
Reinforcement Learning-based Adaptive Resource
Management of Differentiated Services in

Geo-distributed Data Centers
Xiaojie Zhou†, Kun Wang†‡, Weijia Jia†∗ and Minyi Guo†

†Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, P. R. China, 200240

Email: szxjzhou@sjtu.edu.cn, jia-wj@cs.sjtu.edu.cn, guo-my@cs.sjtu.edu.cn
‡Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks
Nanjing University of Posts and Telecommunications, Nanjing, P. R. China, 210042

Email: kwang@njupt.edu.cn

Abstract—For better service provision and utilization of re-
newable energy, Internet service providers have already built
their data centers in geographically distributed locations. These
companies balance quality of service (QoS) revenue and power
consumption by migrating virtual machines (VMs) and allocating
the resource of servers adaptively. However, existing approaches
model the QoS revenue by service-level agreement (SLA) viola-
tion, and ignore the network communication cost and immigra-
tion time. In this paper, we propose a reinforcement learning-
based adaptive resource management algorithm, which aims to
get the balance between QoS revenue and power consumption.
Our algorithm does not need to assume prior distribution of
resource requirements, and is robust in actual workload. It
outperforms other existing approaches in three aspects: 1) The
QoS revenue is directly modeled by differentiated revenue of
different tasks, instead of using SLA violation. 2) For geo-
distributed data centers, the time spent on VM migration and
network communication cost are taken into consideration. 3) The
information storage and random action selection of reinforcement
learning algorithms are optimized for rapid decision making.
Experiments show that our proposed algorithm is more robust
than the existing algorithms. Besides, the power consumption of
our algorithm is around 13.3% and 9.6% better than the existing
algorithms in non-differentiated and differentiated services.

Index Terms—Geo-distributed data centers; Differentiated ser-
vices; QoS revenue; Power consumption; Reinforcement learning

I. INTRODUCTION

With the development of cloud computing, Microsoft,
Google, Amazon and other companies have already built their
data centers and provided their own cloud services to the
public. For better service provision and use of renewable
energy, data centers are generally deployed in geographically
distributed locations [1]. More and more tasks with different
quality of service (QoS) requirements have been submitted
to the data centers for processing. The QoS directly affects
user’s satisfaction, and service provider’s business future [2].

∗ Corresponding author

Meanwhile, the power consumption and CO2 emissions of
data centers are increasing with the rapid rise of the amount
of tasks [3], [4].

In order to find the balance between QoS revenue and power
consumption, varies of models have been proposed. However,
adaptive resource management of differentiated services in
geo-distributed data centers has been so far addressed in
isolation. In the area of adaptive resource management, recent
studies have focused primarily on assuming prior distribution
of resource requirements [5], [6] or learning resource require-
ments based on history utilization [7], [8]. For the former,
as the network environment is unstable in reality, it seems
impossible for us to assume an accurate prior distribution of
resource requirements [7]. For the latter, they formulate the
balance between QoS revenue and power consumption and
propose corresponding heuristic algorithms. However, these
algorithms are suffered from curse of dimension in solving
large-scale Markov decision process (MDP) problems [7].
Besides, they mainly model QoS revenue by service-level
agreement (SLA) violation or other similar ways [7], [8].
Under SLA violation, any task gets zero revenue when no
violation happens and has the same linear gain loss of delay.
Moreover, most of them ignore the time spent on VM migra-
tion and network communication cost, which are important
issues in geo-distributed data centers.

For the low latency characteristic of data centers and
the instability of the actual network environment, the low-
complexity and high-robustness should be taken into account
in algorithm design. Besides, the first-order transition prob-
ability of the VMs’ resource demands is also quasi-static
for a long period and non-uniformly distributed by properly
choosing the time-slot duration [7]. Therefore, it is suitable for
us to adopt reinforcement learning algorithms in finding such
balance, which are algorithms with low computational com-
plexity based on Markov chain model [9]. Among varieties of
reinforcement learning algorithms, Q-learning algorithm [10]

978-1-5386-2704-4/17/$31.00 c©2017 IEEE

has the advantage in rapid decision making. However, the huge
size of state and action set, and the random action selection
strategy of traditional Q-learning algorithm makes traditional
algorithm infeasible to solve large-scale MDP problems [7].
Therefore, we have to reduce the size of the sets and optimize
random action selection.

In this paper, we regard resource management as a stochastic
optimization problem. We utilize the Markov property of
differentiated QoS revenue and power consumption, and as a
result, adopt the Markov chain in modeling. Our contributions
can be summarized as follows:
• We formulate the resource allocation problem of dif-

ferentiated services in geo-distributed data centers as
an infinite horizon MDP problem with an objective to
finding tradeoff of QoS revenue and power consumption.
Different from the existing algorithms, the QoS revenue
is directly modeled by differentiated revenue of different
tasks, instead of using SLA violation. Besides, the time
spent on VM migration and network communication cost
are also taken into consideration for geo-distributed data
centers.

• We propose a reinforcement learning based adaptive
resource management algorithm in solving such problem,
which fits with geo-distributed data centers for low-
complexity and high-robustness requirements. Moreover,
information storage and random action selection are
optimized for large-scale MDP problems. Besides, the
convergence of our algorithm is also analyzed.

• We conduct detailed simulations in CloudSim [11] based
on real world workload trace. The experimental results
show that the average power consumption of our al-
gorithm can be reduced by up to 13.3% and 9.6%
when compared with the existing algorithms in non-
differentiated and differentiated services, respectively.

The remainder of this paper is organized as follows. In Sec-
tion II, we model the geo-distributed data centers, formulate
and analyze the resource allocation problem of differentiated
services. Then, our algorithm is described in Section III. The
experimental setup and experimental results of our algorithm
are described in Section IV. Our conclusion is in Section V.

II. MODELING AND PROBLEM FORMULATION

A. System Model
We consider a three-layer geo-distributed data centers with

servers S = {s1, ..., sM} and VMs V = {v1, ..., vN},
which is shown in Fig. 1. The location, resource constraints,
resource required, and resource allocated of si at time t
are denoted as li, ci, ri(t), and ai(t), respectively. Besides,
we let mii, pi(t), pri(t), li(t), ri(t), and ai(t) denote million
instructions (MI), QoS revenue (when finished at t), progress
rate, location, resource required, and resource allocated of the
task in vi at t, respectively. The data flow between these three
layers are transmitted by core switch, aggregation switches
and top-of-rack (ToR) switches, respectively [12].

All VMs located in si ∈ S share the physical resources
of this server. Virtual machine monitor (VMM) dynamically

User
Layer

Data
Centers

…
Edge

Servers

ToR
Switch

Edge
Servers

Edge
Servers

ToR
Switch

ToR
Switch

Network
Layer Aggregation

Switch

…

… Aggregation
Switch

Core
Switch

VMM
Local
Agent

VM1 VM2 …

Global Agent

Fig. 1. Typical geo-distributed data centers architecture

monitors rj(t) of vj located in si, and determines how
resources are allocated. If ri(t) > ci, aj(t) < rj(t), resulting
in a performance decrease.

B. Problem Formulation

Our target is to find the best balance between QoS revenue
RQoS(t) and power consumption RPower(t) until t. There-
fore, total revenue R(t) is defined as

R(t) = RQoS(t) + kRPower(t),

where k is the weight of power consumption.
As for RQoS(t), existing algorithms mainly model it by

SLA violation [8]. However, SLA violation of each VM is the
same in SLA violation modeling. This is not consistent with
the fact that different tasks have different QoS requirements.
Therefore, we directly model RQoS(t) by the profit of each
task at different finishing time, which is shown as

RQoS(t) =

∫ N∑
i=1

pi(t)1{pri(t) = 1}dt. (1)

For si, if ai(t) > 0, its power consumption RPower(t) is
proportional to resource utilization as [13]

RPower(t) = −
∫ M∑

i=1

[
pei + (pmi

− pei)
ai(t)

ci

]
dt, (2)

where pei and pmi
represent the power consumption of 0%

and 100% CPU utilization of si, respectively. Otherwise, si ≈
0 [7].

Therefore, our problem is defined as follows:

Problem 1. The adaptive resource management allocation
problem of differentiated services in geo-distributed data cen-
ters:

max R(t) = RQoS(t) + kRPower(t)

s.t. ai(t)≤ ci, i = 1, 2, ...,M

ai(t)=
∑N

j=1 1{lj(t) = i}aj(t) i = 1, 2, ...,M
,

C. Problem Analysis

In this problem, both RQoS(t) and RPower(t) can be rep-
resented as the addition of R̄QoSi

(Tj) of vi and R̄Poweri(Tj)
of si during jth time-slot Tj , which are shown as

RQoS(Tk) =

N∑
i=1

k∑
j=1

R̄QoSi
(Tj), (3)

R̄QoSi(Tj) =

∫ t0+jT

t0+(j−1)T

pi(t)1{pri(t) = 1}dt, (4)

RPower(Tk) =

M∑
i=1

k∑
j=1

R̄Poweri(Tj), (5)

and

R̄Poweri(Tj) = −
∫ t0+jT

t0+(j−1)T

[
pei + (pmi − pei)

ai(t)

ci

]
dt,

(6)

where t0 is the start time of the system, and T is the length
of each time-slot. Therefore, RQoS(Tk) and RPower(Tk) are
shown as

RQoS(Tk) = R̄QoS(Tk) +RQoS(Tk−1),

RPower(Tk) = R̄Power(Tk) +RPower(Tk−1).

We adopt Q-learning algorithm [10] in solving this problem.
The learning rule is shown as

Q(Sj−1,Aj−1) = (1− α)Q(Sj−1,Aj−1)

+α

[
rj−1 + γmax

Aj

Q(Sj ,Aj)

]
,

(7)

where Sj ,Aj , rj , α, and γ represent the state, action, reward
function, learning rate, and discount parameter of Tj , respec-
tively.

III. REINFORCEMENT LEARNING BASED ADAPTIVE
RESOURCE MANAGEMENT

A. Q-learning Settings

From Eqs. (1), (2), we can conclude the state set S as S =
{Pr = {pr1, ..., prN},L = {l1, ..., lN},R = {r1, ..., rN}}.
Besides, the action set A = {L} = {l1, ..., lN}. The re-
ward function rj contains the reward of power consump-
tion rpoweri(Tj) of si and QoS revenue rQoSi(Tj) of vi.
rpoweri(Tj) can be calculated by Eq. (6). However, for
rQoSi

(Tj), Eq. (4) only gets the revenue when task is finished,
which can not reflect the progress of the task in time. Instead,
we define rQoSi

(Tj) based on estimated QoS revenue p̂i(Tj)
of vi after Tj , which is defined as

p̂i(Tj) =



pi(tfini
), t0 + (j − 1)T < tfini

≤ t0 + jT

pi

(
t0 + jT + 1−pri(t0+jT)

pri(t0+jT)

jT−tstarti

)
,

0 < pri(t0 + jT) < 1

0, others

,

where tstarti , tfini
are the start time and finishing time of vi,

respectively. As a result, rQoSi
(Tj) is obtained as

rQoSi
(Tj) = pri(t0 + jT)× p̂i(Tj)

− pri(t0 + (j − 1)T)× p̂i(Tj−1).
(8)

Therefore,

ri =

N∑
j=1

rQoSj
(Ti)− k

M∑
j=1

rPowerj (Ti).

where rQoSi
(Tj), rPowerj (Ti) are obtained as Eqs. (8) and

(6), respectively.
In this problem, it seems impossible for us to handle such

a huge Q-matrix in large-scale MDP problems. Therefore, the
optimization of Q-matrix storage and calculation is the first
issue. Meanwhile, the system will sometimes chooses a very
bad action, so the second issue is how to optimize random
action selection. The analysis and corresponding optimization
methods of these two issues are proposed in the next part.

B. Algorithm Optimization

1) Optimization of Q-matrix: In here, Q-matrix can be
transformed to Ω = {ω1, ..., ωk}, k ≤ M. ωi stores a state
Si, a set of corresponding actions Ai = {Ai1, ...,Ail}, l ≤ N
and Q-values Qi = {Qi1, ...,Qil}, l ≤ N .

Since only part of the knowledge of Q-matrix is stored,
allocation decision is made based on the similar state in Ω.
For Pr and R, Pearson correlation coefficient Γ and Euclidean
distance D can be used to calculate the similarity.

We first set similarity threshold of R and Pr as thr =
{thΓr

, thDr
} and thpr = {thΓpr

, thDpr
} in both Γ and D.

Then, for each new state S, Γr(S,Si),Γpr(S,Si),Dr(S,Si),
and Dpr(S,Si) (i = {1, ..., k}) are calculated. The
state Si ∈ Ω is called an alternative state, which lets
Γr(S,Si) ≥ thΓr

,Γpr(S,Si) ≥ thΓpr
,Dr(S,Si) ≤ thDr

and
Dpr(S,Si) ≤ thDpr

.
All the alternative states are put into the set Θ. As massive

migration of VMs would lead to severe network congestion,
we set thresholds thToR, thaggr, thcore of each layer’s transit
data in a time-slot. The states with massive data transit are
removed from Θ and at last the action in Θ with maximum
Q-value is chosen. If Θ = ∅ after removal, the action will be
chosen randomly.

Meanwhile, A is also in non-polynomial size. For locations,
D is used to measure the similarity. Similarly, threshold
thDaction

is defined for the action. Then for each new action
A, we calculate D(A,Aij), j ≤ l for corresponding item ωi.
If ∃m,D(A,Aim) ≤ D(A,Aij) ≤ thDaction , j ≤ l, we regard
A as Aim. Otherwise, A will be added to corresponding ω
(l < N), or replace the most similar one (l = N).

2) Optimization of Random Action Selection: We ana-
lyze the random action selection of under-utilized, normal-
utilized and over-utilized servers. For under-utilized or
normal-utilized servers, our purpose is to reduce power con-
sumption by migrating all the VMs to other non-empty servers,
without any over-utilized servers addition. Meanwhile, for

over-utilized servers, our purpose is to reduce utilization by
migrating some VMs to other servers. First of all, we set over-
utilized threshold thover in advance and calculate estimated
migration revenue r̂migi(Tj) of si during Tj .

Under-utilized or normal-utilized servers: r̂migi(Tj) is
obtained as

r̂migi(Tj) = krPoweri(Tj)− r̂mti(Tj)− kr̂pci(Tj), (9)

where r̂mti(Tj), r̂pci(Tj) are the estimated QoS revenue loss
and power consumption due to migration, respectively.

For r̂mti(Tj), the transmission delay and the propagation
delay are taken into consideration. For the former, as the
bottleneck of transmission is ToR switches, the bandwidth
of ToR switches is used to calculate the transmission delay.
For the latter, we estimate the destination of migrated VM by
expected location. For si, weight wk(k 6= i) is assigned for
sk. If sk is empty, wk = 0. Otherwise, wk is obtained as

wk = max

{
0, thover −

ak(t0 + jT) + ai(t0+jT)
#VM in si

ck

}
.

Therefore, r̂mti(Tj) is obtained as

r̂mti(Tj) =

∥∥∥∑k 6=i
wk×lk
wk

− li
∥∥∥

3× 108 m/s
+
ai(t0 + jT)

bwToR
, (10)

where bwToR is the bandwidth of ToR switch.
Similarly, we calculate r̂pci(Tj) as

r̂pci(Tj) =
∑
k 6=i

wk × (pmk
− pek)

wk
× ai(t0 + jT)

ci
. (11)

Over-utilized servers: r̂migi(Tj) is obtained as

r̂migi(Tj) = rdelayi
(Tj)

−minMi

{
r̂mtMi

(Tj) + kr̂pcMi
(Tj)

}
,

(12)

where rdelayi(Tj) is the QoS loss of si during
Tj and Mi is the migration set of si (Mi ⊂
Ψi(Tj),

∑
vk∈{Ψi(Tj)−Mi} rk(t0 + jT) ≤ ci, where Ψi(Tj) is

the set of VMs located in si at the beginning of Tj).
Besides, rdelayi

(Tj) is calculated as

rdelayi
(Tj) =

∑
vk∈Ψi(Tj)

[p̂k(Tj)

−pk

t0 + jT +
1− prk(t0 + jT)

prk(t0+jT)
jT−tstartk

× ai(t0+jT)
ri(t0+jT) ×

1
thover

,
where ri(t) =

∑
vk∈Ψi(Tj) rk(t).

We find the best migration set Mi, which obeys

min
Mi

r̂mtMi
(Tj) + kr̂pcMi

(Tj).

As the number of VM in a server is relatively small, we simply
enumerate some subsets of Ψi(Tj) to find such Mi. Since
the destination can be empty server, there exists two cases in
computing r̂mtMi

(Tj) + kr̂pcMi
(Tj).

Case i: All the VMs in Mi can be migrated to other non-
empty servers without any over-utilized server addition. In this

case, r̂mtMi
(Tj) and r̂pcMi

(Tj) can also be calculated as Eq.
(10) and (11), where wk is similarly obtained as

wk = max

0, thover −
ak(t0 + jT) +

∑
vl∈Mi

rl(t0+jT)

#VM in Mi

ck

.
(13)

Case ii: Some VMs need to be migrated to some empty
servers. Mi is separated into two parts (Mi = {Mi1,Mi2}),
where only VMs in Mi1 can be migrated to non-empty servers.
For Mi1, r̂mtMi1

(Tj) + kr̂pcMi1
(Tj) can be also calculated by

Eqs. (10) and (11), where wk is obtained in (13). For Mi2, a
set of empty servers Ni need to be found in advance (Ni ⊂ S),
which satisfies

Ni = argmin
Ni

[
r̂mtMi2

(Tj) + k

(
r̂pcMi2

(Tj) +
∑

sk∈Ni

pek

)]
.

(14)

In this case, minMi

{
r̂mtMi

(Tj) + kr̂pcMi
(Tj)

}
satisfies

min
Mi

{
r̂mtMi

(Tj) + kr̂pcMi
(Tj)

}
= r̂mtMi1

(Tj) + r̂mtMi2
(Tj)

+ k

(
r̂pcMi1

(Tj) + r̂pcMi2
(Tj) +

∑
sk∈Ni

pek

)
.

(15)

After calculating rdelayi
(Tj) for each server, we try to

migrate the VMs of the servers from high estimated migration
revenue to low estimated migration revenue until some servers
can not be migrated or get negative revenue. The destination
of each migrated vi is obtained as

desi = arg min
sk∈Λi

‖sk − li(t0 + jT)‖
3× 108m/s

+ k(pmk
− pek)× ri(t0 + jT) + ι,

(16)

where Λ is the set of feasible destination servers and ι is a
random variable.

IV. EXPERIMENT

A. Experiment Settings

Our algorithm is implemented in the CloudSim simula-
tor [11]. We create 25 data centers and deploy them in a 5×5
grid in simulator. The distance between adjacent grid is 1km.
In each data center, there exists 5 heterogeneous servers of
two types: HP ProLiant G4 and HP ProLiant G5.

We randomly choose 125 workload of nine days during
2011 of the CoMon project [14]. We test our algorithm in
both differentiated and non-differentiated services. In non-
differentiated services, we assume that p1(t0 + jT) = ... =
pN (t0 + jT) = 500 − j, while we put tasks to five types
(type = {1, 2, ..., 5}) randomly in differentiated services. The
QoS revenue of each type is p(t0 +jT) = 500− 1

8×2type×j.
As for parameters, for each vi, mii = 2.16 × 108. Be-

sides, we set the parameter M = 106,N = 103 of Ω,
thΓ = 0.85, thD = 2, and thover = 0.9 [15]. For these
three types of switches, we set thToR = 10Gbps, thaggr =

Algorithm 1 Adaptive resource management
Input: Learning parameter α, ε, γ, ι
Output: Action A
1: Initialize Ω to be empty list
2: for each time slice Tj do
3: Observe the current state Sj
4: Calculate reward rj−1

5: Update corresponding Q-value Q by Eq. (7)
6: similarStateF lag = false
7: if ∃ω similar with Sj then
8: similarStateF lag = true
9: else if |Ω| <M then

10: Add this state to Ω
11: similarStateF lag = true
12: else
13: Replace the most similar state with Sj
14: end if
15: Generate random number ϕ
16: if ϕ ≥ ε then
17: Aj = randomActionSelection(ι)
18: if ∃ action similar with Aj then
19: Find the most similar action
20: else if |ω| < N then
21: Add this action to ω
22: else
23: Replace the most similar action with Aj

24: end if
25: else
26: Find action Aj with maximum revenue and sufficient

transit network bandwidth
27: if Aj = ∅ then
28: goto 17
29: end if
30: end if
31: end for

20Gbps, thcore = 40Gbps, which are traditional settings
shown in Singh et al. [16].

We compare our algorithm with dynamic voltage and fre-
quency scaling (DVFS), static threshold (THR), median ab-
solute deviation (MAD), interquartile range regression (IQR)
and local regression (LR) algorithms proposed in Beloglazov
et al. [15].

B. Experiment Results

1) Performance with different k: The algorithm perfor-
mance with different k of non-differentiated and differentiated
services of sample workload on Mar. 3rd is shown in Fig. 2 and
3, respectively. Besides, the total revenue of non-differentiated
and differentiated services are demonstrated in 4 (a) and
4 (b), respectively. Compared with existing algorithms, our
algorithm can adapt the change of k. In Fig. 2 (a) and 3 (a),
when k is small enough, the QoS revenue of our algorithm
is bigger than existing algorithms. Besides, in Fig. 2 (b) and
3 (b), when k is big enough, the power consumption of our

Algorithm 2 Random action selection
Input: Learning parameter ι
Output: Action A
1: migrateFailF lag = false
2: repeat
3: for each server sk do
4: if rk(t0 + jT) ≤ thover || !similarStateF lag then
5: Update action Aj

6: Calculate r̂migi(Tj) by Eq. (9)
7: else
8: Calculate Mk and Nk by Eq. (14) and (15)
9: Calculate r̂migi(Tj) by Eq. (12)

10: end if
11: end for
12: Find server s(k) with maximum r̂migi(Tj)
13: if r(k)(t0 + jT) ≤ thover then
14: Calculate desl (vl ∈ Ψk(Tj)) by Eq. (16)
15: else
16: Calculate desl1 and desl2 (vl1 ∈ Mk1, vl2 ∈ Mk2)

by Eq. (16)
17: end if
18: if ∃vr, desr = ∅ then
19: migrateFailF lag = true
20: end if
21: until migrateFailF lag
22: end

60 80 100 120
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25
x 10

4

k value

Q
o

S
 R

e
v
e
n

u
e

Adaptive DVFS IQR LR MAD THR

(a) QoS revenue

60 80 100 120

25

50

75

100

k value

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
(k

W
h

)

Adaptive DVFS IQR LR MAD THR

(b) Power consumption

Fig. 2. Performance with different k of non-differentiated services

60 80 100 120
1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2
x 10

4

k value

Q
o

S
 R

e
v
e
n

u
e

Adaptive DVFS IQR LR MAD THR

(a) QoS revenue

60 80 100 120

25

50

75

100

k value

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
(k

W
h

)

Adaptive DVFS IQR LR MAD THR

(b) Power consumption

Fig. 3. Performance with different k of differentiated services

algorithm is smaller than existing algorithms. In Fig. 4 (a) and
4 (b), our algorithm is more robust than the existing methods,

60 80 100 120
0.6

0.9

1.2

1.5

1.8

2.1
x 10

4

k value

T
o

ta
l
R

e
v
e
n

u
e

Adaptive DVFS IQR LR MAD THR

(a) Non-differentiated services

60 80 100 120
0.3

0.6

0.9

1.2

1.5

1.8

2.1
x 10

4

k value

T
o

ta
l
R

e
v
e
n

u
e

Adaptive DVFS IQR LR MAD THR

(b) Differentiated services

Fig. 4. Total revenue with different k

Mar3 Mar6 Mar9 Mar22Mar25 Apr3 Apr9 Apr11 Apr12
0

0.5

1

1.5

2

2.5
x 10

4

Date

A
v
e
ra

g
e
 Q

o
S

 R
e
v
e
n

u
e

Adaptive IQR LR MAD THR DVFS

(a) Average QoS revenus

Mar3 Mar6 Mar9 Mar22Mar25 Apr3 Apr9 Apr11 Apr12
0

20

40

60

80

100

120

Date

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(k

W
h

)

Adaptive IQR LR MAD THR DVFS

(b) Average power consumption

Fig. 5. Performance with different workload of non-differentiated services

Mar3 Mar6 Mar9 Mar22Mar25 Apr3 Apr9 Apr11 Apr12
0

0.5

1

1.5

2

2.5
x 10

4

Date

A
v
e
ra

g
e
 Q

o
S

 R
e
v
e
n

u
e

Adaptive IQR LR MAD THR DVFS

(a) Average QoS revenus

Mar3 Mar6 Mar9 Mar22Mar25 Apr3 Apr9 Apr11 Apr12
0

20

40

60

80

100

120

Date

A
v
e
ra

g
e
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
(k

W
h

)

Adaptive IQR LR MAD THR DVFS

(b) Average power consumption

Fig. 6. Performance with different workload of differentiated services

and it can achieve the better tradeoff between differentiated
QoS revenue and power consumption.

2) Performance with different workload: Fig. 5 and 6
demonstrate the algorithm performance with different work-
load of non-differentiated and differentiated services of sample
workload in Stone et al. [14]. Fig. 5 shows that with nearly
equivalent average QoS revenue in non-differentiated services,
our algorithm can reduce the average power consumption by
13.3%. Meanwhile, Fig. 6 further shows that our algorithm can
cut off 9.6% power consumption in differentiated services.

V. CONCLUSION

In this paper, we study the adaptive resource management
of differentiated services in geo-distributed data centers. The
shortage of modeling QoS by SLA violation is analyzed,
and we model it directly through differentiated revenue. A

reinforcement learning based adaptive resource management
algorithm is proposed and optimized for fast decision-making.
Experiments show that our algorithm is more stable than other
existing algorithms, and can get balance for differentiated
services. In the future, we may consider the adaptive resource
management of differentiated services in fog data centers,
which is also a sort of geo-distributed data centers. Besides,
we may do some research on deep reinforcement learning
algorithms in finding such balance.

ACKNOWLEDGMENT

This work is supported by Chinese National Research Fund
(NSFC) Key Project No. 61532013 and 61572262; National
China 973 Project No. 2015CB352401; Shanghai Scientific
Innovation Act of STCSM No.15JC1402400 and 985 Project
of Shanghai Jiao Tong University with No. WF220103001.

REFERENCES

[1] C. Gu, C. Liu, J. Zhang, H. Huang, and X. Jia, “Green scheduling for
cloud data centers using renewable resources,” in INFOCOM WKSHPS,
2015, pp. 354–359.

[2] M. Shatnawi and M. Hefeeda, “Real-time failure prediction in online
services,” in INFOCOM, 2015, pp. 1391–1399.

[3] L. Rao, X. Liu, L. Xie, and W. Liu, “Coordinated energy cost
management of distributed internet data centers in smart grid,” IEEE
Transactions on Smart Grid, vol. 3, no. 1, pp. 50–58, 2012.

[4] L. Yu, T. Jiang, and Y. Cao, “Energy cost minimization for distributed
internet data centers in smart microgrids considering power outages,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 1,
pp. 120–130, 2015.

[5] H. Lin, X. Qi, S. Yang, and S. Midkiff, “Workload-driven vm consoli-
dation in cloud data centers,” in IPDPS, 2015, pp. 207–216.

[6] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros, “Scalable
traffic-aware virtual machine management for cloud data centers,” in
ICDCS, 2014, pp. 238–247.

[7] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. Lau, “Dynamic
virtual machine management via approximate markov decision process,”
in INFOCOM, 2016, pp. 1–9.

[8] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual ma-
chines consolidation in cloud data centers using reinforcement learning,”
in PDP, 2014, pp. 500–507.

[9] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[10] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[12] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in INFOCOM,
2016, pp. 1–9.

[13] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management
of data center resources for cloud computing: A vision, architectural
elements, and open challenges,” arXiv preprint arXiv:1006.0308, 2010.

[14] M. Stone, “Cross-validatory choice and assessment of statistical predic-
tions,” Journal of the royal statistical society. Series B (Methodological),
pp. 111–147, 1974.

[15] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[16] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat,
“Jupiter rising: A decade of clos topologies and centralized control in
google’s datacenter network,” ACM SIGCOMM Computer Communica-
tion Review, vol. 45, no. 4, pp. 183–197, 2015.

