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Abstract—Radio Frequency IDentification (RFID) has attracted considerable attention in recent years for its low cost, general
availability, and location sensing functionality. Most existing schemes require the tracked persons to be labeled with RFID tags. This
requirement may not be satisfied for some activity sensing applications due to privacy and security concerns and uncertainty of objects
to be monitored, e.g., group behavior monitoring in warehouses with privacy limitations, and abnormal customers in banks. In this
paper, we propose TASA—Tag-free Activity Sensing using RFID tag Arrays for location sensing and frequent route detection. TASA
relaxes the monitored objects from attaching RFID tags, online recovers and checks frequent trajectories by capturing the Received
Signal Strength Indicator (RSSI) series for passive RFID tag arrays where objects traverse. In order to improve the accuracy for
estimated trajectories and accelerate location sensing, TASA introduces reference tags with known positions. With the readings from
reference tags, TASA can locate objects more accurately. Extensive experiment shows that TASA is an effective approach for certain

activity sensing applications.

Index Terms—RFID, activity sensing, tag-free localization, object tracking, frequent trajectories.

1 INTRODUCTION

ACTIVITY sensing aims at monitoring objects by location
information, which is the fundamental information in
pervasive computing environments [1], [2], [3]. The pro-
liferation of wireless technologies in infrared [4], Bluetooth
[5], [6], and ultrasonic [7], [8] has fostered a growing interest
in location sensing. Based upon location data, location-
aware systems identify the trajectories of moving objects,
and thus provide customized services to users or applica-
tions. A current trend is to employ Radio Frequency
IDentification (RFID), which is characterized by low cost,
general availability, and automatic identification [9], [10],
[11], [12]. So far, RFID has achieved widespread success in
animal identification, asset tracking, object locating, sur-
veillance systems, and security access.

However, RFID-based schemes impose a restriction on
the tracked objects—they must be labeled with RFID tags. A
typical method in RFID-based applications involves three
steps. RFID tags are attached to targeted objects beforehand.
Then, either RFID readers or targeted objects move in space.
Once the objects are within the accessible range of RFID
readers, the information stored in tags is emitted and
received by readers. The overwhelming majority of existing
RFID-based applications employ such a method to track
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legal objects that can be labeled in advance. Due to privacy
and security constraints, it is impractical for objects to be
labeled in some applications. Route tracking in industrial
workshops, personal behavior investigation in metro sta-
tions, and interaction analysis between pedestrians and the
vehicles are applications of this type. Moreover, objects may
be reluctant to be attached in some cases, such as thieves in
banks and strangers in warehouses. Consequently, tag-free
or transceiver-free tracking for activity sensing applications
like route tracking using RFID is highly desirable.

The above applications can be monitored by video
surveillance [13] with certain limitations. First, video
monitoring only covers predefined areas with limited
display size and azimuth of the visual field, and omits large
undefined areas [14], [15]. Once the monitoring areas
change, the video surveillance systems may have to be
redeployed. In fact, in most cases, the frequent areas may not
be known and may frequently change over time. Second,
many open issues in video surveillance prevent it from being
used in automatic detection [16], [17], such as analyzing
behavior, detecting irregular activities, fusing images from
multiple cameras, handling occlusion, and the dependence
of good illumination. The successes in video surveillance are
mainly at the level of signal processing and much remains to
be done [11], [18]. Third, the cost of video monitoring is
expensive. “Technology has reached a stage where mount-
ing cameras to capture video imagery is cheap, but finding
available human resources to sit and watch that imagery for
24x7 hours is expensive” [16]. Finally, video monitoring
requires much time for online detection, because a lot of
computation is involved in image processing, object identi-
fication, and behavior analysis.

In this paper, we propose TASA—Tag-free Activity
Sensing using RFID tag Arrays for location sensing and
route tracking. TASA relaxes the monitored objects from
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attaching RFID tags and is capable of sensing concurrent
activity in an online manner. TASA deploys passive RFID
tags into an array, captures the Received Signal Strength
Indicator (RSSI) series for all tags all the time, and recovers
trajectories by exploring variation in RSSI series. We share
the similar idea of locating a moving object via readings
from RFID tag arrays [11], but relax the requirement of
using active tags to mostly passive tags. Because noisy RSSI
readings for passive tags have a significant influence on the
tracking performance, TASA introduces some active tags at
known positions as reference tags. These reference tags
improve the estimated accuracy, as well as accelerate the
process of recovering trajectories. The evaluation results of
TASA show that our scheme is desirable in terms of
accuracy and efficiency. To summarize, the main contribu-
tions of this paper are twofold.

e Providing an alternative to certain activity sensing
scenarios (e.g., route tracking and group behavior
analysis) in large areas using arrays of inexpensive
passive RFID tags together with a few active tags as
reference tags, which is cost effective and easily
deployable. Our scheme removes the requirement of
most existing RFID-based solutions that RFID tags
are attached to the objects.

e Proposing a set of algorithms to remove noise in
RFID readings and recover trajectories in an online
manner. Particularly, TASA can recover routes of
concurrent moving objects. Empirical studies show
that our scheme achieves high accuracy and efficacy
in detecting routes simultaneously traversed by
multiple objects.

The rest of this paper is organized as follows: Section 2
introduces the background of RFID technology and
identifies several challenging issues. Section 3 describes
the TASA scheme in detail. Section 4 reports our empirical
study. Section 5 briefly reviews the related work in location
sensing and Section 6 concludes our work with future
research directions.

2 BACKGROUND

We have found several challenges in RFID readers and tags,
which obstruct the application of RFID systems in location
sensing. In this section, we first introduce RFID technology,
and then identify the challenges. Finally, we propose our
solutions to these challenges and describe the problem that
this paper focuses on.

2.1 RFID-Based Activity Sensing

RFID refers to a technology that transmits and receives
unique serial information using radio frequency waves,
which has been applied to animal identification, assets
tracking, supply chain management, and traffic control [9],
[19]. The key elements of RFID systems consist of RFID
readers, tags, and middleware software [20]. RFID readers
are silicon-based radio transceivers, which interrogate and
communicate with RFID tags by electromagnetic waves.
RFID tags have a tiny on-board memory up to several
kilobytes, storing their unique identification as well as some
additional information.

Range 2 ,
© Range 2
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Fig. 1. The read range of a RFID reader changes when an object is
passing by. (a) Original reader range, and (b) affected reader range.

In general, according to the way that the signal is induced,
RFID tags can be classified as active tags and passive tags
[21], [22]. Active tags use an internal power source to
continuously power their RF communication circuitry,
whereas passive tags, with no power supply, rely on external
sources of power (e.g., RFID readers) to stimulate signal
transmission. An active tag is substantially larger than a
passive tag, because the tag contains two additional
components—an on-board power supply and on-board
electronics. The power supply of an active tag is a tiny
battery, and the on-board electronics allows the tag to
actively manipulate data and transmit data to readers [23].
Compared with passive tags, active tags have significant
advantages in terms of sensitivity, communication range,
data storage, and processing capacity. They support much
larger communication range up to 100 m, transfer data at a
higher bandwidth, and automatically determine the best
communication path in crowded environments, but cost
more than passive ones. We discuss the behavioral difference
between active and passive tags in Section 2.2 and show how
active tags are used in our approach for locating objects in
Section 3.1.3. Note that with the advance in communication
technology and integrated circuit, the gap between these two
types of tags is conspicuously narrowed.

Among RFID-based solutions, most of them require
objects to be labeled with tags beforehand. A tag-free RFID-
based activity sensing is inspired from a phenomenon that
the RSSI for a tag changes significantly when an object (e.g.,
a person) is passing by it. This phenomenon is illustrated in
Fig. 1, where ranges 1 and 2 identify two original read
ranges. When the object is traversing the tag A, the original
range 2 decreases to the range 2'. Object movement between
the RFID reader and the tag A causes the shrinking of the
reader’s range. At this time, we have to increase the power
level for the RFID reader so that it can reach the same range
again. As a result, the value of RSSI for the tag A has a
significant change. According to such RSSI changes, we are
able to infer that the object is in the vicinity of the tag A.
Further, by capturing RSSI series for all RFID tags, we can
infer an object’s location within a larger area without
attaching tags to it.

In practice, RSSI readings can be very noisy. This can be
caused by variations of RFID tags, RFID readers, or due to
collisions [24], [25], [26]. We discuss these issues in the
next section.
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Fig. 2. RFID readers read an active or a passive tag 50 times with 1, 2,
and 3 m distance, respectively. (a) Active tags. (b) Passive tags.

2.2 Challenges

RFID-based location sensing depends on the reliability of
RSSI readings. In practice, we have found that there are a
number of factors that adversely affect the reliability of RSSI
readings. In the following, we discuss such factors.

2.2.1 Behavioral Variation in RFID Tags

The first issue arises from the behavioral variation in
passive RFID tags. Passive tags jitter in their RSSI readings
even in a perfect environment, i.e., both tags and readers are
in a fixed position and there are no objects passing by and
no environmental noise. Even worse, sometimes RSSI
readings for passive tags are missing. Additionally, the
same type, batch of passive tags working under the same
condition may be different in RSSI.

The reason for these behavioral variations may come
from manufacturing defects or differences within chips,
integrated circuits, and noise. Sources of these noises consist
of, but are not limited to, inaccurate measurement and noise
from internal RFID components and external environment.

To reduce the effects of behavioral variations in RFID
tags on location sensing, we use two methods in this paper
to address this issue. One is to conduct preliminary
experiments for every tag, and then to calculate statistical
features for every tag, i.e., the mean value and standard
deviation for RSSI. These features are used as the baseline in
our experiment to calculate RSSI changes and to determine
whether tags are affected by moving objects. Abnormal tags
that have anomalous RSSI changes are excluded in
preliminary experiments. The other method is to adopt
active RFID tags for more accurate readings, which will be
further discussed in Section 3.1.3.

2.2.2 Behavioral Variation in RFID Readers

Another issue is from the behavioral variation in RFID
readers, which causes that RFID readers may not success-
fully query tags within their reading ranges [27]. In order to
study how much the behavioral variation in readers may
affect the reading rate, we conducted several experiments
for RFID readers by changing RFID readers’ power levels
and distance to passive tags.

The operating frequencies of passive tags and active tags
are 920 MHz and 430 MHz, respectively. Experiments were
repeated 50 times for every power level and distance. Fig. 2
shows ratios of the successful read times to the total read
times for an active tag and a passive tag with a distance of 1,
2, and 3 m away, respectively. The figure shows that both
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Fig. 3. Signal interference causes recovered trajectories to be
incomplete and inaccurate.
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power level and distance have a significant impact on
successful reads. When the power level increases, the
successful rates for both tags become higher. On the other
hand, successful rates decrease when the distance between
the tag and the reader becomes larger. For the same power
level, successful reads of active tags are much higher than
those of passive ones. Thus, active tags can be sensed more
quickly by readers with minor RSSI changes. In other words,
active tags are more sensitive and reliable than passive tags.

2.2.3 Interference

A third issue is the signal interference caused by deploying
multiple RFID tags and readers. In our study, we use the
C1G2 type of passive tags. According to the EPCglobal
C1G2 standards [28], these tags have a built-in collision
avoidance mechanism. For a population of 10,000 tags, the
collision rate is less than 0.1 percent [28]. In our experiment,
we find that when multiple persons simultaneously move
across a RFID tag array that is read by multiple RFID
readers, signal interference becomes a minor factor affecting
the accuracy of location sensing. It is worth to mention that
there are two other types of collisions: reader-to-tag and
reader-to-reader collisions. Literatures [24], [25], [26] have
investigated these two collisions and proposed various
sophisticated algorithms based on graph coloring. In our
experiments, these collisions are not evident, and we have
taken measures to minimize their effects (Section 3.1).

Fig. 3 illustrates such an experiment, where passive RFID
tags are organized into an array with a 1-m distance between
adjacent tags. These passive tags work at 920 MHz
frequency. Four persons walk across the tag array simulta-
neously along four different trajectories with different
speeds, ranging from 0.5 to 2 m/s. Based on the RSSI series,
trajectories for these four persons are plotted in Fig. 3. We
observe from the figure that these trajectories tend to be
incomplete, sometimes inaccurate. One reason is that some of
the readings for passive tags are missing due to behavioral
variations in readers and tags. The other reason is that
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Fig. 4. An overview of the TASA scheme.

incorrect readings due to signal interference are captured by
RFID readers.

2.3 Problem Statement

The problem that this paper focuses on is to check frequent
trajectories being traversed by moving objects in an online
manner. Frequent trajectories refer to the trajectories that
are traversed frequently, i.e., the occurrence frequency is
bigger than a certain threshold. They are routine or normal
trajectories, while infrequent trajectories are often related to
abnormal activities.

It relies on accurate location sensing for moving objects
to solve this problem using RFID tag arrays. Then combined
with timing information, we can recover trajectories
traversed by objects and check them to be frequent or not.
Due to the aforementioned challenges associated with
RFID, RSSI series for passive tags are highly noisy and
pose significant difficulty. In the rest of the paper, we
describe our scheme.

3 TASA: TAG-FREE ACTIVITY SENSING USING
RFID TAG ARRAYS

In this section, we describe the details of our proposed
TASA scheme for location sensing and frequent route
detection. As shown in Fig. 4, TASA involves two phases.
The first phase performs location sensing for moving objects
in order to identify trajectories of these objects. This phase
takes a number of RSSI series as an input and then produces
a set of trajectories of moving objects. It consists of three
steps of sorting input RSSI series, removing outliers,
locating objects with the help of reference tags, and
generating a set of routes.

The second phase takes the set of trajectories from the
previous phase as an input and then performs online
frequent trajectories detection for activity sensing. Within
this phase, we first apply data mining algorithms to find
frequent patterns of the route set, and then perform online
classification of trajectories. The rest of this section details
these steps, followed by discussions.

3.1 Phase I: Location Sensing

We model the entire tag array in a coordinate system with
the tag located in the most lower, left corner as the origin of
coordinate. The intervals between two neighboring x-axis
and y-axis coordinates are the same distance as between
two neighboring tags in real deployment. For example, the
coordinate for the tag P, marked in Fig. 5is (0, 2). Given that
we use multiple RFID readers that are deployed on the
ceiling, we simply assume that the communication between
readers and tags suffers from a short delay [29]. We also
assume that we have removed all abnormal passive tags in
preliminary experiments as discussed in Section 2.2.1.

Furthermore, we address the reader-to-tag and reader-to-
reader collisions with region division and power control.
We divide the entire experiment area into several sub-
regions and adjust the power of each reader such that each
reader merely covers subregions that are not overlapped
with other readers. We do not use TDMA or other
sophisticated algorithms to solve these collisions.

3.1.1 Sorting RSS! Series

As discussed in Section 2, passive RFID tags tend to
generate incomplete, inconsistent, and noisy RSSI series due
to the noise from internal RFID components, inaccurate
measurement, and external environment interference. Such
RSSI series conspicuously affects the estimated accuracy of
recovered trajectories and increases the difficulty for the
following steps, i.e., removing outliers and locating objects
with reference tags. Consequently, we sort the RSSI series in
chronological order.

Table 1 shows an example of a sorted RSSI series extracted
from experiments, where each record is a quintuple of
Times, Tagl D, RSSI, ReaderI D, and Coordinate, represent-
ing the RFID reader labeled by Readerl D returns the RSST at
time period time for the tag labeled by T'agl D and located at
Coordinate.

We use two policies to improve the efficiency of the sorting
process. One policy is that when a tag’s RSSI reading exceeds
its normal RSSI variation range, the RSSI reading will be
inserted into RSSI database (RDbase). In other words, only
readings from affected RFID tags are kept in the database.
The other policy is that we employ multiple readers and
insert their readings in chronological order. Thus, we sort the
RSSI readings during the data collection process, which
dramatically reduces the size of RSSI database and helps to
accelerate computations in the following steps. Note that we
convert the original RSSI time series into a sorted series,

Q Real position

@ Estimated position

Fig. 5. An outlier affects the accuracy of location sensing.
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TABLE 1
An Example of a Sorted RSSI Series

Time TagID RSSI  ReaderID  Coordinate
10:02:36 1 65 1 0, 2)
10:02:36 2 55 1 (1, 2)
10:02:36 4 78 1 0, 1)
10:02:36 5 71 1 (1, 1)
10:02:37 4 79 1 0, 1)
10:02:37 5 73 1 (L, 1)
10:02:37 7 65 1 0, 0)
10:02:37 8 65 1 (1, 0)
10:02:38 5 65 1 (L, 1)
10:02:38 8 65 1 (1, 0)
10:06:01 2 82 2 (1,2)
10:06:05 3 63 1 2,2)

which still contains inconsistencies and noises due to
challenges discussed in Section 2.2.

In this step, we use a parameter A to be the threshold for
RSSI variations of passive RFID tags. Tags are regarded as
affected tags when their RSSI variations are larger than the
value of A. Parameter \ is determined empirically depend-
ing on the monitored objects and specific batches of RFID
tags. Our experiment in Section 4.5.1 indicates that A can
affect the performance to some degree.

3.1.2 Removing Outliers

This step aims at removing outliers in RSSI readings from
multiple readers. Due to the behavioral variations in RFID
readers and tags, and the noise from RFID internal
components and external environments, the collected RSSI
series are inconsistent and noisy. Fig. 5 illustrates how an
outlier can affect location sensing: the reading for the
passive tag P, is an outlier, which causes the estimated
object location to deviate from its real position. Thus, we
need to remove outliers in the data set to improve the
accuracy of location sensing.

Fig. 6 illustrates the pseudocode of this step. The basic
idea is that a tag is affected by a moving object when more
than two of its neighbors are affected at the same time.
Otherwise, the tag is unaffected and such a record in
RDbase is an outlier and should be removed.

3.1.3 Locating Objects with Reference Tags

In this section, we explain how TASA makes use of reference
tags to accurately locate a single object and multiple objects.
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1 Input: RSSI series RD with outliers
2 Output: RD after removing outliers
3
4 // scan RD and remove the outliers
5 for each tag ¢ in RD
6 for each period t
7 if the majority of its neighbors are not in RD
8 remove record of tag ¢ at time t
Fig. 6. The algorithm of removing outliers.

With respect to locating a single object, pure passive tag
arrays and TASA achieve similar accuracy, although RSSI
readings for passive tags are often inaccurate, noisy, and
missing. Fig. 7a illustrates how pure passive tag array
locates a single object. The object’s location can be specified
by four of its nearest neighbors that are passive tags P;, P},
P, and P,, whose RSSI readings are not highly reliable. For
example, the RSSI reading for the tag P; is missing, but the
tag array can still locate the object with low errors. Fig. 7b
shows that TASA locates a single object with the help of
reference tags. We are able to infer that the moving object is
near R,, but away from Rz and R,. Combined with the fact
that the object is also detected by passive tags P;, P, and P,
we can estimate the object’s position to be the center of R,,
P;, P, and P,,, much close to the real position.

However, it is a challenging job to locate multiple objects
for passive RFID tags. Fig. 7c shows an example that
passive tag array cannot accurately locate multiple objects.
At this time, RSSI readings for passive tags P; and P; are
missing or inaccurate. According to the affected tags, we
can just get one location for objects. In general, a passive tag
array falls short of detecting routes traversed by multiple
objects at the same time due to the unreliable RSSI readings
for passive tags. Consequently, we need some mechanisms
to address these issues.

In the TASA scheme, we choose to use a few active RFID
tags placed at crucial locations to address the inaccurate and
incomplete passive RFID readings. As shown in Fig. 2, active
tags are more reliable than passive tags. Meanwhile, active
tags are also more sensitive to moving objects than passive
ones. Fig. 8 shows the RSSI readings for an active tag and a
passive tag when an object passes by them from time 5 to 8.
Compared with the passive tag, the active tag undergoes a
rapid and significant change in its RSSI readings. Thus,
TASA introduces a few active tags with known positions as
reference tags to improve location sensing.
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Fig. 7. Reference tags assist the TASA scheme to locate a single object and multiple objects. (a) Passive tag array locates a single object, (b) TASA
scheme locates a single object, (c) passive tag array locates multiple objects, and (d) TASA scheme locates multiple objects.
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Fig. 7d shows that TASA locates multiple objects with
the help of reference tags. We are able to infer that moving
objects are near the reference tags R, and R, from RSSI
readings, because these reference tags are reliable. Consider
that at least one passive tag detects the objects; we can
accurately estimate the objects’ positions, which are close to
the real positions.

For each time period ¢, we detect that a reference tag,
represented as Ly, is affected by the object movement, and its
adjacent neighbors are also affected, denoted as L, Lo, .. .,
L;.. The center of these locations is used as the estimation for
the moving object, which is defined as (1). Note that when
multiple objects traverse the tag array simultaneously,
several reference tags will be affected at the same time for
each time period. For each reference tag, TASA checks its
affected one-hop neighbors and then calculates a location so
that TASA gets many estimated locations. Thus, TASA is
capable of estimating locations for multiple objects:

Yo Li
TO‘ (1)

The previous step of removing outliers filters records for
unaffected tags and generates a sorted RSSI series as an
array in chronological order. While this step calculates
centers according to the neighborhood of reference tags,
and locates objects with an approximate location for every
time period. TASA explores a neighborhood relationship
and route directions to locate objects. Recall that the entire
tag array is modeled as a coordinate system with the tag
located in the most left corner as the origin of coordinate.
The neighborhood of a tag denotes its direct neighbors. For
instance, tags Pj, P, P,, and P, in Fig. 7 are associated with
the neighborhood relationship with the tag P,,.

Fig. 9 gives the pseudocode for locating objects with the
help of reference tags. For each time period, the algorithm
first finds affected active tags, then checks if its neighboring
passive tags were affected, and calculates the center of all
affected tags as the current locations of moving objects.
Note that there may be more than one object being detected
by the algorithm and TASA only checks two nearest tags for
two reasons. One is that the nearest neighbors of a tag are
significantly affected when an object is passing by the tag.

1 Input: RD, i.e., RDbase, an array of affected tags,
2 RefReaderID, the set of ID of reference readers

3 Output: Location database LD

4

5 wvar row = RD .getRow() ;

6 wvar ts = null;

7 wvar tag = null;

8 wvar cNbor = null;

9 wvar cAffectedTag = null;

10 war cnTroid = null;

12 for (var i =1; 7 <= row; 1+ +)

13

14 ts = RDJi].getTime () ;

15 tag = RD[1i] .getReaderID() ;

16 // records for reference tags

17 if (tag in RefReaderID ){

18 //finding neighboring affected passive tags
19 cNbor =tag.getNeiborhood () ;

20 for (var k = 1; k<=cNbor.count (); k+ +){
21 var RSSI = cNbor[k] .getRSSI();

22 var Mean = cNbor[k] .getMean () ;

23 if {abs(RSSI - Mean) >= A}{

24 pcNbor =cNbor [k] .getNeiborhood() ;
25 while (count (pcNbor.affected())>=2) {
26 cAf fectTag.append (cNbor[k]) ;

27 }

28 }

29

30 //calculate the center of affected tags

31 cnTroid = Calculate(cAffectTag, tg);

32 //add centers to LD

33 LD .append(ts, cnTroid.getCoordinate()) ;

34 //mark the affected reference tags as visited
35 RD .mark(ts, tag, "visited");

36 }

37}

Fig. 9. The pseudocode for the LOR algorithm.

Other tags are slightly affected or not affected. The other is
due to multiroute tracking, where some routes may be
adjacent. If choosing more than two tags as parameters,
TASA would make wrong detection.

So far, TASA has transformed the collected RSSI series to
a set of route sequences in chronological order. Most of
fragments of route sequences are calculated with the help of
reference tags. However, TASA must take a case into
consideration that reference tags fail sometimes or suffer
from a bit longer delay, although it is a small probability
event. In this case, TASA employs a policy that when more
than two of all neighboring passive tags at a specific time
are affected, TASA calculates a center of these passive tags
and adds the center as the location of the object.

3.2 Phase 2: Activity Sensing

In this phase, TASA aims at detecting frequent routes in an
online manner through two steps—discovering a frequent
route set by incorporating minimum support and online
detection of frequent trajectories.

3.2.1 Discovering a Frequent Route Set
Intuitively, one may apply frequent patterns discovering
algorithms directly to find patterns in a set of trajectories.
However, most of these algorithms rely on the exact
sequence match, which is not the case in TASA, because
RSSI readings for passive tags are inaccurate and incom-
plete. As a result, most existing work on pattern discovery
doesn’t work well.

In TASA, we extend previous pattern discovering
algorithms with inexact match. Specifically, we select
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Input: P, 7T: two route sequences

1

2 m, m: the lengths of P and T

3 k: the mismatch number

4 Output:s: the table that stores k information
5

6 // initialize score table: s

7 for i =1to N s[1, il = 0;

8 for i = 1 to M sli, 1] =1 - 1;

9

10 // objective: finding approximate sequence

11 for i = 2 ton

12 for j = 2 tom

13 if (Pj—1 == Ti—1) p = 0;

14 else p = 1;

15

16 s[4, 4] = min(s[j —1,i— 1] +p, s[j,i—1]1+1, s[j—1,i]+1)
17

18 if s[j,i] < k

19 report s[j,

Fig. 10. The algorithm for approximate sequence matching.

Apriori [30] and FPGrowth [31], the two most influential
frequent patterns discovering algorithms, as our algorithm
core, and incorporate an inexact match algorithm with &
differences. We call these two modified algorithms as
iApriori and iFPGrowth, which efficiently search frequent
patterns and are much robust to noisy RSSI sequences.
Section 4 reports the performance of these two algorithms
and the results show that iApriori performs better than
iFPGrowth.

The inexact match algorithm with k differences is solved
with dynamic programming. Let P = pip; - -p,, be a new
route, and T =t;ty--t, be a frequent route. Fig. 10
illustrates the approximate sequence matching algorithm,
whose time complexity is O(nm). The algorithm calculates
the difference between P and 7. When the difference
between two sequences is less than k, they are regarded as
the same route. Otherwise, they are different trajectories.

In TASA, we use a parameter § to be the minimum
support for frequent routes. In other words, a frequent
route must be those which appear more than 6 times in the
set of routes. Section 4.5 studies how the parameter ¢ affects
the performance of TASA.

3.2.2 Online Detection of Trajectories

This step determines the trajectories being traversed to be
frequent or not in an online manner, based on the frequent
route set generated in the previous step. In order to
efficiently detect trajectories, we apply similar policies as
discussed in Section 3.1.1, i.e. ignoring readings of
unaffected tags and inserting records in chronological
order. Then, TASA estimates possible location for objects,
generates route sequences, and checks whether the dis-
covered route is frequent or not with inexact match.

3.3 Discussions

3.3.1 Theoretical Analysis for Locating a Single Object

We assume that conspicuously abnormal tags are removed
in preliminary experiments and active tags are always
reliable. We also assume that persons neither suddenly
change route directions when they traverse the tag array,
nor keep still during the experiment. Let A be the square
area delimited by four neighboring labels, e.g., tags R., P},
P, and P,, in Fig. 7b. Let the failure probability for passive
tags be p, and the maximum error that TASA locates a
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Fig. 11. Reference tags assist the TASA scheme to improve the
accuracy of location sensing for traverse by multiple objects. (a) Multiple
objects traverse a tag array with reference tags along two neighboring
trajectories, and (b) multiple objects traverse a tag array with reference
tags along partially overlapped trajectories.

single object be ¢ and its probability be 7. Theorem 3.1
shows that TASA can locate a single object with a low
error rate.

Theorem 3.1. P(e > A) < ¢?

Proof. As shown in Fig. 7b, every square region has an active
tag that can detect a moving object. The probability of
three other passive tags which fail simultaneously is ¢®.
When at least one passive tag senses the object, the
estimated location computed by (1) falls into the A region.
Then, TASA may locate object out of A range when all
three passive tags of the same square fail at the same
time, i.e., 7 is ¢. Thus, P(e > A) < % 0

The failure rate of passive tags in our experiment is less
than 0.1, which guarantees the performance of the proposed
scheme. Additionally, when two or more nodes in a square
are active tags, TASA can locate objects more accurately.

3.3.2 Locating Multiple Objects

TASA locates multiple objects with low errors with the help
of reference tags under an assumption that objects neither
suddenly change directions nor stand still in the experi-
ment. Two primary cases for multiple objects are shown in
Fig. 11a and Fig. 11b. Other cases can be reduced as one of
these two cases.

Regarding the first case, two objects move along two
neighboring trajectories during two consecutive periods t;
and t,. At t; period, we calculate two centers, L; and L.
Note that RFID readers scan all tags every 50 ms, which
indicates that the interval between time period ¢; and ¢ is
about 0.02 s. Consider the world record for men’s one
hundred meter is about 10 m/s; humans can move about
0.2 m (10 x 0.02 = 0.2 m) within such a short interval. Thus,
TASA can capture most object movement. By exploring the
continuity of trajectories traversed by persons and neigh-
boring relationships of tags, we infer that the trajectories
sequence can only be L; — > L} and Ly, — > L}, not L; — >
L} and Ly — > L). Therefore, the error that TASA locates
multiple objects is no bigger than the A range.

Similarly, by exploring the continuity of trajectories,
TASA can locate objects in the second case as shown in
Fig. 11b, where trajectories may intersect. Note that the
fundamental reason TASA accurately locates multiple
objects is the sensitivity and reliability of active tags.
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3.3.3 Vulinerabilities and Countermeasures

TASA may be vulnerable to some attacks. For instance, if an
intruder knows that RFID technology has been deployed in
the monitored area, he/she may intentionally hide his/her
path by interfering and disturbing the RSSI readings of
RFID tag arrays.

To address this problem, our strategy is to hide RFID
devices so that intruders may not be conscious of RFID tags
or readers. Given that RFID is not sensitive to objects
without excellent conductivity (e.g., metal) and the size of
RFID tags is very small (e.g., 2 cm*3 cm*0.1 cm for passive
tags in our study), we are able to mount readers and
antennas on the ceiling, and deploy tags under the carpet or
embed tags into the floor. In order to further conceal RFID
devices, we may turn lights off for certain areas. Thus,
intruders may be unaware of the RFID-based surveillance
system. Moreover, we have conducted experiments to check
the performance of our strategy. Experimental results in
Section 4.3.1 show that hiding RFID devices do not affect
the validity of our approach.

4 EVALUATION

In order to evaluate the effectiveness of TASA in terms of
accuracy and efficiency, we conduct a series of experiments.
In particular, we try to answer the following questions:

1. What is the overall performance of TASA? Specifi-
cally, does it work well when RFID devices are
hidden?

2. How do the reference tags influence the estimated
accuracy and the running time of TASA? How does
the density of tag arrays affect the estimated accuracy?

3. How do the parameters affect the accuracy of the
proposed scheme?

4. How does our frequent pattern discovering algo-
rithm affect the estimated accuracy and the running
time of TASA?

For the above questions, we carried out experiments of

four different activity types.

e Type 1: one person goes by the tag array along one
route bidirectionally.
e Type 2: two persons pass through the tag array
successively.
e Type 3: four persons traverse bidirectionally along
four completely diverse trajectories simultaneously.
e Type 4: four persons go through the tag array
randomly at the same time. They frequently and
suddenly change route directions when they tra-
verse the RFID tag array.
In all the experiments, the speed at which persons
traverse ranges from 0.5 to 2 m/s and all the experiments
are repeated for about 80-100 times.

4.1 Experimental Settings

In our experiment, we use 4 Alien 9,800 readers and
65 passive Alien tags operating in 920 MHz frequency. We
also use a GT&T GWL-8 x 00 reader and 16 GT&T active
tags with 430 MHz operation frequency. These tags are
placed in a 9x9 array and one reference tag for every nine

tags, as illustrated in Fig. 13. We divide the monitored space
into a 2x2 grid, select centers of cells, and deploy RFID
readers to the corresponding positions of these centers. The
layout is shown in Fig. 13. Readers are connected to a router
that communicates with hosts by a wireless LAN. Thus, the
readers can send readings to specified addresses. The
distance between readers’ antennas and tags is less than
3 m in our experiment. The distance between the nearest
neighbors in a row or column is a fixed value, i.e., 0.5, 1, and
2 m in the experiment. We sample all tags in preliminary
experiments to exclude those with significant behavioral
variations. Our program runs on a Windows XP (SP3)
machine with 3.0 GHz Pentium IV CPU and 1 GB RAM.

4.2 Metrics and Methodology

In order to figure out the overall performance, TASA is
evaluated in terms of estimated accuracy and scalability,
which are measured by error rate and program’s running
time, respectively. In this section, we carry out experiments,
repeat every experiment three times, and select averaged
over three times as final results.

Error rate is the degree of errors encountered in route
recovery, which is an elementary metric of the performance
for TASA. It is defined as

[N — N

err =———, (2)
where N is the number of frequent trajectories that objects
traverse, and N is the estimated value of frequent trajectories.
The less the error rate is, the better performance that TASA
achieves. Due to thenoisy RSSIreadings, weincrease the fault-
tolerant functionality by allowing the estimated route to be
correct if it has over 90 percent similarity with the real route.
We partition the data set " as test sets, T100, T200, T300, T400,
T500, and T600, which are generated by randomly selecting
16.67 percent, 33.33 percent, 50 percent, 66.67 percent, 83.33
percent, and 100 percent of the data set, respectively. Every
experiment will be run across all the test sets.

Scalability is another important concern, which affects
the performance of TASA considerably. We conduct
experiments to evaluate scalability by varying the test set
from T100 to T600 and select program’s running time as a
metric. We also run experiments three times and calculate
averaged values as final.

4.3 Overall Performance

We carry out experiments for all the test sets to evaluate
the overall performance of the proposed scheme. The LOR
algorithm is used to locate objects and the iApriori
algorithm is employed to discover frequent trajectories.
In these experiments, parameters A and ¢ are set as 7 and
10, respectively. The distance between adjacent tags is half
a meter.

4.3.1 Estimated Accuracy

In order to evaluate TASA in terms of estimated accuracy,
we conduct experiments by varying the size of the test set
for all types of activities. We name the algorithm presented
in [11] as PA and select it as the baseline. Additionally, we
conduct experiments by hiding RFID devices: RFID readers
and antennas are mounted inside the ceiling, and RFID tags
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TABLE 2
Error Rates® of all Experiments

Error rates®

Test Set | Method | Type 1  Type 2 Type 3 Type 4
T100 TASA 521% 1451% 13.44% 43.54%
TASA-O | 538% 17.32% 19.05% 52.68%
PA 4.89% 18.67% 29.17% 57.66%
T200 TASA 436% 12.55% 12.73% 35.64%
TASA-O | 439% 14.82% 16.75% 41.27%
PA 4.13%  17.86% 28.32% 54.19%
T300 TASA 3.64% 11.03% 11.68% 29.82%
TASA-O | 395% 12.08% 15.47% 35.73%
PA 327%  1539% 27.56% 52.48%
T400 TASA 2.40% 9.84%  10.52% 25.44%
TASA-O | 2.67% 11.26% 13.19% 30.79%
PA 235% 14.51% 25.85% 50.87%
T500 TASA 1.28% 9.07%  9.89% 24.36%
TASA-O | 1.55% 10.92% 11.58% 30.12%
PA 1.30% 12.33% 25.01% 51.09%
T600 TASA 0.96% 8.11%  8.43% 24.51%
TASA-O | 1.09% 9.84% 10.52% 28.44%
PA 0.98% 12.19% 24.77% 50.48%

© Lower error rate means better performance.

are under the carpet. Thus, the TASA system is invisible to
users because their visuals are blocked by ceilings and
carpets. We call such an experimental setting as TASA-O.
Table 2 illustrates the error rates for all experiments with
the test set varying from T100 to T600. The overall error
rates for all experiments decrease with the increase of the
size of the test set and their values are small. The results
indicate that TASA and TASA-O achieve higher levels of
accuracy than PA in recovering routes traversed by multi-
ple persons at the same time. This is because the PA
algorithm does not consider the route recovery for multiple
objects, which becomes more evident when the number of
persons who traverse the tag array increases. For instance,
the PA’s error rates for Type 3 and Type 4 are much higher
than those for Type 2. By contrast, TASA is capable of
accurately checking trajectories traversed by multiple
persons in an online manner. For Type 1 activity, these
three algorithms achieve similar accuracy, denoting that
they are qualified for tracking a single object. Note that
TASA-O achieves low-level error rate for online detecting
objects, because RSSI readings are slightly affected by
carpets and ceilings that are objects with weak conductivity.
The values of TASA’s error rates for Type 1 and Type 2
activities are very small (i.e.,, up to 0.96 percent and
8.11 percent, respectively). This implies that the proposed
scheme accurately keeps track of a single person and
multiple persons who traverse the RFID tag array succes-
sively. With respect to Type 3, four persons simultaneously
go through the RFID tag array along the totally different
trajectories, which may cause many errors due to route
overlap, direction change, and persons’ stop. Thus, the value
of TASA’ error rate becomes larger than those of Type 1 and a
little bit less than those of Type 2. The value of TASA’s error
rate for experiment Type 4 is the largest among all the
experiments, ranging from 43.54 percent to 24.51 percent.
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Fig. 12. Running time for all experiments with respect to different test
sets.

This is because persons frequently and suddenly change
route directions and overlap routes when they traverse the
tag array. It is also caused by the behavioral variations in
RFID readers and tags.

4.3.2 Scalability

TASA is supposed to be scalable owing to detecting
trajectories in an online manner, which requires that it
should check trajectories fast. During the detection, TASA
collects RSSI readings of a large amount of tags from several
readers, and processes these readings. In order to study the
scalability of TASA, we conduct experiments by varying the
test size from T100 to T600 and choose running time as the
metric. The less the running time, the better the perfor-
mance TASA can achieve.

Fig. 12 illustrates the scalability results for all the test
sets, indicating that the running time increases linearly with
the test sets. It takes much time for TASA to handle Type 4
trajectories than other types. This is because iApriori
requires more time to calculate the frequent patterns.

4.4 Effectiveness of Reference Tags

The reference tags have profound influence upon TASA,
which accelerates localization and improves estimated
accuracy. We check the performance of the LOR algorithm
by comparing it with LO—LOR without reference tags. In
this section, we carry out experiments for all types of
activities to evaluate the performance of these algorithms.
We also examine the influence of the density of the tag
array. The distance between adjacent tags is half a meter
and every experiment is run by the LO and LOR algorithms.

Figs. 3 and 13 illustrate the performance results of the
LO and LOR algorithms, respectively. The former algorithm
is merely valid in identifying frequent trajectories tra-
versed by a single person, while the latter algorithm
achieves high accuracy in recovering trajectories of single
and multiple persons (e.g., Types 2 and 4). This indicates
that the LOR algorithm significantly improves the esti-
mated accuracy of trajectories recovery. This is because the
RSSI readings of reference tags are much more reliable and
more effective in removing noise than passive tags, and
thus can localize objects more accurately. However, the
LOR algorithm does not achieve very high accuracy for a
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complex activity of multiple objects, implying that LOR
could be further improved.

Table 3 illustrates the running time for the LO and LOR
algorithms. The LOR algorithm, rather than LO, has a
relatively low overhead up to 16.3 percent for a simple
activity, e.g., Types 1 and 2, as well as the heavy overhead up
to 46.46 percent for a complex activity like Type 4. This is
because the LOR algorithm spends much time in calculating
the similarity for different trajectories, especially for complex
activity. Such overhead could be reduced by improving
computer configurations and is acceptable for the targeted
applications that can tolerate several seconds delay.

4.4.1 Study on the Density of Tag Arrays

The density of the tag array plays an important role in
TASA, which determines its efficiency. In this section, we
conduct experiments for all types of activities to evaluate
the performance of the density of the tag array by varying
the distance between adjacent tags to 0.5, 1, and 2 m.

Fig. 14 illustrates the results of the density of the tag
array, which denotes that error rate goes up rapidly with
the increase of the distance between adjacent tags. When the
density of the tag array decreases, especially for tag arrays
larger than 1.5 m, TASA cannot accurately capture the RSSI
readings and thus leads to higher error rates. In our
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TABLE 3
Running Time* for the LO and LOR Algorithms

Types Type 1 Type 2 Type 3 Type 4
LOR 28.77 30.34 35.11 48.45
LO 25.56 28.06 30.19 33.08

Overhead  12.56%  8.13%  16.30%  46.46%

* All time is by the second.
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Fig. 14. Study on the density of the tag array.

experiment, we selected half a meter as the default distance
between adjacent tags.

4.5 Sensitivity of Parameters

In this section, we carry out several experiments to study
the sensitivity of different parameters of our algorithm, as
these parameters have significant impact on the perfor-
mance of our system. Specifically, we study the sensitivity
of the threshold A and minimum support é.

4.5.1 Sensitivity of the RSSI Threshold \
The RSSI threshold A controls how many RSSI series can be
saved and later be explored by the proposed algorithm of
frequent pattern discovering. Note that the parameter A is
decided empirically depending on the monitored objects
and specific batches of RFID tags.

Fig. 15 illustrates the influence of the threshold A for
different types of activities. The better values of error rate
for these experiments are achieved when A is around 7. The
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Fig. 15. Sensitivity of X for different test sizes. (a) Error rate of different A at T100, (b) error rate of different A at T300, (c) error rate of different \ at

T400, and (d) error rate of different A at T600.
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values of error rate are higher when A is less than 7, because
the smaller X causes much noisy data to be included. When
A is higher than 8, the error rate also increases. This is
because a higher A filters out much useful data, leading to
the decline in the estimated accuracy. Thus, we choose 7 as
the value of the threshold A in our experiment.

4.5.2 Sensitivity of the Minimum Support 6

In order to study how the minimum support § affects our
scheme, we do experiments with different support values.

The results in Fig. 16 show that the parameter 6 has a
significant impact on the performance of TASA. When 6 is
greater than 11, error rate tends to rise quickly. This is
because using a larger 6 value causes the LOR algorithm to
aggressively filter out data. As a result, many useful RSSI
readings that should be kept are removed. When threshold
0 is less than 10, we observe that the error rate changes little,
which indicates that the value of § between 8 and 10 is an
appropriate range.

4.6 Performance of Discovering Algorithms

We have implemented the iApriori and iFPGrowth algo-
rithms for detecting frequent trajectories with noise. This
experiment evaluates the performance of these two algo-
rithms. Given that both algorithms achieve similar estima-
tion accuracy, we focus on the comparison of running times.
Fig. 17 shows the results of all experiments, which
indicates that the iApriori algorithm runs faster than
iFPGrowth in all cases. As the size of the test set increases,
they both experience fast rise, close to linear increment of
time. The reason is that the iFPGrowth algorithm spends
much time in maintaining the FP-Tree for short patterns,
whereas iApriori spends less time to update the supports of
candidate sets in every transaction. Because of high
efficiency of the iApriori algorithm, we select it as the
frequent patter discovering algorithm in our experiment.
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5 RELATED WORK

Activity sensing has drawn many attentions in recent years
and has yielded lots of research results in vision-based,
Bluetooth, infrared, ultrasonic, RFID, and sensors domains.
This section briefly discusses these approaches.

Vision-based schemes capture scenarios as videos to
locate objects by the vision recognition technique [13], [32].
With the improvement in adaptive streaming, content
analysis, object identification, reusability, and scene model-
ing [33], [34], [35], vision-based schemes have achieved
widespread use in academia and industry. In general, vision-
based schemes collect much richer information, but they
suffer from the line-of-sight problem [18], [36], [37], as lights
can be easily blocked by objects. In comparison, we have
shown that TASA can still work when RFID devices are
hidden behind ceilings and under carpets. Additionally, the
computation overhead of TASA is significantly lower than
vision, allowing for online activity sensing. Hybrid surveil-
lance schemes by combining sensor and vision technologies
have also been proposed [38], [39]. These systems are limited
by the short lifetime of batteries in sensors.

Surveillance technologies, such as Bluetooth, infrared,
ultrasonic, sensors, and other wireless technology, have
also been studied in the literature. Bluetooth is designed for
indoor location sensing, but limited by energy consumption
and short coverage [5], [6]. Diffuse infrared is used in
Active Badge [4]. It is less effective in location schemes due
to two fundamental problems—the line-of-sight require-
ment and short-range signal transmission. Ultrasonic-
based schemes like Cricket [7] take the advantage of the
ultrasound time-of-flight measurement technique to locate
objects and thus achieve good accuracy. They involve a
great deal of infrastructure to be highly accurate, leading to
heavy cost. Global Positioning System (GPS) is another
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Fig. 17. Running time of both iApriori and iFPGrowth algorithms for all experiments. (a) Type 1, (b) Type 2, (c) Type 3, and (d) Type 4.
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well-known location technique, but infeasible for indoor
location sensing [40]. Wearable [41] and body sensors [42]
require objects to carry transceivers beforehand, which is
not needed in TASA.

RFID-based activity sensing has been proposed before
[11], which shares the similar idea of exploiting the
phenomenon that RSSI changes significantly when an object
is passing by. TASA differs from the previous scheme [11]
in two aspects. First, TASA uses passive tag arrays together
with a few active reference tags, while the previous scheme
[11] merely utilizes active tags. Thus, TASA is a more cost-
effective approach. Second, TASA proposes several algo-
rithms to reduce noise in the readings of passive RFID tags
and achieve better accuracy. In particular, TASA is much
effective for locating multiple moving objects.

6 CONCLUSION

In this paper, we have proposed TASA—Tag-Free Activity
Sensing using RFID tag Arrays for location sensing and
route tracking. The proposed scheme is an alternative to
activity sensing applications with specific requirements,
such as route tracking and group behavior monitoring.
TASA performs well in terms of estimated accuracy and
scalability, which is achieved by passive RFID tag arrays
with a few reference tags. TASA is a cost-effective and tag-
free approach for monitoring moving objects.

Currently, the proposed scheme still has some limita-
tions. In our future work, we will investigate how to
improve the localization accuracy for complex activities. We
will also study how to improve the signal measurement by
exploring relationships between RSSI and Low Quality
Indicator (LQI).
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