
Quality of Service Support for Fine-Grained Sharing on GPUs
Zhenning Wang

Department of Computer Science
Shanghai Jiao Tong University

znwang@sjtu.edu.cn

Jun Yang
Electrical and Computer Engineering

Department
University of Pittsburgh

juy9@pitt.edu

Rami Melhem
Department of Computer Science

University of Pittsburgh
melhem@cs.pitt.edu

Bruce Childers
Department of Computer Science

University of Pittsburgh
childers@cs.pitt.edu

Youtao Zhang
Department of Computer Science

University of Pittsburgh
zhangyt@cs.pitt.edu

Minyi Guo
Department of Computer Science

Shanghai Jiao Tong University
guo-my@cs.sjtu.edu.cn

ABSTRACT
GPUs have been widely adopted in data centers to provide accelera-
tion services to many applications. Sharing a GPU is increasingly
important for better processing throughput and energy efficiency.
However, quality of service (QoS) among concurrent applications is
minimally supported. Previous efforts are too coarse-grained and not
scalable with increasing QoS requirements. We propose QoS mecha-
nisms for a fine-grained form of GPU sharing. Our QoS support can
provide control over the progress of kernels on a per cycle basis and
the amount of thread-level parallelism of each kernel. Due to accu-
rate resource management, our QoS support has significantly better
scalability compared with previous best efforts. Evaluations show
that, when the GPU is shared by three kernels, two of which have
QoS goals, the proposed techniques achieve QoS goals 43.8% more
often than previous techniques and have 20.5% higher throughput.

CCS CONCEPTS
• Computer systems organization → Multiple instruction, mul-
tiple data; • Applied computing → Data centers;

KEYWORDS
GPU, Quality of Service

ACM Reference format:
Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang,
and Minyi Guo. 2017. Quality of Service Support for Fine-Grained Sharing
on GPUs. In Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28,
2017, 13 pages.
https://doi.org/10.1145/3079856.3080203

1 INTRODUCTION
GPUs have been widely adopted in many systems to accelerate
compute-intensive applications, such as MapReduce [15], Graph
Processing [47] and Deep Learning [14, 40]. A GPU has a massive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080203

number of simple compute cores grouped into streaming multipro-
cessors (SM) [27]. GPUs exploit thread-level parallelism (TLP) with
these cores, hiding memory latency through heavy multi-threading.

In today’s GPU-equipped systems, multiple applications may
need to share a single GPU at the same time. In desktop computing,
for instance, HD video players may co-execute with live video call-
ing and graphic processing required by the OS. While sharing a GPU
by multiple applications can be implemented with various mecha-
nisms [25, 37, 39], there is little support in current GPU hardware
to manage quality of service (QoS) among applications that share
the GPU. Tasks such as graphic processing need to be executed in
a responsive manner to guarantee a good user experience. Failing
to meet QoS may lead to an unsatisfactory user experience, such
as game lags and frame drops. Non-graphic tasks may also have
performance requirements. For example, data centers often provide
services to users who require applications to progress at certain rates.

Initial effort to address QoS for GPUs used modified device dri-
vers, invoked system call traps/API to schedule GPU commands
(device initialization, data transfers, kernel launch, etc.) or con-
trolled the order of multiple kernels [18, 25, 32]. Applications share
the GPU in a time-multiplexed manner at the granularity of kernel
execution1. Once a kernel is launched onto the GPU, it cannot be
easily interrupted because current GPUs do not support preemption.
Other applications have to wait for the completion of the running
kernel. Thus, these previous techniques work best for short kernels,
as long-running kernels would block waiting kernels for a long time.

Recently, there has been momentum to support preemption in
GPUs. The Heterogeneous System Architecture (HSA) specifica-
tion [11] defines three kinds of preemption: 1) soft preemption,
where hardware can delay the preemption request; 2) hard preemp-
tion, where hardware has to save the context to memory; and 3)
context reset, where hardware drops the context of the executing
kernel.

Along with industrial advances, there had been academic efforts
to investigate hard preemption [37, 41, 42] and context reset [31].
Further, support for preemption has been studied to improve sharing.
Rather than time-multiplex the GPU, kernels can now run concur-
rently on the same GPU by hot swapping between executing and
pending kernels [37, 41, 42]. In [37], a context switch is performed
at the granularity of one SM, i.e., the context of kernels can be

1An application using the GPU has multiple kernels, each capable of spawning many
threads that are grouped into thread blocks (TB)

269

https://doi.org/10.1145/3079856.3080203
https://doi.org/10.1145/3079856.3080203

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Wang et al.

swapped in integer number of SMs. Hence, different application ker-
nels can execute concurrently on disjoint sets of SMs, i.e., a spatially
partitioned multitasking of a GPU. Fairness or QoS can be managed
by adjusting the number of SMs in each partition [2, 3, 37]. How-
ever, previous studies [30, 37, 42] show that there is a great resource
under-utilization problem in applications across various domains,
and such under-utilization is mainly within each SM. Hence, par-
titioning SMs among kernels cannot address this problem because
each SM still executes one kernel at a time. Therefore, managing fair-
ness or QoS by adjusting the number of SMs is too coarse-grained
and suboptimal.

An improved form of sharing was proposed in which sharing
is performed in each SM [23, 30, 41, 42, 44]. These schemes al-
low multiple kernels to co-run at the level of an SM, rather than
being spatially partitioned between SMs. This fine-grained sharing
is enabled at run-time with Partial Context Switch [41, 42]. This
technique swaps the context of kernels in an integer number of TBs
(a.k.a. cooperative thread array). This finer unit of context has less
swap cost than swapping at the granularity of an SM. Fine-grained
sharing achieves better resource utilization and GPU throughput
than coarse-grained sharing [41, 42]. Fairness can be maintained by
adjusting within-SM resources among sharer kernels, which is more
effective than coarse-grained sharing due to more precise resource
management [42].

In this paper, we develop QoS mechanisms in multitasking GPUs
with fine-grained sharing for datacenter-scale workloads. The differ-
ence between fairness and QoS is that the former tries to equalize a
specific metric, such as performance, among all kernels, while the lat-
ter differentiates the metric and guarantees it for only some kernels.
Hence, their resource allocation algorithms are vastly different. We
demonstrate that QoS management with fine-grained sharing is more
effective and more scalable than coarse-grained sharing. Kernels
with QoS goals can receive “just enough” resources to reach their
goals. Kernels without QoS goals can use any remaining resources
to maximize their throughput. The main advantage of our scheme
over coarse-grained sharing is that it can, through warp scheduling,
manage the amount of progress of each sharer kernel. The scheme
more accurately achieves a performance goal than the coarse-grained
strategy, which adjusts how many SMs a kernel receives. Due to
more precise control, our techniques are also more scalable to the
number of sharers and the number of QoS goals. The contributions
of this work are:

• Lightweight cycle-level QoS management techniques for fine-
grained GPU sharing. We develop simple quota allocation schemes,
in terms of instruction count to control the progress of each sharer
kernel. Quotas are derived from QoS goals, and are added to the
unmodified warp scheduling algorithm to preserve its original
property. The schemes provide just enough quotas for reaching
QoS goals. Excessive quotas are used to maximize GPU through-
put when all QoS goals are met.

• A static resource adjustment technique for sharer kernels. We
develop a static resource allocation scheme in unit of TBs for
GPU sharers. This scheme provides enough but not excessive
thread-level parallelism to kernels so as to optimize overlapped
execution. Resource allocation is also performed with caution to
reduce context switch overhead, achieving better efficiency.

In our evaluation, we used 90 kernel pairs and 60 kernel trios
from Parboil, sweeping through 10 QoS goals. Our approach not
only achieves more QoS goals than coarse-grained sharing, but it
is also more scalable when increasing the number of kernels and
QoS goals. On average, our techniques achieve QoS goals 43.8%
more often for trios and 12.2% more often for pairs than spatial
partitioning-based management. The total GPU throughput is also
20.5% higher for trios and 15.9% higher for kernel pairs, on average.

OS

M
em

ory

PC
I-E

GPU

Device Memory

SM

MC

Interconnection

L2
D

river

SM SM SM

MC
L2

MC
L2

TB Scheduler
Commands

Data

Figure 1: System Overview

2 BACKGROUND AND PRIOR ART
In this section, we describe the architecture of a GPU and its execu-
tion model. We use NVIDIA/CUDA terminology, but most descrip-
tions also apply to the GPUs of other vendors.

2.1 GPU Architecture
GPUs are co-processors that cannot initialize on their own. Instead,
the runtime and its driver in the OS control the GPU by sending com-
mands over the PCI-E bus to perform initialization, data transfers,
kernel launch and synchronization between the OS and the GPU.
Figure 1 shows an overview of a GPU system architecture.

The GPU has multiple Streaming Multiprocessors (SMs), each
containing many compute cores and resources such as registers,
shared memory and L1 cache. SMs share device memory through an
interconnect network. Memory requests are distributed to memory
controllers according to address. Each memory controller has its
own L2 cache.

2.2 GPU Execution Model
A GPU application consists of multiple kernels, each performing a
specific task. Kernels are SIMT (Single Instruction Multiple Threads)
programs for a GPU that may or may not have dependencies among
them. The programmer writes code for one thread, and the GPU
generates many threads executing the same code. The total number
of threads is specified by the programmer.

Threads are grouped into thread blocks (TB), which are dis-
patched to the GPU one at a time. The resource demand per thread
is determined by the compiler and the number of threads per TB is
specified by the programmer. Hence, the GPU can easily calculate
the resource requirements of a TB, and how many TBs an SM can
hold. An SM can continue taking an integer number of TBs, until

270

Quality of Service Support for Fine-Grained Sharing on GPUs ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

𝐾1 starts 𝐾2 waits 𝐾1 completes, 𝐾2 starts
time

𝐾1 𝐾2

GPU

𝐾1

𝐾1𝑆𝑀0

𝑆𝑀1 𝐾2

𝐾2𝑆𝑀0

𝑆𝑀1

GPU

(a) Current time-multiplexed solution

GPU

𝐾1 𝐾2

Device Memory

Partitioned Partitioned

Shared

𝑆𝑀0 𝑆𝑀1

(b) Current space-partitioned solution

GPU

Device Memory

Fine-grained controlled

Indirectly controlled

𝐾1 𝐾2 𝐾1 𝐾2𝑆𝑀0 𝑆𝑀1

(c) Fine-grained QoS Control

Figure 2: Different GPU sharing strategies.

one of the required resources, such as the registers, the scratchpad
memory (also called Shared Memory in CUDA terminology), or the
maximum number of threads and TBs, reaches the SM limit. Other
remaining resources are left unused. If the total GPU resources are
not enough to dispatch all TBs in a kernel, the remaining TBs wait
for executing kernels to finish and release resources.

Once a TB is dispatched to an SM, its threads are batched into
warps by the hardware, 32 at a time (the SIMD width of the GPU).
Registers, shared memory and caches are shared by the warps within
one SM. An SM has one or more warp schedulers, and warps are
distributed equally to the schedulers. Schedulers select SIMD instruc-
tions from different warps to execute according to certain policies
to optimize kernel performance. Warps can be stalled due to long
latency operations. The schedulers select instructions from ready
warps, if there are any, to keep the pipeline busy. Hence, long latency
operations can be hidden under execution cycles, achieving high
GPU throughput.

2.3 Existing GPU Sharing Mechanisms and QoS
The conventional way of running multiple kernels concurrently is
to use multiple GPUs, one for each kernel. This guarantees the per-
formance of each individual kernel. However, many past studies
demonstrated that on-chip resources of GPUs are often greatly un-
derutilized when running a single kernel. This previous work showed
that sharing the GPU among multiple kernels improves resource uti-
lization, overall GPU throughput, and energy efficiency more than
running a single kernel alone [30, 31, 37, 39, 41, 42, 44]

To date, there are four kinds of sharing mechanisms for a GPU. In
the first type, the state-of-the-art GPU architecture has preliminary
support for launching kernels from different applications concur-
rently, e.g., Hyper-Q [6] and MPS [26]. However, the software has
no control over how different kernel’s TBs are dispatched into SMs.
Most likely, different kernels will still execute sequentially rather
than in parallel [43].

The second type of sharing is a software approach that fuses
two kernels into one kernel through code transformation [30, 39].
The two kernels effectively become one kernel so that both can be
resident in each SM, achieving a fine-grained sharing mechanism.
Xu et al. [44] designed a profiling-based TB allocation scheme for
sharer kernels to improve performance and fairness. The limitation is
that hardware recognizes multiple kernels as one kernel, and hence,
it cannot control the execution progress of each kernel. Therefore,

performance of particular kernels and QoS cannot be guaranteed. Ad-
ditionally, such sharing is enabled statically so dynamically arriving
high-priority kernels cannot be serviced by the GPU.

The third type of sharing is implemented through time multiplex-
ing kernels, in a way analogous to scheduling jobs in a CPU [7,
10, 12, 35, 46]. This can be achieved by intercepting the kernel
launch command from different applications. An application that
has consumed long GPU time is blocked from launching more ker-
nels, and yields to an application that needs more GPU time [8].
This method uses MPS [26] to allow concurrent kernel execution; it
suffers from the same limitation that most kernels are still executed
sequentially. Hence, it essentially does coarse-grained sharing and
does not improve resource utilization, overall kernel throughput or
energy efficiency. QoS can only be done among multiple applica-
tions, but not among multiple kernels which could be long-running
jobs. Figure 2a shows an example of this strategy. Kernel K1 and K2
use the GPU sequentially, even though they temporally overlap.

The fourth type of sharing is enabled by hardware support for
preemption, which can be done through saving context of a running
kernel one SM at a time [31, 37], or partial SM at a time [41, 42]. A
new kernel’s context is then loaded to start execution on the same
GPU, sharing on-chip resources with the exiting kernel. Sharer ker-
nels can either partition the SMs spatially within the GPU, as shown
in Figure 2b [31, 37], or can share every single SM as shown in
Figure 2c [41, 42]. Preemption-based sharing subsumes the other
three types of sharing. Sharer kernels can achieve higher overall
GPU throughput while allowing dynamic switching among different
kernels. More importantly, QoS among the sharer kernels is now
possible by dynamically adjusting resource usage. For example, QoS
for spatially partitioned sharing can be performed by adjusting the
number of SMs for each kernel to achieve performance goals with
hill-climbing [3]. Fine-grained sharing through Simultaneous Multi-
kernel (SMK) [41, 42], manages resources to achieve fair execution
among sharer kernels, meaning that the kernel’s performance in a
shared mode degrades equally when compared with isolated execu-
tion. However, for QoS management, if a kernel’s performance goal
should be achieved, then policies for fairness should not be enforced.

In this paper, we build on fine-grained sharing of GPUs by pro-
viding QoS management for the sharer kernels. We demonstrate that
this control leads to better QoS enforcement than the best previously
proposed scheme.

271

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Wang et al.

3 QOS DESIGN WITH FINE-GRAINED
SHARING

We assume that among the sharer kernels, there are one or more
kernels, termed “QoS kernels”, that have QoS goals. Other kernels
are termed “non-QoS kernels”. For QoS kernels, the objective is
to meet each kernel’s individual QoS goal. For non-QoS kernels,
the objective is to maximize their total throughput. In this work, we
assume that the QoS kernels are repeatedly executing datacenter-
scale workloads, and their performance and execution length can be
predicted [8]. QoS management will allocate resources dynamically
such that QoS kernels receive just enough resources to achieve their
goals, while leaving unused resources for non-QoS kernels.

3.1 Resources to Manage
The first kind of resource is static, such as registers, shared mem-
ory and threads, represented as number of TBs. More TBs means
more threads and higher TLP. Having sufficient amount of TLP is
necessary to keep kernels busy. However, too much kernel TLP can
become overkill due to the possibility of high cache contention in
a compute-intensive kernel [20], or too much memory traffic in a
memory-intensive kernel [3, 19]. Moreover, QoS cannot be managed
by static resource allocation alone because the warp scheduler might
bias towards one kernel over another irrespective of the amount of
TLP present. However, it is important to start from a good static
resource allocation to ensure enough TLP per kernel and permit
dynamic resource management to quickly reach an allocation that
satisfies QoS.

The second kind of resource is dynamic, including memory band-
width and core compute cycles within each SM. Our experience
indicates that managing the memory bandwidth for QoS is difficult,
because the correlation between performance and effective mem-
ory bandwidth is blurred by two level caching, memory coalescing,
and TLP. Hence, it is difficult to capture a bandwidth-performance
model for online guidance. In addition, bandwidth requirement of
a kernel can vary drastically [33], which makes history-based allo-
cation ineffective. Also, sharing the bandwidth is better than parti-
tioning it among contenders when trying to maximize the overall
performance [19]. Hence, QoS cannot be achieved by managing the
bandwidth alone. Nevertheless, in our evaluation settings, we exper-
imented with co-running both memory intensive and non-memory
intensive kernels together, and the results show that our proposed
resource manager is effective in achieving QoS goals and improving
overall throughput.

The core compute cycles are managed by warp schedulers that
decide which warp to execute in every cycle in order to achieve
good performance. This is a more direct way to control the perfor-
mance of each kernel within one SM. However, warp schedulers
have been highly optimized to improve cache locality, memory be-
havior, synchronization barriers, etc. [4, 16, 22] of a single kernel.
With fine-grained sharing, further warp scheduling across kernels
for QoS should be done in a non-intrusive way, to keep the quality
of the schedule already optimized for a single kernel.

As we can see, QoS control cannot be achieved by managing
a single type of resources. We propose mechanisms that integrate
the management of all static and dynamic resources, directly or
indirectly for achieving QoS goals of sharer kernels in an SM.

3.2 From QoS Goals to Architectural Metrics
QoS goals are typically specified at the application level, which is
independent of hardware, and hence, the goals cannot be directly
used for architectural level QoS control. Therefore, the first problem
we solve is to translate high-level QoS goals to architectural metrics
which can be measured and controlled by the hardware. QoS goals
can be in different forms, e.g., frame rate or data rate. In many GPU
applications, such as video processing, a common programming
style is to use one kernel to process one frame of data. Frame rate
is equivalent to kernel completion rate, and a target frame rate can
be enforced by setting the required execution time of every kernel.
This method is also adopted by previous QoS work on GPU [8].
Therefore, our QoS management approach ensures execution time,
or average IPC (IPC goal, as derived below) of each kernel, rather
than the execution rate within a kernel.

The translation from QoS goals to IPC goals is done in the OS res-
ident kernel scheduler. The end-to-end application level QoS require-
ment includes the pure kernel execution time, and other latencies
such as memory copies (synchronous or asynchronous), contention
over PCIe bus, and queuing. We assume the kernel scheduler is fully
aware of those factors, and can calculate the true requirement for ker-
nel execution time by calculating other timings and subtracting them
from the overall QoS goal. As an example, the memory copy time in
unified GPU architecture is negligible because the device driver can
map the physical memory region to GPU virtual memory space. In a
discrete GPU architecture, kernel data needs to be transferred via the
PCI-E bus. Hence, the data transfer time is linear to the transferred
data size, and can be calculated with the fixed latency of PCI-E bus
and its bandwidth. There also might be contention on the PCIe bus,
and different queuing delays may cause variability in starting a mem-
ory copy and kernel execution. For those reasons, in our evaluation
configurations, we sweep the QoS goals through a range of goals
from low to high, indicating a relatively easy-to-achieve to hard-to-
achieve QoS requirement to accommodate different situations in a
real system.

To calculate the IPC goal from pure kernel execution time, the
total number of instructions of the kernel is also needed. In data cen-
ters, workloads are relatively stable and can be accurately predicated
by the runtime or application with machine learning algorithms ac-
cording to previous work [8]. With this information, IPC goals are
calculated as below, and are passed to the GPU upon dispatching the
kernel so that internal resource management can be done to achieve
such an IPC.

IPC =
Instructions_o f _Kernel

Frequency×Kernel_Execution_Time

In our evaluation, we assume that the IPC goal (IPCgoal , converted
from the QoS goal) for an application can always be achieved when
the application is run in isolation with IPCisolated , and IPCisolated ≥
IPCgoal . The distance from IPCgoal to IPCisolated varies from ap-
plication to application. In evaluation, we sweep the IPCgoal from
a low percentage of IPCisolated , e.g. 50%, to a high percentage of
IPCisolated , e.g., 95% to cover a wide range IPCgoal values and to
show the effectiveness of our approaches.
Benefit to OS resident kernel schedulers. Our proposed mecha-
nism will strengthen the capability of OS-level kernel schedulers that

272

Quality of Service Support for Fine-Grained Sharing on GPUs ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

aim to achieve QoS for applications sharing the GPU [8, 18, 25, 38].
OS-level scheduling either assumes isolated kernel execution [18,
25], or co-executed but un-managed kernels [8, 38]. Once kernels
are scheduled to the GPU, no further control within the GPU can
be made on the progress of each kernel. Hence, they rely on when a
kernel should be dispatched to the GPU to achieve QoS. Our design
fills in this gap to control how sharer kernels should use the resources
within the GPU to achieve QoS, which increases the likelihood of
meeting QoS goals even if a kernel has a late start. Likewise, our
mechanism also relieves the burden of an OS scheduler in that the
timing of dispatching a kernel to the GPU can be more relaxed than
before. Furthermore, our mechanism improves the throughput of
non-QoS kernels and leads to better energy efficiency.

3.3 Architecture Overview

static resource
management

Enhanced TB Sch.
QoS Manager

SM

Enhanced
Warp Sch.

Preemption
Engine

GPU
GPU Driver

set IPC goals

send profiling data

dynamic resource
management

Figure 3: Overview of architecture extensions (in yellow) for
QoS in fine-grained sharing of GPUs.

Figure 3 shows an overview of architecture extensions to enable
QoS. Current GPUs can possibly allow co-execution of TBs from
different kernels in a single SM, e.g., via MPS [26]. Although this
type of sharing cannot be controlled, is unpredictable and not all
architecture details are disclosed, the basic aspects (such as TLB and
memory management) are incorporated in previous work [31, 37, 42]
and this paper as well. Hence, in this paper, we focus only on the
QoS design within the GPU. The original TB scheduler is enhanced
with fine-grained sharing [42] and a QoS Manager. The Enhanced
TB Scheduler interacts with each SM to perform static and dynamic
resource management. Static resource management determines how
many TBs from each kernel should be hosted by each SM. This
allocation varies at run-time, via the preemption engine, according
to QoS achievement. Dynamic resource management determines
the progress of each kernel with a quota-based strategy. The QoS
manager passes quotas to the warp scheduler, the Enhanced Warp
Scheduler (EWS), which is extended to be QoS aware. Both static
and dynamic resource management are necessary as the former
ensures that the latter has the right amount of thread-level parallelism
to enforce the progress of each kernel. The QoS manager collects
run-time statistics to make allocation decisions.
Quota-Based Management Schemes. EWS allocates core compute
cycles following quotas defined by the QoS Manager. Each kernel in
an SM is given a quota that indicates how much progress it should
make on an epoch-by-epoch basis. This strategy is compatible with
previous work to manage fairness among sharer kernels at a fine
grain [42], which allows QoS and fairness management to coexist.

The GPU firmware can simply switch between different policies as
needed by the run-time system.

As stated earlier, QoS control differentiates a metric and guaran-
tees it for only a subset of sharers. A simple method could prioritize
and allocate QoS kernels with enough quota for them to reach their
goals, and then allocate any remaining cycles to non-QoS kernels.
Yet this scheme has some problems. First, it degenerates to nearly
sequential execution of sharer kernels, similar to conventional QoS
management for CPUs where threads are given different time slices
to execute on the CPU in a time-shared manner. The performance of
each thread is linear to the total amount of CPU time slices obtained.
In GPUs, however, the execution of kernels are greatly overlapped.
Time slices allocated to one kernel are also consumed by all other
kernels that run in parallel. Hence, it is difficult to account for how
much time is consumed by which kernel. Second, if kernels are
executed in a prioritized order, the parallel execution capability of
the GPU is lost, resulting in poor hardware resource utilization and
poor overall GPU performance. We report results for CPU-like QoS
management in the evaluation.

With quotas, EWS does the usual scheduling but checks in each
cycle if the quota of a kernel has been reached. Once a kernel con-
sumes all of its quota, EWS no longer schedules any instructions
from that kernel. This design has minimum impact on the quality
of warp scheduling since the original warp scheduling algorithm is
used throughout the lifetime of kernels, except that QoS kernels are
throttled once their quotas are exhausted. Using quotas also indi-
rectly controls memory bandwidth consumption because throttled
QoS kernels do not generate additional memory traffic.

3.4 QoS Algorithms for QoS Kernels
The objective of QoS management is to satisfy QoS goals of QoS
kernels while maximizing throughput of non-QoS kernels. Managing
quota allocation and deallocation is the key component. As discussed
before, an application’s QoS requirement is translated into IPCgoal
which is expressed as a quota in terms of number of instructions
that should be executed per epoch. Since IPCgoal is the average
IPC a kernel should eventually reach, the actual IPC achieved per
epoch may vary due to factors such as instruction diversity and
sharer kernel’s varying behavior. Hence, an effective QoS algorithm
is mandatory. We developed four quota allocation algorithms, as
discussed below.

3.4.1 Naïve Allocation. The first scheme is a naïve one that cal-
culates the quota based on the IPCgoal and the length of an epoch
(Tepoch). Given an IPCgoal as a percentage of IPCisolated , and Tepoch,
we can calculate the total number of instructions that a kernel, k,
should complete in an epoch:

Quotak = IPCgoal ×Tepoch (1)

Completing Quotak instructions within one epoch is accomplished
by all SMs. The QoS manager calculates this quota for each kernel
and distributes it to all SMs proportionally to the TBs hosted by each
SM. For example, if k has T TBs in total, and SMi is hosting Ti of
them, then the local quota (quotak) of SMi is Quotak × Ti

T . Hence,
Quotak is distributed into each SM in a balanced way, which will
lead to better utilization of TLP.

273

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Wang et al.

epoch 2

epoch 1

Time

Status: 𝐶𝐾0 = 0, 𝐶𝐾1 = 0

Action:𝐶𝐾0 ← 100, 𝐶𝐾1 ← 50

Status: 𝐶𝐾0 = 𝑥, 𝐶𝐾1 = 𝑦

Action:𝐶𝐾0 ← 100, 𝐶𝐾1 ← 50

Status: 𝐶𝐾0 = 0, 𝐶𝐾1 = −2

Action:𝐶𝐾1 ← 48

(a) Naïve Allocation

epoch 2

epoch 1

Time

Status: 𝐶𝐾0 = 0, 𝐶𝐾1 = 0

Action:𝐶𝐾0 ← 100, 𝐶𝐾1 ← 50

Status: 𝐶𝐾0 = −3, 𝐶𝐾1 = 0

Action:𝐶𝐾0 ← 97,𝐶𝐾1 ← 50

Status: 𝐶𝐾0 = 0, 𝐶𝐾1 = −2

Action:𝐶𝐾0 ← 100, 𝐶𝐾1 ← 48

epoch 3

(b) Elastic Epoch

epoch 2

epoch 1

Time

Status: 𝐶𝐾0 = 0, 𝐶𝐾1 = 0

Action:𝐶𝐾0 ← 100, 𝐶𝐾1 ← 50

Status: 𝐶𝐾0 = 5, 𝐶𝐾1 = 20

Action:𝐶𝐾0 ← 105, 𝐶𝐾1 ← 50

Status: 𝐶𝐾0 = −1, 𝐶𝐾1 = −3

Action:𝐶𝐾1 ← 47

(c) Rollover Allocation

Figure 4: Overview of quota allocation schemes. K0 is a QoS kernel, K1 is an non-QoS kernel, and CKi is the quota counter for kernel
Ki.

Quotak is allocated at the beginning of an epoch. Suppose there
is a local counter Ck for storing quotak. When a warp instruction of
k is completed, Ck is decremented by the number of instructions that
are actually executed in the warp instruction (≤ 32 due to branch
divergence). If a portion of the quota (Ck is positive) is unused at the
end of an epoch, then naïve allocation simply discards the excess
and resets Ck to quotak for the next epoch.

If Ck drops to zero or negative before the end of an epoch, it means
that the SM is capable of executing more instructions. However,
the QoS kernel k has reached its goal in the current epoch. It is
thus reasonable to allocate the remaining (unused) cycles to non-
QoS kernels. We still enforce certain quotas on non-QoS kernels
to prevent them from over-taking cycles from QoS kernels. Their
quota calculation is discussed in Section 3.5. The naïve scheme
checks if Cks for all ks in the SM are zero or negative, to ensure all
QoS kernels have exhausted their quotas. If so, some quantity, e.g.,
quotak, is added to Ck for all non-QoS kernels to keep them running
until the end of the current epoch. For QoS kernels, once the IPC
goal has been reached, no further quota is given. At the beginning of
the next epoch, Ck is reset to quotak again for all k.

Figure 4a shows an example of the naïve allocation scheme. The
quotas of K0 (100), a QoS kernel, and K1, a non-QoS kernel (50),
are allocated at the beginning of epoch 1. Before finishing the epoch,
both kernels exhaust their quotas: Ck0 is 0 and Ck1 is over-consumed
as it is decremented after a warp of 32 instructions (or fewer due to
branch divergence) is finished. Ck1 is then reallocated by adding 50,
but Ck0 is not. At the end of epoch 1, also the beginning of epoch
2, quotas are reallocated to both kernels, and unused quotas are
discarded.

3.4.2 History-basedQuota Adjustment. The naïve scheme has
the clear limitation that it does not consider the variance of a kernel.
There could be epochs where the QoS kernel cannot reach its goal
due to performance fluctuation. In other words, Quotak is calculated
according to an average IPCgoal for the entire duration of the kernel.
Some epochs may not be able to achieve a local goal, but other
epochs that could exceed it are capped at their local goals. Hence,
the resulting IPC of each epoch is never above IPCgoal of k, leading
to failure to meet QoS in the end.

To address this problem, we could raise Quotak slightly, so that
the final IPC of a kernel, which is likely to be under what Quotak can
produce, could reach IPCgoal . The increase in Quotak is determined
by the IPC achieved in all past epochs (IPChistory).

Quotak = αk × IPCgoal ×Tepoch

where,

αk =max{ IPCgoal o f k
IPChistory o f k

,1}

αk is calculated at the beginning of each epoch. Hence, if IPChistory
is below IPCgoal , Quotak is scaled up. For example, if the IPCgoal
of kernel k is 125 and the average IPC from the beginning to the
current epoch is 100, αk will be 1.25 and the allocated quota of k
will scale up by 1.25. Giving more quota to k means that it will have
more dynamic resources to catch up and meet IPCgoal .

0-1% 1-5% 5-10% 10-20% 20+%
0

50

100

150

200

250

300

N
um

be
r

of
C

as
es Naı̈ve+History

Figure 5: The number of cases (out of 900) that Naïve Alloca-
tion with History-based Adjustment misses the IPCgoal vs. how
much it misses the goal.

Figure 5 shows the number of cases that history-based quota
adjustment misses (undershoots) QoS goals, out of the total number
of cases tested (900 as discussed in evaluation). We put the failure
cases into categories by how much they miss the QoS goals. We
can see that the total number of missed cases is over 700, even with
history-based quota adjustment, and most of them are only within
5% of the QoS goals. The successful cases (186 cases), which reach
the QoS goals, overshoot by 1.3% on average. We observe that better
decisions can be made on how new quotas are allocated when current

274

Quality of Service Support for Fine-Grained Sharing on GPUs ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

quotas are consumed fast (or slowly). We develop two alternative
schemes, “Elastic Epoch” and “Rollover Allocation”, to address
those two scenarios.

3.4.3 Elastic Epoch. Figure 5 indicates that many QoS kernels
still miss their performance goals, but not by too much. However,
we experimented with more aggressive α adjustment and found that
the results would benefit QoS kernels but not the non-QoS kernels
so that the total throughput is lowered.

Instead of allocating quotas only at the beginning of each epoch,
Elastic Epoch makes the epoch length flexible. Once all kernels
consume their quota before the end of an epoch, a new epoch im-
mediately starts. As shown in Figure 4b, the quotas of K0 and K1
are allocated at the beginning of their execution. When all quotas
are used up before epoch 1 ends (Ck’s are zero or negative), the Ck
values are added to the new quota values as if epoch 2 has started.

3.4.4 Rollover Allocation. If quotas are consumed too slowly,
unused quotas of QoS kernels indicate that they did not reach their
performance goal in the last epoch. Hence, these kernels should be
given more resources to catch up in future epochs. A simple change
is to keep the unused quota of QoS kernels, rather than discarding it.

We develop “Rollover Allocation” to keep unused quotas for QoS
kernels. When allocating quotas in the next epoch, the unused quota
of QoS kernels from the last epoch are added to the quota of this
epoch. The quotas of non-QoS kernels are discarded as usual. In this
way, QoS kernels have more dynamic resources in the next epoch
to make up for their performance loss in the previous epoch. Take
the example in Figure 4c, the counters for K0 and K1 are adjusted at
the beginning of epoch 2. At that time, there are unused quota of K0,
and it is kept because K0 is a QoS kernel. The unused quota of K1 is
discarded because it is a non-QoS kernel.

The elastic epoch scheme uses a variable epoch length. Its effec-
tiveness is related to how often quotas are consumed faster than the
duration of one epoch. The rollover allocation scheme uses fixed
epoch length. Its effectiveness is related to the potential of the rolled
over quota to regain the performance of QoS kernels. The proposed
schemes adjust the quota allocation of the future epochs based on
the result of previous epochs to mitigate the unsatisfied performance
of QoS kernels within an epoch during execution. Our evaluation
shows that both schemes can achieve QoS goals much more of-
ten than naïve allocation with history-based quota adjustment and
previously proposed designs.

3.5 Managing Non-QoS Kernels
The quota allocated to non-QoS kernels cannot be derived in the
same way as QoS kernels because non-QoS kernels do not have
QoS requirements. Not allocating, or allocating a very small quota
will make the sharing fall back to time-multiplexed execution. The
purpose of finding proper quotas for non-QoS kernels is to ensure
good progress of QoS kernels while utilizing execution cycles to
achieve the best throughput for non-QoS kernels.

We develop a simple scheme to search for a proper quota for
a non-QoS kernel. The search procedure relies on how well QoS
kernels are achieving their performance goals. If the cumulative
performance of QoS kernels in the previous epoch (IPCepoch) are
well above their QoS goals, then a non-QoS kernel can be given

higher quotas. Otherwise, lower quotas will be used. Quotas are
updated at the beginning of each epoch, using profiled information
from past epochs. A quota of a non-QoS kernel is calculated from
an artificial performance goal as the following:

IPCgoal = IPCepoch × ∀k∈QoS kernels

IPCepoch o f k
αk × IPCgoal o f k

Once the IPCgoal of a non-QoS kernel is calculated, its quota
can be computed from equation (1). The IPCepoch of the non-QoS
kernel is initially set to a conservatively small value (keeping the
initial quota small). The initial IPCepoch is 1 in our evaluation. QoS
kernels can then benefit and achieve their QoS goals in early epochs.
To avoid resource under-utilization, the IPCgoal of the non-QoS
kernel will increase, but it will not be high enough to threaten the
QoS kernels. αk is used in this equation to take the history-based
adjustment into consideration when limiting the performance of non-
QoS kernels. From our observation, the initial value of IPCepoch has
minimal impact on the final outcome.

Note, the IPCgoal of the non-QoS kernel dynamically changes
during execution. As studied in [33], a kernel can behave differently
during execution, and the same IPC goal for non-QoS kernels may
have different impact on the performance of QoS kernels. If non-
QoS kernels take too much resources (e.g. compute core cycle or
memory bandwidth) and the IPC of the QoS kernel is lower than
its goal, the IPCgoal of the non-QoS kernel will be scaled down to
leave more resources to the QoS kernel. Hence, our design dynami-
cally limits the performance of non-QoS kernels when QoS kernels
require more resources, and lifts the limit when QoS kernels require
fewer resources. As a result, our scheme works for both regular and
irregular kernels.

3.6 Static Resource Allocation and Adjustment
Static resources (registers, shared memory, etc.), as the number of
TBs dispatched from each kernel, are also managed. This is because
QoS goals for some QoS kernels are hard to reach due to the lack of
TLP and having more TBs will increase the kernel’s TLP.

Symmetric TB allocation for two or more kernels. Initially,
QoS kernels are evenly distributed to every SM so that every SM has
the same number of threads to balance the TLP as a starting point.
For non-QoS kernels, previous studies [41, 42] show that having too
many kernels within one SM may not always be beneficial. Hence,
we partition SMs to non-QoS kernels equally. Each kernel is then
symmetrically dispatched to its own partition of SMs. For example,
consider one QoS kernel and two non-QoS kernels on a GPU with 16
SMs. The QoS kernel will run on 16 SMs and each non-QoS kernel
will run on 8 SMs. Within each SM, an equal number of threads
are assigned to the kernels on that SM. This allocation serves as a
baseline for further static resource management, which is performed
with partial context switching [42].

Run-time adjustment. At run time, the execution of kernels is
monitored to determine if their TB allocation should change. During
each epoch, we sample the number of idle warps (IW) for all kernels.
IWs have ready instructions but are not scheduled to execute due to
a full pipeline, which typically indicates that a kernel has excessive
TLP [33]. IWs occupy static resources, but do not contribute to the
progress of the kernel. Hence, a lower TLP can probably achieve the

275

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Wang et al.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

re
a
ch

Spart
Naı̈ve

Elastic
Rollover

(a) Two-kernel pairs.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

re
a
ch

Spart Rollover

(b) One QoS kernel in the trio.

2×
25

%

2×
30

%

2×
35

%

2×
40

%

2×
45

%

2×
50

%

2×
55

%

2×
60

%

2×
65

%

2×
70

%
AVG

0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

re
a
ch

Spart Rollover

(c) Two QoS kernels in the trio.

Figure 6: QoSreach vs. QoS goals. Each bar is averaged over all 90 pairs (or 60 trios) of benchmarks.

same performance. However, a kernel with few IWs can utilize all
its TLP and additional warps may further improve performance.

At the beginning of an epoch, the number of IWs is collected for
each kernel in each SM. If the number of IWs equals the number
of warps per TB, then swapping out one TB has the same TLP as
swapping out those IWs. We call these TBs “idle TBs”. If for a QoS
kernel, the number of idle TBs is no more than one and IPChistory
has not achieved its goal, then one more TB will be allocated to
increase TLP. TBs of a victim kernel will be swapped out, if more
resources are needed. The victim kernel is chosen if one of the
following conditions is satisfied:

• It is a non-QoS kernel
• The kernel has at least n+1 idle TBs if n of them are needed to

vacate enough resources.
• The IPChistory of the kernel is so high that IPChistory ×

(
1− n

N
)
>

IPCgoal , where N is the total number of TBs of this kernel.

Hence, either a non-QoS kernel, or a QoS kernel with excessive TLP
and enough IPC margin to lose will be selected as a victim kernel.
Lastly, to limit the overhead of preemption, swapping only happens
if there are no pending preemption requests from any kernel.

4 EXPERIMENTAL EVALUATION
4.1 Methodology

GPU Param. Value SM Param. Value
Core Freq. 1216MHz Registers 256KB
Mem. Freq. 7GHz Shared Memory 96KB

of SMs 16 Threads 2048
of MC 4 TB Limit 32

Sched. Policy GTO Warp Scheduler 4
Table 1: Simulation parameters.

Simulator. To evaluate our designs, we use the latest version
of GPGPU-Sim [4], with the simulation parameters in Table 1.
These parameters are close to those used in previous work [41, 42].
We modified GPGPU-Sim to support spatial partitioning and fine-
grained sharing (e.g., SMK), and follow the same assumptions and
implementation reported in previous work [3, 37, 41].

Co-run Benchmarks; Scalability. We use 10 benchmarks from
the Parboil benchmark set [36]. bfs is not used because it is too small

to interfere with any sharer kernels in our setting. We used the largest
datasets for all kernels. We experimented with sharing the GPU by
two and three kernels to measure the scalability of our designs. To
co-run two kernels, 10×9 = 90 pairs of kernels are generated: one
is a QoS kernel and the other is a non-QoS kernel. To co-run three
kernels, 60 trios of all possible combinations were tested due to the
excessive number of runs. Either one or two kernels of the trio are
QoS and the remaining one(s) are non-QoS kernels.

We ran 2M cycles since according to [1], the results are accurate
when the simulation is longer than 1M cycles. If one program ends
before 2M cycles, it is re-executed. If the benchmark has multiple
kernels or the kernel is executed multiple times, we use the total
number of instructions and cycles from the benchmark to calculate
the IPC. The epoch length is 10K cycles, which is determined em-
pirically as a past study [17] showed that the same epoch length is
sufficiently good. We sample 100 times per epoch for the number of
idle warps and use the average for TB adjustment.

Metric. To evaluate QoS compliance, we use the percentage of
QoS goals that are reached (QoSreach) as our metric in comparing
each management scheme: Spatial Partition with hill climbing [3]
(Spart), Naïve Quota Allocation (Naïve), Elastic Epoch (Elastic)
and Rollover Quota Allocation (Rollover). The QoSreach is defined
as # o f Success Cases

o f Total Cases . As explained in Section 3.2, the QoS goal is set
as a percentage of IPCisolated , ranging from 50% to 95%, with a 5%
step size. In co-running two/three kernels, 90 pairs/60 trios and 10
QoS goals generate 900/600 test cases. For 2-QoS-kernel cases, we
sweep the QoS goals from (25%, 25%) to (70%, 70%) with a (5%,
5%) step size. When calculating the throughput of kernels, only the
cases that meet the QoS goal are included. Higher QoSreach means a
design can reach more QoS goals. It is similar to the multiple QoS
requirements in [3], but with a larger and more demanding set of
QoS goals.

4.2 QoSreach Comparison
Figure 6 shows QoSreach for different QoS schemes when co-running
two kernels (Figure 6a) and three kernels (Figures 6b and 6c). When
co-running two kernels, Naïve has the lowest QoSreach (20.6%)
due to inefficient use of quotas, while Rollover has the best re-
sult (88.4%). Spart covers 78.8% of the 900 cases. Rollover is
better than Spart in almost all cases, with an average of 12.2%
improvement over Spart in QoSreach.

276

Quality of Service Support for Fine-Grained Sharing on GPUs ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

cu
tcphist

o
lbmmri-

g
mri-

q
sa

d

sg
em

m
sp

mv

ste
ncil

tp
ac

f
C+M

C+C
M

+M
0.0
0.2
0.4
0.6
0.8
1.0

Q
oS

re
a
ch

Spart Rollover

Figure 7: QoSreach vs. QoS kernel in two-kernel sharing.

Elastic and Rollover are significantly better than Naïve be-
cause they overcome major limitations of Naïve. Rollover is also
better than Elastic because Rollover helps QoS kernels directly
when they did not reach their performance goals (having unused
quota at the end of an epoch). Elastic did not target this problem
directly. Instead, it gives QoS kernels more opportunities to perform
better when they are already doing well (using up quotas fast).

Figures 6b and 6c show the QoSreach for one and two QoS ker-
nels per trio respectively. We compare Spart only with Rollover
since it is the best among our proposed schemes. Both figures show
that Rollover reaches QoS goals more often than Spart by 18.8%
(6b) and 43.8% (6c). Rollover has higher improvement over Spart
when there are more sharers and more QoS kernels, i.e., QoS re-
quirement is higher, because Spart cannot fully utilize the GPU.
For example, Spart performs poorly for cases over (60%, 60%) in
Figure 6c, and failed to reach any QoS goal in the (70%, 70%) cases.
As we can see, fine-grained QoS can control multiple resources
better, especially the execution cycles among sharer kernels, while
coarse-grained sharing and QoS control such as Spart has only one
knob to turn (the number of SMs) which becomes limited when there
are more QoS requirements. Hence, Rollover has better scalability
than Spart.

We report in Figure 7 the QoSreach of Rollover and Spart with
respect to each QoS kernel. Each bar is averaged over 9 pairs with 10
QoS goals. The summary results for pairing compute- and compute-
intensive (“C+C”), compute- and memory-intensive (“C+M”), and
memory- and memory-intensive (“M+M”) kernels are also shown.
We find for C+C kernels, Spart and Rollover meet QoS goals
in all cases. However, for M+M kernels, Spart does worse than
Rollover because QoS for Spart does not have a mechanism to
control memory bandwidth. Although it does not directly manage
bandwidth, Rollover throttles instructions by applying quotas. This
control effectively reduces memory traffic once quotas are used up,
which mitigates contention among sharer kernels. The same princi-
ple applies to the C+M kernels where Rollover also outperforms
Spart.

Rollover achieves 100% of the QoS goals for six benchmarks.
For histo, neither scheme performs well due to the short running
nature of this benchmark’s kernels. Rollover has profiling overhead
in each epoch while (more static) Spart does not. Alternatively, a
kernel-level QoS scheduler may also perform well since kernels are
short.

4.3 Throughput of Non-QoS Kernels
Figure 8 shows the throughput normalized to the isolated execution
for the non-QoS kernels in two-kernel and three-kernel sharing cases.
We only include the results from the cases that meet the QoS goals.
From these results, we observe:

(1) The performance of the non-QoS kernels decreases as the QoS
goal increases.

(2) Rollover has higher throughput than Spart in all cases. The
improvement increases as QoS requirements increase. In two-
kernel sharing, the average improvement is 15.9%. This number
increases to 19.9% and 20.5% in three-kernel sharing with one
(Figure 8b) and two (Figure 8c) QoS kernels, respectively.

(3) The improvement also increases along the x-axis (higher QoS
goals). As an example, the largest improvement of 75.5% in
Figure 8b occurs in the 95% category. In Figure 8c, a > 10×
improvement is observed in the last three categories.

The results demonstrate that fine-grained resource allocation is
superior to coarse-grained resource allocation. Spart makes it diffi-
cult to give resources to the non-QoS kernel if the QoS kernels need
less than the resources of one complete SM. That is, an SM cannot
be divided between QoS and non-QoS kernels. Whereas Rollover
can allocate just enough resources to the QoS kernels, which leaves
all the remaining resources to non-QoS kernels. We also expect that
the benefit of Rollover over Spart will be more obvious as the
number of sharers and number of QoS kernels increase.

4.4 Throughput of QoS Kernels
For QoS kernels, the goal is to achieve their QoS goals but not by too
much, leaving more resources for non-QoS kernels. Figure 9 shows
the actual throughput of QoS kernels, normalized to their QoS goals.
As we can see, Spart exceeds the given goal by 11.6% on average,
greatly reducing the resources for the non-QoS kernel, because the
QoS kernel uses more resources than it actually needs. On the con-
trary, Rollover only exceeds the goal by 2.8%. Such effectiveness
mainly comes from its capability of fine-grained control of resources,
such as which kernel’s instruction to execute on a per-cycle basis.
Whereas in Spart, the granularity of QoS management is one SM
which has large resources which are indivisible, even when a QoS
kernel only needs a portion of the SM.

4.5 QoS via Prioritizing Kernels
As explained in Section 3.3, conventional QoS with prioritization
as in CPUs is not suitable for GPUs. Figure 10 and 11 compare
Rollover and a time-multiplexed warp scheduling for Rollover
(Rollover-Time) that blocks non-QoS kernels until the QoS kernels
finish their quotas, in QoSreach and non-QoS kernel’s throughput. As
we can see, both schemes have similar QoSreach with a difference
of only 3% on average, indicating they have similar capability of
achieving QoS goals. However, Rollover-Time degraded perfor-
mance of non-QoS kernels by 1.47X (Figure 11). Hence, allowing
the overlapped execution of different kernels with Rollover benefits
throughput because kernels may have complementary behavior.

277

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Wang et al.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Spart Rollover

(a) Two-kernel pairs.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Spart Rollover

(b) One QoS kernel in the trio.

2×
25

%

2×
30

%

2×
35

%

2×
40

%

2×
45

%

2×
50

%

2×
55

%

2×
60

%

2×
65

%

2×
70

%
AVG

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Spart Rollover

(c) Two QoS kernels in the trio.

Figure 8: Throughput normalized to isolated execution of non-QoS kernels. The x-axis is QoS goals.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
1.00

1.05

1.10

1.15

1.20

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Spart Rollover

Figure 9: Actual throughput of QoS ker-
nels, normalized to their QoS goals.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0
0.2
0.4
0.6
0.8
1.0

Q
oS

re
a
ch

Rollover Rollover-Time

Figure 10: QoSreach of QoS kernels.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Rollover Rollover-Time

Figure 11: Throughput, normalized to the
isolated execution, for non-QoS kernels.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

re
a
ch

Spart Rollover

Figure 12: QoSreach vs. QoS goals for 56 SMs. Each bar is aver-
aged over all 90 pairs of benchmarks.

4.6 Scalability with Number of SMs
Recent GPU architecture design has introduced more SMs in a
GPU [28]. To further test the scalability of our design with the
number of SMs, we simulate a GPU with 56 SMs, each SM having
two warp schedulers. Other simulation parameters are the same as
the ones in Table 1. Because the new parameters lead to new isolated
performance of each kernel and QoS goals, the results here cannot
be directly compared with the results in previous sections.

Figure 12 and 13 show the QoSreach and normalized throughput
in Spart and Rollover. As shown in the figure, having more SMs
improves QoSreach for Spart because it can now allocate resources at
a finer granularity, but the average is still 4.76% short of Rollover.
Also, in the throughput of non-QoS kernels, Rollover is much better

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Spart Rollover

Figure 13: Throughput normalized to isolated execution of non-
QoS kernels for 56 SMs. The x-axis is QoS goals.

than Spart, achieving an improvement of 30.65% on average. This
shows that Rollover has good QoSreach and improves the utilization
regardless of the number of SMs.

4.7 Power Efficiency
Finally, we expect that fine-grained sharing and QoS management
for GPUs will achieve better power efficiency due to better uti-
lization and management of resources. To see this effect, we used
GPUWattch [21], a GPU power model embedded in GPGPU-Sim,
to measure the power consumption of different QoS schemes. Fig-
ure 14 shows the improvement of instructions per watt for Rollover
over Spart, in the two-kernel sharing scenario. As shown in the
figure, Rollover improves power efficiency by 9.3% on average,

278

Quality of Service Support for Fine-Grained Sharing on GPUs ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

CPU QoS Kernel Fusion[39] SMK[42] Spatial QoS[3] Warped-Slicer[44] Baymax[8] Fine-grained QoS
Software/Hardware S S H H H S H

QoS Awareness ✓ ✓ ✓ ✓

Work on GPUs ✓ ✓ ✓ ✓ ✓ ✓

Preemption ✓ ✓ ✓ ✓

Active GPU Sharing ✓ ✓ ✓ ✓ ✓

Sharing within SMs ✓ ✓ ✓ ✓

Fine Perf. Control ✓ ✓

Adaptive TLP ✓ ✓

Table 2: Comparison between fine-grained QoS and prior work.

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

AVG
0.00

0.05

0.10

0.15

0.20

In
st

.p
er

W
at

t
Im

pr
ov

.

Rollover

Figure 14: Energy efficiency improvement over Spart.

due to better resource utilization. Since our design has better perfor-
mance and power efficiency compared to coarse-grained sharing at
the same number of SMs, our design can possibly use fewer SMs to
achieve the same performance as coarse-grained sharing, creating
opportunities for power gating.

4.8 Preemption Overhead and Other Results
In the interest of space, we summarize our evaluations on preemption
overhead, the effect of history-based quota adjustment, and the effect
of static resource management. Overall, the preemption overhead
is 1.93% on the throughput of non-QoS kernels, as most of the
memory operations are overlapped with the execution of other non-
preempted TBs. When disabling history-based quota adjustment,
QoSreach drops significantly for all categories. Overall, enabling it
covers 86.4% more cases than disabling it. The results clearly show
that having adjustment results in much fewer QoS goal misses than
not having the adjustment. Static resource management also has
positive effect on performance. Enabling it improves the throughput
of non-QoS kernels in the M+M combination by 13.3% due to a
better balancing of kernel TLP by TB re-allocation.

4.9 Hardware Overhead
Our design mainly adds logic overhead to the fine-grained sharing
mechanism such as SMK [41, 42]. As illustrated in Figure 3, the
additional logic needed are: (1) the QoS Manager which collects
statistics for each kernel in each SM, updates quotas, and decides
adjustment of TB allocation per kernel; and (2) the enhanced warp
scheduler which incorporate quotas. The quota schemes require
counting instructions every cycle, similar to existing performance
counters. The quotas are calculated once per epoch (10K cycles in

our evaluation), and they are not on the critical path of execution. The
calculation can be done through a specialized thread or a dedicated
ALU identical to what a GPU already has. Hence, the additional
logic has minimal impact on the performance. Registers for saving
quotas, epoch, and counters for counting instructions are necessary,
which are already provided in SMK. A new bit vector is needed to
flag QoS kernels as well. Overall, we consider the hardware overhead
of having QoS management rather modest.

5 RELATED WORK
Many research on QoS have been done for CPUs where processes
can be preempted, and time-multiplexed without degrading perfor-
mance [7, 10, 12, 35, 46], or for networks where packets can be
throttled [9, 34]. Sharing GPUs by multiple kernels has become
necessary to achieve better resource utilization and overall through-
put [30, 37]. Studies have been performed on the benefits of sharing
and how resources should be allocated among sharers [1, 44]. How-
ever, QoS management for sharers has been very limited primarily
due to the lack of hardware support. Due to the drastic differences in
execution model and architecture between GPUs and CPUs, apply-
ing QoS designs for CPUs to GPUs results in inferior performance,
as shown in our experiments.

At high level, several system level solutions have been proposed
for QoS on GPUs. TimeGraph [18] manages fairness by ordering the
commands in the command queue of a GPU. Fairness can also be
managed by trapping and holding the commands from demanding
programs, through the MMIOs of the GPU driver [25]. Both solu-
tions require modifications or reverse engineering the proprietary
GPU driver [24] which is difficult. Baymax [8] manages QoS by
predicting the execution time of a kernel, and schedules kernels to
leave enough time for all QoS kernels. Mystic [38] used machine
learning to predict whether kernels can share a GPU efficiently, and
distribute kernels in a cluster. All those designs are orthogonal to
our work. They can utilize our proposed mechanism to have more
control on the execution of kernels. Also, they work at the granular-
ity of kernels, and cannot handle long-running kernels well. Due to
the lack of preemption support, an already running kernel cannot be
preempted, and it may occupy the GPU for a long time, blocking
others requests.

One way to workaround this problem is to allow multiple kernels
to run on GPU concurrently, using software solutions. Kernel fu-
sion [39] and KernelMerge [13] statically merge code from two ker-
nels into one, using conditional statements to separate the execution
paths. Elastic kernel [30] also implements this method, but focuses

279

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada Z. Wang et al.

on the benefit of running kernels concurrently in the same SM. Lee
et al. [20] also explores this benefit briefly. Changing the resource
allocation to a certain extent at run time was also attempted [23, 43]
In those approaches, kernel resource allocation is determined at com-
pile time, so no new kernels can be launched at run time and no hot
swapping among kernels can be done. Also, source code must be
available for concurrent execution and recompilation, which is often
not possible.

To enable true sharing at run time, architectural support for pre-
emption have been proposed [31, 37, 41, 42]. As discussed in Sec-
tion 2.3, those approaches by themselves do not provide effective
solutions for QoS control.

Aguilera et al. developed a profiling-based QoS strategy that
divides SMs among sharer kernels [3]. A linear model between per-
formance and number of SMs was used for performance prediction.
However, the model heavily depends on the sharer kernels, because
they compete for memory bandwidth which is not partitioned among
SMs. Also, the performance tuning granularity is SMs, which is
overly coarse as we studied. Table 2 summarizes the main novel-
ties of our proposed techniques with prior GPU sharing and QoS
techniques.

Performance estimation is important since it requires to convert
application requirements to architectural metrics. For 3D render-
ing applications, different operations mapped to different render-
ing APIs have similar cost. Thus, the kernels can be grouped and
estimated from history information. GERM [5], TimeGraph [18]
and VGRIS [45] all adopt this approach to provide QoS control.
However, general purpose applications have drastically different ex-
ecution time so previous approaches cannot be directly applied here.
Each TB in the same kernel has similar number of instructions [29],
which can be used to estimate the progress of a kernel. Different
from previous work, we translate kernel rate to IPC, and enforce the
IPC requirement in hardware.

6 CONCLUSIONS
State-of-the-art GPUs do not have proper support for QoS manage-
ment which is critical when multiple applications share a GPU in
modern systems. We found that coarse-grained management at the
SM level is insufficient and does not scale when the number of sharer
kernels is increased. We describe a novel design that enables fine-
grained QoS control for multiple kernels. This mechanism allows
kernels to satisfy QoS goals with just enough resources, leaving the
remaining resources for kernels without QoS goals to execute at high
instruction throughput. Moreover, we propose a method to translate
application QoS requirements to architecture metrics. Evaluation
results show that our approaches lead to significant improvement in
reaching QoS goals and improving power efficiency versus coarse-
grained QoS management.

7 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive feedback.
This work is partially sponsored by the National Basic Research 973
Program of China (No. 2015CB352403), the Scientific Innovation
Act of STCSM (No. 13511504200), and the EU FP7 CLIMBER
project (No. PIRSES-GA-2012-318939). This work is also supported
in part by NSF grants CNS-1012070, CNS-1305220, CCF-1617071,

CCF-1422331 and CCF-1535755. This work was carried out while
Zhenning Wang visited the University of Pittsburgh on a CSC schol-
arship.

REFERENCES
[1] Jacob T Adriaens, Katherine Compton, Nam Sung Kim, and Michael J Schulte.

2012. The case for GPGPU spatial multitasking. In High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on. 1–12.

[2] Paula Aguilera, Katherine Morrow, and Nam Sung Kim. 2014. Fair share: Al-
location of GPU resources for both performance and fairness. In Computer De-
sign (ICCD), 2014 32nd IEEE International Conference on. 440–447. https:
//doi.org/10.1109/ICCD.2014.6974717

[3] Paula Aguilera, Katherine Morrow, and Nam Sung Kim. 2014. QoS-aware
dynamic resource allocation for spatial-multitasking GPUs. In Design Automation
Conference (ASP-DAC), 2014 19th Asia and South Pacific. 726–731. https:
//doi.org/10.1109/ASPDAC.2014.6742976

[4] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
2009. Analyzing CUDA workloads using a detailed GPU simulator. In Perfor-
mance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. 163–174.

[5] Mikhail Bautin, Ashok Dwarakinath, and Tzi-cker Chiueh. 2008. Graphic engine
resource management. Proc. SPIE 6818 (2008), 68180O–68180O–12. https:
//doi.org/10.1117/12.775144

[6] Thomas Bradley. 2012. Hyper-Q example. (2012).
[7] Abhishek Chandra, Micah Adler, Pawan Goyal, and Prashant Shenoy. 2000.

Surplus Fair Scheduling: A Proportional-share CPU Scheduling Algorithm for
Symmetric Multiprocessors. In Proceedings of the 4th Conference on Symposium
on Operating System Design & Implementation - Volume 4 (OSDI’00). USENIX
Association, Berkeley, CA, USA, 4–4. http://dl.acm.org/citation.cfm?id=1251229.
1251233

[8] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax:
QoS Awareness and Increased Utilization for Non-Preemptive Accelerators in
Warehouse Scale Computers. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’16). ACM, New York, NY, USA, 681–696. https:
//doi.org/10.1145/2872362.2872368

[9] Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and Simu-
lation of a Fair Queueing Algorithm. In Symposium Proceedings on Communi-
cations Architectures &Amp; Protocols (SIGCOMM ’89). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/75246.75248

[10] Kenneth J. Duda and David R. Cheriton. 1999. Borrowed-virtual-time (BVT)
Scheduling: Supporting Latency-sensitive Threads in a General-purpose Sched-
uler. In Proceedings of the Seventeenth ACM Symposium on Operating Sys-
tems Principles (SOSP ’99). ACM, New York, NY, USA, 261–276. https:
//doi.org/10.1145/319151.319169

[11] HSA Foundation. 2015. HSA Platform System Architecture Specification. (2015).
[12] Pawan Goyal, Xingang Guo, and Harrick M. Vin. 1996. A Hierarchical CPU

Scheduler for Multimedia Operating Systems. In Proceedings of the 2nd USENIX
Conference on Operating Systems Design and Implementation (OSDI ’96).
USENIX Association.

[13] Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron. 2012. Fine-
grained resource sharing for concurrent GPGPU kernels. In 4th USENIX Workshop
on Hot Topics in Parallelism (HotPar). Berkeley, CA.

[14] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng
Li, Trevor Mudge, Ronald G. Dreslinski, Jason Mars, and Lingjia Tang. 2015.
DjiNN and Tonic: DNN As a Service and Its Implications for Future Warehouse
Scale Computers. In Proceedings of the 42Nd Annual International Symposium
on Computer Architecture (ISCA ’15). ACM, New York, NY, USA, 27–40. https:
//doi.org/10.1145/2749469.2749472

[15] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang.
2008. Mars: A MapReduce Framework on Graphics Processors. In Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’08). ACM, 260–269.

[16] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R.
Das. 2013. OWL: Cooperative Thread Array Aware Scheduling Techniques
for Improving GPGPU Performance. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’13). ACM, New York, NY, USA, 395–406.
https://doi.org/10.1145/2451116.2451158

[17] Adwait Jog, Onur Kayiran, Ashutosh Pattnaik, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das. 2016. Exploiting Core Critical-
ity for Enhanced GPU Performance. In Proceedings of the 2016 ACM SIG-
METRICS International Conference on Measurement and Modeling of Com-
puter Science (SIGMETRICS ’16). ACM, New York, NY, USA, 351–363.
https://doi.org/10.1145/2896377.2901468

280

https://doi.org/10.1109/ICCD.2014.6974717
https://doi.org/10.1109/ICCD.2014.6974717
https://doi.org/10.1109/ASPDAC.2014.6742976
https://doi.org/10.1109/ASPDAC.2014.6742976
https://doi.org/10.1117/12.775144
https://doi.org/10.1117/12.775144
http://dl.acm.org/citation.cfm?id=1251229.1251233
http://dl.acm.org/citation.cfm?id=1251229.1251233
https://doi.org/10.1145/2872362.2872368
https://doi.org/10.1145/2872362.2872368
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/319151.319169
https://doi.org/10.1145/319151.319169
https://doi.org/10.1145/2749469.2749472
https://doi.org/10.1145/2749469.2749472
https://doi.org/10.1145/2451116.2451158
https://doi.org/10.1145/2896377.2901468

Quality of Service Support for Fine-Grained Sharing on GPUs ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

[18] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. 2011.
TimeGraph: GPU scheduling for real-time multi-tasking environments. In Proc.
USENIX ATC. 17–30.

[19] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh, Onur Mutlu, and Chita R.
Das. 2014. Managing GPU Concurrency in Heterogeneous Architectures. In Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-47). IEEE Computer Society, Washington, DC, USA, 114–126.
https://doi.org/10.1109/MICRO.2014.62

[20] Minseok Lee, Seokwoo Song, Joosik Moon, J. Kim, Woong Seo, Yeongon Cho,
and Soojung Ryu. 2014. Improving GPGPU resource utilization through al-
ternative thread block scheduling. In High Performance Computer Architec-
ture (HPCA), 2014 IEEE 20th International Symposium on. 260–271. https:
//doi.org/10.1109/HPCA.2014.6835937

[21] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: Enabling En-
ergy Optimizations in GPGPUs. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13). ACM, New York, NY, USA,
487–498. https://doi.org/10.1145/2485922.2485964

[22] Jiwei Liu, Jun Yang, and Rami Melhem. 2015. SAWS: Synchronization Aware
GPGPU Warp Scheduling for Multiple Independent Warp Schedulers. In Proceed-
ings of the 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-48).

[23] Christos Margiolas and Michael F. P. O’Boyle. 2016. Portable and Transparent
Software Managed Scheduling on Accelerators for Fair Resource Sharing. In
Proceedings of the 2016 International Symposium on Code Generation and
Optimization (CGO 2016). ACM, New York, NY, USA, 82–93. https://doi.org/
10.1145/2854038.2854040

[24] Konstantinos Menychtas, Kai Shen, and Michael L Scott. 2013. Enabling OS
Research by Inferring Interactions in the Black-Box GPU Stack.. In USENIX
Annual Technical Conference. 291–296.

[25] Konstantinos Menychtas, Kai Shen, and Michael L. Scott. 2014. Disengaged
Scheduling for Fair, Protected Access to Fast Computational Accelerators. In
Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14). ACM, 301–316.

[26] NVIDIA. 2012. Sharing a GPU between MPI processes: multi-process ser-
vice(MPS). (2012).

[27] Nvidia. 2014. Programming Guide. (2014).
[28] NVIDIA. 2016. GP100 Pascal Whitepaper. (2016). https://images.nvidia.com/

content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
[29] Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil. 2014. Preemp-

tive Thread Block Scheduling with Online Structural Runtime Prediction for
Concurrent GPGPU Kernels. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation (PACT ’14). ACM, New York, NY,
USA, 483–484. https://doi.org/10.1145/2628071.2628117

[30] Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. 2013. Improving
GPGPU Concurrency with Elastic Kernels. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’13). ACM, 407–418.

[31] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. 2015. Chimera: Col-
laborative Preemption for Multitasking on a Shared GPU. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 593–606.

[32] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Em-
mett Witchel. 2011. PTask: Operating System Abstractions to Manage GPUs
As Compute Devices. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP ’11). ACM, 233–248.

[33] Ankit Sethia and Scott Mahlke. 2014. Equalizer: Dynamic Tuning of GPU
Resources for Efficient Execution. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-47). IEEE Computer
Society, Washington, DC, USA, 647–658. https://doi.org/10.1109/MICRO.2014.
16

[34] Madhavapeddi Shreedhar and George Varghese. 1995. Efficient Fair Queueing
Using Deficit Round Robin. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM ’95). ACM, New York, NY, USA, 231–242. https://doi.org/10.1145/
217382.217453

[35] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K Baruah, Johannes E
Gehrke, and C Greg Plaxton. 1996. A Proportional Share Resource Allocation
Algorithm for Real-time, Time-shared Systems. In Proceedings of the 17th IEEE
Real-Time Systems Symposium (RTSS ’96). IEEE Computer Society, Washington,
DC, USA, 288–. http://dl.acm.org/citation.cfm?id=827268.828976

[36] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and W-M Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing (2012).

[37] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and
Mateo Valero. 2014. Enabling Preemptive Multiprogramming on GPUs. In Pro-
ceeding of the 41st Annual International Symposium on Computer Architecuture
(ISCA ’14). IEEE Press, 193–204.

[38] Yash Ukidave, Xiangyu Li, and David Kaeli. 2016. Mystic: Predictive Sched-
uling for GPU Based Cloud Servers Using Machine Learning. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 353–362.
https://doi.org/10.1109/IPDPS.2016.73

[39] Guibin Wang, Yisong Lin, and Wei Yi. 2010. Kernel Fusion: An Effective
Method for Better Power Efficiency on Multithreaded GPU. In Green Computing
and Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l
Conference on Cyber, Physical and Social Computing (CPSCom). 344–350.

[40] Minjie Wang, Tianjun Xiao, Jianpeng Li, Jiaxing Zhang, Chuntao Hong, and
Zheng Zhang. 2014. Minerva: A scalable and highly efficient training platform
for deep learning. (2014).

[41] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2015. Simultaneous Multikernel: Fine-grained Sharing of GPGPUs.
Computer Architecture Letters PP, 99 (2015), 1–1. https://doi.org/10.1109/LCA.
2015.2477405

[42] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2016. Simultaneous Multikernel GPU: Multi-tasking Throughput
Processors via Fine-Grained Sharing. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 358–369. https://doi.org/10.
1109/HPCA.2016.7446078

[43] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. 2015. Enabling
and Exploiting Flexible Task Assignment on GPU through SM-Centric Program
Transformations. In ICS’ 15.

[44] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram.
2016. Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource
Partitioning for GPU Multiprogramming. In Proceeding of the 43st Annual Inter-
national Symposium on Computer Architecuture (ISCA ’16). IEEE Press.

[45] Miao Yu, Chao Zhang, Zhengwei Qi, Jianguo Yao, Yin Wang, and Haibing
Guan. 2013. VGRIS: Virtualized GPU Resource Isolation and Scheduling in
Cloud Gaming. In Proceedings of the 22Nd International Symposium on High-
performance Parallel and Distributed Computing (HPDC ’13). ACM, New York,
NY, USA, 203–214. https://doi.org/10.1145/2462902.2462914

[46] Wanghong Yuan and Klara Nahrstedt. 2003. Energy-efficient Soft Real-time CPU
Scheduling for Mobile Multimedia Systems. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles (SOSP ’03). ACM, New York,
NY, USA, 149–163. https://doi.org/10.1145/945445.945460

[47] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing
on GPUs. Parallel and Distributed Systems, IEEE Transactions on 25, 6 (June
2014), 1543–1552. https://doi.org/10.1109/TPDS.2013.111

281

https://doi.org/10.1109/MICRO.2014.62
https://doi.org/10.1109/HPCA.2014.6835937
https://doi.org/10.1109/HPCA.2014.6835937
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1145/2854038.2854040
https://doi.org/10.1145/2854038.2854040
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://doi.org/10.1145/2628071.2628117
https://doi.org/10.1109/MICRO.2014.16
https://doi.org/10.1109/MICRO.2014.16
https://doi.org/10.1145/217382.217453
https://doi.org/10.1145/217382.217453
http://dl.acm.org/citation.cfm?id=827268.828976
https://doi.org/10.1109/IPDPS.2016.73
https://doi.org/10.1109/LCA.2015.2477405
https://doi.org/10.1109/LCA.2015.2477405
https://doi.org/10.1109/HPCA.2016.7446078
https://doi.org/10.1109/HPCA.2016.7446078
https://doi.org/10.1145/2462902.2462914
https://doi.org/10.1145/945445.945460
https://doi.org/10.1109/TPDS.2013.111

	Abstract
	1 Introduction
	2 Background and Prior Art
	2.1 GPU Architecture
	2.2 GPU Execution Model
	2.3 Existing GPU Sharing Mechanisms and QoS

	3 QoS Design with Fine-Grained Sharing
	3.1 Resources to Manage
	3.2 From QoS Goals to Architectural Metrics
	3.3 Architecture Overview
	3.4 QoS Algorithms for QoS Kernels
	3.5 Managing Non-QoS Kernels
	3.6 Static Resource Allocation and Adjustment

	4 Experimental Evaluation
	4.1 Methodology
	4.2 QoSreach Comparison
	4.3 Throughput of Non-QoS Kernels
	4.4 Throughput of QoS Kernels
	4.5 QoS via Prioritizing Kernels
	4.6 Scalability with Number of SMs
	4.7 Power Efficiency
	4.8 Preemption Overhead and Other Results
	4.9 Hardware Overhead

	5 Related Work
	6 Conclusions
	7 Acknowledgements
	References

