1,1) is demoted

to Queue2 and afterwards to Queue1 later.
3) Replacement Policy: According to the queueing process

of FBF, the chunks with different priorities are attached

to various queues. The chunks with the high, medium and

Fig. 5. An Example of Cache Warming Up Process During Reconstruction
with requests coming in the sequence of C(1,1), C(2,2), C(4,4), C(5,5),
C(0,6)

...

Fig. 6. An Example of Cache Demoting Process During Reconstruction with
two C(1,1) requests

low priorities are in Queue3, Queue2, Queue1, respectively.

When cache is full, FBF replaces the chunks in Queue1 first,

and then Queue2, and Queue3 finally.

Figure 7 illustrates the selection of evicted chunk when a

requested chunk comes in. The chunks with dash line indicates

they are selected, and is evicted in the following process. In

this figure, it can be noticed that when a chunk in Queue1
comes in, though the chunks in Queue2 (e.g., C(1,1)) has not

be referenced for a long time, they should be resident in the

cache due to their comparatively high priority. Instead, only

the chunk with priority 1 is evicted to make space for the

incoming chunk.
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Fig. 7. An Example of Replacement Policy During Reconstruction Process
with requests coming in the sequence of C(1,6), C(1,7).

The detailed implementation of FBF is described in Algo-

rithm 1.

B. Parallel Reconstruction

Disk-Oriented Reconstruction(DOR) and Stripe-

Oriented(SOR) Reconstruction [13] are two main parallel

disk reconstruction methods. In DOR, n process are created

(n is the number of disks in a 3DFTs array) and each process

corresponds to one disk. In the scenario, one process is used

to handle write operations in spare disk, and the other n − 1
processes are assigned to read data from surviving disks in

parallel. In SOR, multiple processes are created and each

processes is responsible for the recovery of several stripes.

There is no interaction between any two processes and the

stripes are reconstructed simultaneously. Since partial stripe

recovery is at the granularity of Chunks, we extends SOR to

FBF as well. In this scenario, each process is allocated with a

small part of cache, which means the cache size for a single

process is limited. By combing with SOR, FBF not only can

work for simple reconstruction process in serial, but also

does well for parallel reconstruction (e.g., XOR calculations

and writes to the spare sector/Chunk simultaneously).

IV. EVALUATION

In this section, we evaluate the performance of partial stripe

recovery between Favorable Block First(FBF) and typical

cache methods in 3DFTs, which demonstrates the effectiveness

of FBF.

A. Methodology

In this subsection, we give the simulation results to evaluate

various cache approaches, which are measured by the metrics

defined in the previous subsection.

Disksim 4.0 with default settings is used as the simulator

[31] in our evaluation. It is an efficient and highly-configurable

disk simulator for a typical storage system. In Disksim, the

stripe unit size means the chunk size. Typically, the stripe size

is more than 256KB in an array [34], hence chunk size is set

to 32KB in our simulations.

Algorithm 1: Algorithm of FBF
Input: Priority Dictionary, Chunk Read Request
Queue = SearchCache(RequestedChunk)
// Cache miss

if Queue == NULL then
if No space in Cache then

if Queue1 is not empty // Replacement policy
then

ChunkSpace=Release(Queue1.Pop())
end
else if Queue2 is not empty then

ChunkSpace=Release(Queue2.Pop())
end
else if Queue3 is not empty then

ChunkSpace=Release(Queue3.Pop())
end

end
else

ChunkSpace = Cache.New()
end
// Read from Disk

FetchedChunk=FetchData(RequestedChunk, ChunkSpace)
Priority=PriorityDictionary[FetchedChunk]
switch Prority do

case 3 do
Queue3.Attach(FetchedChunk)

end
case 2 do

Queue2.Attach(FetchedChunk)
end
case 1 do

Queue1.Attach(FetchedChunk)
end

end
end
// Cache hit

else
switch Queue do

case Queue3 do
Queue3.Remove(RequestedChunk)
Queue2.Attach(RequestedChunk)

end
case Queue2 do

Queue2.Remove(RequestedChunk)
Queue1.Attach(RequestedChunk)

end
case Queue1 do

Queue1.PushToEnd(RequestedChunk)
end

end
end

The effectiveness of FBF is evaluated using sythetic traces

of situations where disks with random size of partial stripes

fail. The size of partial stripe errors are set within the range

of [1 × chunksize, (p − 1) × chunksize] on one disk, since

chunk is the fundamental recovery unit. While the smallest

partial stripe error can happen on only one chunk, it cannot be

greater than (p−1)×chunksize as well, otherwise it would be

recovered at the granularity of stripes, which is another topic

of 3DFTs reconstruction and solved by previous literatures

[22] [36].

Due to the temporal and spatial locality as mentioned in

Section II, we assume that the error chunks detected in the

same stripe are continuous, and the sizes of partial stripe errors

obeys uniform distribution2, with the average number lies in

the half size of the stripe, which is p−1
2 × chunksize). In

addition, the typical partial stripe recovery scheme utilizes the

horizontal parity chains to recover the lost data. In 3DFTs,

using vertical (including diagonal/anti-diagonal) parity chains

2FBF can be proved under other distributions as well.
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Fig. 8. Cache Hit Ratio During Partial Stripe Reconstruction in 3DFTs Using Various Erasure Codes(P = 7, 11, 13).

has approximate effects on partial stripe reconstruction, which

is not involved in our evaluation.

We Compare FBF with several widely-used cache algo-

rithms, such as FIFO, LRU [25], LFU [26], and ARC [24].

Several popular XOR-based MDS codes in 3DFTs are selected

for comparison 3:

(1) Codes for p+ 1 disks: TIP-Code [1], HDD1 [14];

(2) Codes for p+ 2 disks: Triple-Star code [6];

(3) Codes for p+ 3 disks: STAR code [5].

We selects the following metrics in our evaluation:

(1) Cache Hit Ratio: It is the hit ratio of buffer cache

when reconstructing partial stripes.

(2) Total Number of Read Operations During Recovery
Process: It is the total number of read I/Os to recover partial

stripes.

(3) Average Response Time: It is the average response

time for each I/O request to reconstruct partial stripes.

(4) Reconstruction Time: It is the total reconstruction time

to recover all partial stripes.

3Several Reed Solomon based Codes like Local Reconstruction Codes
[2] can be applied with FBF as well, by investigating relationships among
global/local parity chains during the recovery.

We implement the simulation in a system environment of

ubuntu 12.04(32 bit) with Intel Core i5-4430 CPU@3.00GHz

and RAM size of 12GB, and start the parallel reconstruction

using 128 threads to recover a failed with 1TB capacity. In

our simulation, the data access time of buffer cache and data

disk are set to 0.5ms and 10ms, respectively.

B. Results
1) Cache Hit Ratio: Cache hit ratio is one of the most

important metrics to show the effectiveness of a cache scheme.

High cache hit ratio indicates that a larger percentage of

requested chunks is hit instead of accessing disk arrays. It can

reduce the data access time and accelerate the reconstruction

dramatically. The result are shown in Figure 8.
It shows a trend that as cache size increases, the hit ratio

keeps increasing and remains stable after cache size exceeds

a specific number. This tendency is comprehensible because

extremely small cache size always leads to the eviction of

valuable chunks and decrease the hit ratio, and this pattern

applies to all the cache schemes. Since those chunks being

referenced for one time is always missed by cache, the hit

ratio reaches a plateau as cache size rises.
Among those graphs in Figure 8, FBF shows an outstanding

improvement when cache size is limited, and it reaches plateau
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faster than other cache methods. The hit ratio of FBF can be

multiple times of other cache methods. For example, in Figure

8, when using HDD1 code with P = 11 and cachesize =
256MB, the hit ratio of FBF is at least 2.51× than that of

other methods. STAR code shows a comparatively higher hit

ratio and the possible reason is adjusters of each stripe can

be referenced for more than three times and always assigned

with highest priority in cache, which can enhance the hit ratio

potentially.

Fig. 9. Number of Read Operations During Partial Stripe Reconstruction in
3DFTs Using TIP-Code(P = 5, 7, 11, 13).

2) Number of Read Operations in Disks During Recovery
Process: Due to the limitation of pages, only the number

of read operation using TIP-code is shown as an example.

Since read operations during partial stripe reconstruction can

incredibly affect the total reconstruction time and the reliability

of a storage system consequently, we count the number of disk

reads during the reconstruction process. The result are pre-

sented in Figure 9. It shows that compared with other typical

cache methods, FBF can reduce the total read I/O number by

up to 22.52%(when prime = 13 and cachesize = 512MB
compared with LFU).

It can be observed that when cache size increases, the

number of disk reads decreases since a growing number

of chunks are cached instead of being evicted and fetched

repeatedly. The number of disk reads is expected to stabilize

when cache size is big enough (32 MB when P = 5, 64 MB

when P = 7, 256 MB when P = 11, 13). As prime number

grows, the stable point of cache size is postponed as well.

This tendency owes to the increased stripe size accompanied

with the increased prime, which needs larger cache space in

order to reach the steady state.In short, FBF shows an obvious

advantage when cache size is restricted.

3) Response Time of Disk Array During Recovery Process:
We study the response time of disk arrays of various erasure

codes as shown in Figure 10. The response time of disk arrays

plays an important role in the total reconstruction time, and an

effective reduction of disk response time can narrow down the

Window Of Vulnerability(WOV) as well. In fact, as a general

cache scheme for partial stripe recovery of 3DFTs, FBF works

well with all the XOR-based 3DFTs erasure codes and results

in a relatively shorter response time than all of other cache

methods.

In addition to the overall trend that larger cache sizes result

in comparatively faster response time, FBF shows distinct

superiority compared with other cache methods in the scenario

of parity stripe recovery. Taking TIP-code as an example, the

maximum reduction is up to 31.39% compared with LFU,

24.51% with FIFO, 24.46% with LRU, 18.02% with ARC

when P = 13. The advantage of FBF becomes obvious when

cache size is limited, but not apparent as cache size keeps

growing(when cache size exceeds 2048MB in experiments).

4) Partial Stripe Error Reconstruction Time: Figure 11

compares cache schemes applying on TIP-code. The recon-

struction time decreases as cache size rises, and the time taken

by FBF is less than other codes in most of the test cases.

Compared with the most general cache method LRU and ARC,

FBF have an improvement of up to 14.90% and 12.04%,

respectively. Even though reconstruction time and response

time by FBF shows similar characteristics, the improvement

of reconstruction time compared with other cache schemes

is less obvious. The reason is the process of reconstruction

involves plenty of operations like calculation and writing to

spare chunks, which take same time for all the compared cache

methods and lessen the statistical percentage of improvement

potentially.

TABLE IV
OVERHEAD OF FBF DURING PARTIAL STRIPE RECOVERY IN 3DFTS

Code STAR TripleSTAR TIP HDD1

P = 5
Temporal Overhead(ms) 0.086 0.063 0.058 0.061

Percentage(%) 1.239 1.192 1.331 1.214
P = 7

Temporal Overhead(ms) 0.125 0.087 0.081 0.088
Percentage(%) 1.362 1.359 1.299 1.445

P = 11
Temporal Overhead(ms) 0.278 0.182 0.169 0.178

Percentage(%) 2.010 1.819 1.598 1.782
P = 13

Temporal Overhead(ms) 0.433 0.258 0.236 0.252
Percentage(%) 2.753 2.157 2.273 2.423

5) Overhead of FBF: Table IV shows av-

erage temporal overhead during partial stripe

reconstruction when P = 5, 7, 11, 13 with four

tested erasure codes. Percentages are calculated as

TemporalOverhead/TotalReconstructionT ime. It is

observed that temporal overhead does not have obvious

changes as cache size or chunk size increases. The overheads

increase a little bit as prime number becomes larger, but

they all remains under 2.8%, which is acceptable during data

reconstruction.

As discussed in SectionIII, only two bits is attached to each

fetched chunk as an indicator of priority. Since at least KB is

taken as the unit of chunk sizes, the spatial overhead of FBF

is negligible during practice.
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Fig. 10. Average Response Time of Partial Stripe Reconstruction in 3DFTs Using Various Erasure Codes(P = 7, 11, 13).

Fig. 11. Partial Stripe Reconstruction Time in 3DFTs Using TIP-Code(P =
5, 7, 11, 13).

TABLE V
MAXIMUM IMPROVEMENT OF FBF OVER OTHER CACHE POLICIES FOR

PARTIAL STRIPE RECOVERY IN 3DFTS

Cache Management
FIFO LRU LFU ARC

Policy

Hit ratio 134.06% 142.70% 247.67% 63.74%
Number of reads in disks 14.13% 17.14% 22.52% 12.37%

Response time 24.51% 24.46% 31.39% 18.02%
Reconstruction time 11.77% 14.90% 13.42% 12.04%

C. Analysis

From the results in above subsection, FBF could increase

the hit ratio in cache during reconstruction, and reduce the

time consumed by referring disk arrays. The maximum im-

provements of FBF over other cache management policy are

summarized in Table V.

There are several reasons to achieve this gains. Firstly, the

relationship among parity chains are taken into consideration

compared with other general cache methods. Secondly, the

favorable chunks are authorized with a higher priority, hence

they have less possibilities to be evicted compared with chunks

referenced for only once. Thirdly, FBF is a cache scheme

utilizing the character of any XOR-based 3DFTs erasure

codes, hence the improvement of FBF can apply to a wide

range of storage arrays.
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V. CONCLUSION

In this paper, we proposed a novel cache scheme in order

to accelerate partial stripe reconstruction for disk arrays tol-

erating triple disk failures (3DFTs). By authorizing priorities

to data/parity chunks shared by multiple parity chains, FBF

can sharply increase the cache hit ratio during reconstruction.

Experiment results prove that, FBF improves hit ratio by up to

2.47× and accelerates the reconstruction process by 14.90%,

respectively. FBF is considered to be effective for parallel and

online recovery as well.
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