
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2011; 41:737–752
Published online 28 October 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1020

Compiler-assisted dynamic scratch-pad memory management with
space overlapping for embedded systems

Yanqin Yang1,2, Haijin Yan3, Zili Shao4,∗,† and Minyi Guo1

1Department of Computer Science and Engineering, Shanghai Jiao-Tong University, Shanghai 200240,
People’s Republic of China

2Department of Computer Science and Technology, East China Normal University, Shanghai 200241,
People’s Republic of China

3Motorola Inc., Chicago, IL, U.S.A.
4Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

SUMMARY

Scratch-pad memory (SPM), a small, fast, software-managed on-chip SRAM (Static Random Access
Memory) is widely used in embedded systems. With the ever-widening performance gap between processors
and main memory, it is very important to reduce the serious off-chip memory access overheads caused by
transferring data between SPM and off-chip memory. In this paper, we propose a novel compiler-assisted
technique, ISOS (Iteration-access-pattern-based Space Overlapping SPM management), for dynamic SPM
management with DMA (Direct Memory Access). In ISOS, we combine both SPM and DMA for
performance optimization by exploiting the chance to overlap SPM space so as to further utilize the
limited SPM space and reduce the number of DMA operations. We implement our technique based on
IMPACT and conduct experiments using a set of benchmarks from DSPstone and Mediabench on the
cycle-accurate VLIW simulator of Trimaran. The experimental results show that our technique achieves
run-time performance improvement compared with the previous work. The average improvements are
13.15, 19.05, and 25.52% when the SPM sizes are 1KB, 512 bytes, and 256 bytes, respectively. Copyright
q 2010 John Wiley & Sons, Ltd.

Received 28 April 2009; Revised 19 August 2010; Accepted 20 August 2010

KEY WORDS: compiler; scratch-pad memory; embedded system

1. INTRODUCTION

The ever-widening performance gap between CPU and off-chip memory requires effective tech-
niques to reduce memory accesses. To alleviate the gap, scratch-pad memory (SPM), a small, fast,
software-managed on-chip SRAM (Static Random Access Memory) is widely used in embedded
systems [1–5] with its advantages in energy and area [6–9]. A recent study [10] shows that SPM
has 34% smaller area and 40% lower power consumption than a cache of the same capacity. As
the cache typically consumes 25–50% of the total energy and area of a processor, SPM can help
to significantly reduce the energy consumption for embedded processors. Embedded software is
usually optimized for specific applications, hence we can utilize SPM to improve the performance
and predictability by avoiding cache misses. With these advantages, SPM has been widely used

∗Correspondence to: Zili Shao, Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong.

†E-mail: cszlshao@comp.polyu.edu.hk

Copyright q 2010 John Wiley & Sons, Ltd.



738 Y. YANG ET AL.

in embedded systems. However, it poses a huge challenge for the compiler to fully explore SPM
since it is completely controlled by software.

To effectively manage SPM, two kinds of compiler-managed methods have been proposed:
static methods [6, 8, 10–17] and dynamic methods [1, 18–30]. Basically, based on the static SPM
management, the content in SPM is fixed and is not changed during the running time of applications.
With the dynamic SPM management, the content of SPM is changed during the running time
based on the behavior of applications. For dynamic SPM management, it is important to select an
effective approach to transfer data between off-chip memory and SPM. This is because the latency
of off-chip memory access is about 10–100 times of that of SPM [1, 6, 18, 30], and many embedded
applications in image and video processing domains have significant data transfer requirements
in addition to their computational requirements [9, 31, 32]. To reduce off-chip memory access
overheads, the dedicated cost-efficient hardware, DMA (Direct Memory Access) [33], is used to
transfer data. The focus of this paper is on how to combine SPM and DMA in dynamic SPM
management for optimizing loops that are usually the most critical sections in some embedded
applications, such as DSP and image processing.

Our work is closely related to the work in [20, 29, 34–37]. In [20], Kandemir et al. proposed
a dynamic SPM technique for loops that can determine memory layouts and best loop access
patterns, partition the available SPM space, and restructure the code for explicit data transfer. In
[29], DMA is applied for data transfer between SPM and off-chip memory by applying graph
coloring for SPM management. In [34, 35], a two-level loop tiling technique with partitioning and
pre-fetching is proposed for optimizing loop nests. The technique focuses on overlapping memory
latency with data pre-fetching. In [36, 37], array folding was first proposed as a means to reduce
the size of temporary arrays. Basically, the technique is to linearize a temporary array in some
canonical way and fold it with a modulo operation; in such a way, the size of the array can be
reduced and a memory cell can be reused when it contains a dead value, i.e. a value no longer used.
The above work, however, does not consider optimizing DMA transfer. Because SPM is a small
on-chip memory, we cannot put all the necessary data at one time taking the power and size of
embedded systems into account. Therefore, multiple DMA transfers are needed for arrays in loops
in dynamic SPM management and the pre-fetching. Considering the overhead caused by DMA
operations, it becomes an important research issue to reduce the number of DMA operations.

In this paper, we propose a novel technique called ISOS (Iteration-access-pattern-based Space
Overlapping SPM management) for SPM management by transferring blocks of data based on
iteration access patterns. The basic idea is that the SPM space of some array elements can be
overlapped if the array elements are not used in later iterations. In this way, if there are spaces
that can be overlapped, we can reduce the number of DMA operations so as to change the ratio
between array elements allocated to the SPM and DMA operations performed. We implement our
technique based on IMPACT [38] and conduct experiments using the benchmarks from DSPstone
and Mediabench on the cycle-accurate VLIW simulator of Trimaran [39]. The experimental results
show that ISOS achieves significant run-time performance improvement compared with the previous
work [20].

The remainder of this paper is organized as follows. In Section 2, we present the system model
and the basic concepts. Our ISOS technique is proposed in Section 3. We present the experiments
and conclusion in Sections 4 and 5, respectively.

2. MODEL AND BASIC CONCEPTS

2.1. System model

The system model is shown in Figure 1 which has the similar architecture to [18, 20]. The system
consists of CPU, SPM, DMAC (Direct Memory Access Controller), and off-chip memory. On-chip
SPM can be accessed by CPU through on-chip bus, and DMA is used to transfer data between SPM
and off-chip memory. CPU can directly access data in off-chip memory through the system bus,
and the access time is much bigger than that between CPU and SPM. A DMAC may have more

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



COMPILER-ASSISTED DYNAMIC SPM MANAGEMENT 739

SPM

DMAC

Off-chip
memory

CPU

On chip

on-chip bus system bus

Figure 1. The system model.

S
P
M

array A array B array C

...

off-chip
memory

... ... ...

Figure 2. The data transfer between the SPM and off-chip memory.

than one DMA channels, and every channel can be used to transfer a block of data. The block-level
data transfer between CPU and SPM is controlled by setting DMA control registers with source
and destination accesses and data size. Thus, we can use the compiler to insert instructions to
control DMA operations for data transfer. In this paper, we assign DMA channels based on a
simple as-early-as-possible scheduling scheme, i.e. an available DMA channel will be assigned to
the earliest DMA request in the request queue.

In this paper, we focus on array allocation in SPM. Each array is divided into blocks, and
block-level data are transferred between SPM and off-chip memory through DMA. Only necessary
data blocks that are accessed by a set of iterations are put into SPM. Therefore, we can more
effectively utilize the space of SPM which is usually small.

An example is given in Figure 2. Based on iteration access patterns, we divide each array into
blocks and allocate space for each array in the SPM. At one time, for one array, only one block
of data is put into the SPM. In Sections 3.2 and 3.3, we will discuss how to determine the size of
data blocks and insert DMA operations for block-level data transfer.

Based on the model in [18, 20], the cost of transferring a data block between SPM and off-chip
memory is approximated by (Cdi+Cdt×n) in cycles, where Cdi is the initialization cost of DMAC
for one block, including all the latencies of arbitration and synchronization, Cdt is the cost per
byte transfer, and n is the number of bytes in a block. The total cost of transferring an array
is approximated by Nb×(Cdi+Cdt×n), where Nb is the number of blocks of an array. In our
approach, we can reduce Nb by exploiting the space overlapping among arrays in iterations. The
basic idea is that if we can allocate more space for arrays, then we can put more array elements
into one block in such a way that the total number of blocks for an array is reduced.

2.2. Space overlapping

In this section, we use an example to illustrate our basic idea for space overlapping. Suppose we
need to allocate space for four arrays, A, B, C , D, for a given loop in an application. We have six
DMA channels. Based on the iteration-level data access pattern in the loop, we find that array A
is read-only and array B is write-only. In Figure 3(a), we show the ordinary space allocation and
DMA settings for the arrays A, B, C , and D. We allocate space for all the arrays and call DMA
operations for data transfer. Since array A is read only, after one data have been used and will
not be used again, we can use that space to hold the data generated by array B. In this way, by a

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



740 Y. YANG ET AL.

Off-chip
memory

CPU

C’ A’ D’B’

1 32 4 65

C BA D

SPM

DMAC

Off-chip
memory

CPU

C” A” D”

C BA D

SPM

DMAC1 32 4 65

(a) (b)

Figure 3. Two SPM management strategies: (a) the SPM space allocation without space overlapping and
(b) the SPM space allocation with space overlapping by ISOS.

complete space overlapping, we do not need to assign space for array B. In Figure 3(b), we show
the case for completely overlapping arrays A and B. With such an overlapping, we can assign
more space to other arrays so as to utilize the space of the SPM more effectively.

3. THE ISOS TECHNIQUE

In this section, we propose our ISOS technique. We first give an overview of our technique in
Figure 4 and then provide the details for each important step of ISOS from Sections 3.1 to 3.3,
respectively.

The ISOS technique mainly consists of the following three steps as shown in Figure 4:

• Step 1, array classification: Based on iteration access patterns of arrays, we first classify arrays
into four groups: write-only arrays, read-only arrays, write-advance-read arrays, and others.
The SPM spaces of read-only arrays may be utilized for space overlapping for write-only
arrays or write-advance-read arrays.

• Step 2, space overlapping exploration: In this step, we discuss how to conduct space overlap-
ping. We first identify the space overlapping between the space of a read-only array for the
prior iterations and the space of a write-only or write-advance-read array for the successive
iterations and then compute the number of iterations in a block.

• Step 3, code transformation: We propose an algorithm to generate the transformed code by
applying space overlapping. We insert instructions for DMA transfer and transform array
references to map the space overlapping.

3.1. Step 1: Array classification

In ISOS, we first classify arrays into four different groups based on memory access patterns. To
achieve this, for each array in a loop, its corresponding memory operations are collected. Then
we classify arrays into the following groups:

• read-only arrays: For an array, if all of its memory operations in the loop are load operations,
then this array is a read-only array;

• write-only arrays: For an array, if all of its memory operations in the loop are write operations,
then this array is a write-only array.

• write-advance-read arrays: For an array, if the following two conditions are satisfied for all
of its memory operations in the loop, this array is a write-advance-read array: (1) if there are
both read and write (load/store) operations for the same memory location, the first operation
must be the write operation and (2) the reference range of all the array elements related to the
read operations must not be larger than the reference range of all the array elements related
to the write operations in the loop.

• others: For an array, if it is not in any one of the above three groups, then it is in others.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



COMPILER-ASSISTED DYNAMIC SPM MANAGEMENT 741

The source code of a loop, the 
SPM size, and the loop stride

Space overlapping
exploration

Step 2
(Section 3.2)

Array classification
Step 1

(Section 3.1)

Code transformation
Step 3

(Section 3.3)

The transformed code of the loop

Figure 4. The overview of the ISOS technique.

for (i=2; i<242; i++)
{
      W[i]=X[i]-W[i-1]-W[i-2];
       Y[i]=W[i]+W[i-1]+W[i-2];
}

Figure 5. A loop kernel.

An example is given in Figure 5 in which a loop kernel is shown which is extracted from the IIR
biquad filter in the DSP benchmark by neglecting the constant coefficient of the array elements.
There are three arrays, W , X , and Y , in the loop. Based on the above array classification, X is a
read-only array because it has only read operations; Y is a write-only array because it has only
write operations; W is a write-advance-read array because the two conditions are satisfied, which
means that the values read by all read operations are generated by the write operations in the
current/previous iterations or outside the loop.

3.2. Step 2: Space overlapping exploration

Based on the array classification above, we can then perform space overlapping. The space allocated
for read-only arrays may be utilized for space overlapping for write-only or write-advance-read
arrays. In this section, we first propose how to select candidate arrays and discuss how to determine
the size of data block.

We first determine how to select candidate arrays from read-only arrays for possible space
overlapping. The basic idea of space overlapping is that the SPM space of some array elements
can be overlapped after the array elements are not used in later iterations. Therefore, a candidate
array must have the following features: part or all of the memory space allocated for the array
in one iteration will not be used later, and the unused spaces from consecutive iterations form a
consecutive address space. For each qualified array, we record the memory size we can reuse and
put the array with the size into a set called Reused Array Set.

To select candidate arrays from write-only or write-advance-read arrays, we need to consider
the block-level data transfer. With the block-level data transfer, we need to write a block of data
with consecutive memory addresses back to the off-chip memory from the SPM by DMA after
we finish the execution of a set of iterations for a loop. Therefore, for a candidate array selected
from write-only or write-advance-read arrays, the related data generated in iterations must be put

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



742 Y. YANG ET AL.

in consecutive memory accesses. Based on this, for each qualified array, we record the memory
size we need and put the array with the size into a set called Overlapping Array Set.

After we obtain Reused Array Set and Overlapping Array Set, we try to find all possible array
pairs for space overlapping. In order to maximally overlap space, in ISOS, we sort the arrays in
Overlapping Array Set in descending order based on the memory sizes they need. Then based on
the order, for each array fromOverlapping Array Set, we find the best array from Reused Array Set
whose memory size we can reuse is not less than, and is the closest to the size of the array fromOver-
lapping Array Set. If we can find such a pair of arrays, we remove them from Reused Array Set
and Overlapping Array Set, respectively, and then put them into a set called Array Pair Set. The
above steps are repeated until all arrays in Overlapping Array Set have been checked.

After this step, we can calculate how many iterations we can put into one block based on
the memory required for all arrays and the SPM size. Assume that arrays in a loop are in the
form, X [ f (i)]= X [coef (X)×i+offset(X)], where X is an array, the subscripts expression f (i)
is an affine function of loop index i , and coef (X) and offset(X) are the coefficient and offset,
respectively. Taking the above overlapping space into account, we have

Sspm =
Npair∑

i=1
SABi +

Na−2∗Npair∑

j=1
SC j (1)

Here, Sspm is the total size of SPM, Na is the number of arrays in a loop, Npair is the number of
array pairs that can overlap SPM space with each other, SABi is the SPM size for arrays Ai and
Bi (with space overlapping), and SC j is the SPM space for array Cj in a block (the SPM space of
array Cj cannot be overlapped with other arrays).

Let SAi Bioverlap be the overlapped space between array Ai and array Bi. We have

SABi = SAi +SBi −SAi Bioverlap (2)

According to Equations (1) and (2), we have

Sspm =
Na∑

j=1
SC j ′ −

Npair∑

i=1
SAi Bioverlap (3)

Without overlapping space, we have

Sspm =
Na∑

j=1
SC j ′′ (4)

Considering Equations (3) and (4), we find that SC j ′ can be bigger than SC j ′′ , so that we can
allocate more elements of each array into SPM when space overlapping is applied. We assume that
all the array elements occupy the same SPM size, and memory size is expressed by the number
of array elements we can place into. Then in Equations (1) and (2), SC j and SAi Bioverlap can be
computed as

SC j = upper bound(C j)− lower bound(C j)+1+(Nit −1)×coef (C j)×k (5)

SAi Bioverlap = (Nit −1)×min(coef (Ai),coef (Bi))×k (6)

Here, upper bound(Cj) is the maximum offset of Cj, lower bound(Cj) is the minimum offset of
Cj, and k is the loop stride. Correspondingly, we can compute the number of iterations in a block,
Nit , as

Nit =
Sspm−∑Na

j=1 bound(C j ′)
∑Na

j=1 coef (C j ′)×k−∑Npair
i=1 min(coef (Ai),coef (Bi))×k

+1 (7)

Here, bound(C j ′)=upper bound(C j ′)−lower bound(C j ′)+1.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



COMPILER-ASSISTED DYNAMIC SPM MANAGEMENT 743

0 …. 21 22 …. 41 42 …. 61

Space for Array W

The SPM Space

(a)

0 …. 31 32 …. 61
(b)

(c)

Space for Array X Space for Array Y

Space for Array W
Space for Arrays X and Y 

with overlapping

The SPM Space

The SPM Space 0 …. 31 32 …. 61

Space for Array Y
Space for Arrays X and W 

with overlapping

Figure 6. The memory layouts of three cases: (a) no space overlapping; (b) space overlapping between
array X and array Y; and (c) space overlapping between array X and array W.

If space overlapping is not applied, we have the number of iterations in a block, N ′
i t , as

N ′
i t =

Sspm−∑Na
j=1 bound(C j ′′)

∑Na
j=1 coef (C j ′′)×k

+1. (8)

Equations (7) and (8) can be used to determine how to compute the number of iterations in a
block, which means how many iterations we can group together by transferring data together by
DMA.

In Figure 6, we give an example for the space overlapping of the loop shown in Figure 5. Here,
we assume that the size of the SPM is 62, which means that the SPM can contain at most 62 array
elements. Figure 6(a) shows the case without space overlapping among arrays W , X , and Y . In
this case, each array needs the SPM space. Therefore, we allocate 22 elements to array W , and
20 elements to X and Y , respectively, and accordingly the block size is 20 iterations.

Figure 6(b) shows the case that the unused space of array X is utilized for space overlapping for
the space of array Y . In Figure 6(b), we do not allocate the space for Y initially because we can
utilize the unused space of array X during the execution. Therefore, we can allocate more space
(31 elements) to each of arrays X and W , and accordingly put more iterations into one block. In
this way, we can reduce the number of DMA operations to improve the performance. During the
execution, in each iteration, we can put the element of array Y generated in each iteration into the
unused space allocated for X . Similarly, we can implement space overlapping between arrays X
and W as shown in Figure 6(c).

3.3. Step 3: Code transformation

Based on the space overlapping exploration in Section 3.2, we can perform the code transformation
to implement space overlapping. The algorithm is shown in Figure 7.

Based on the number of iterations for one block and Array Pair Set, the code transforma-
tion consists of the following steps: (1) change array references based on each array pair in
Array Pair Set; (2) transfer the loop into the two-level loop; and (3) insert DMA operations for
data transfer between SPM and off-chip memory. As mentioned in Section 3.2, when we apply
space overlapping, we pick up the candidate arrays from read-only arrays and write-only/write-
advance-read arrays and put them into Array Pair Set.

For an array pair in Array Pair Set, the SPM space of the read-only array is not less than the
space needed by the write-only/write-advance-read array based on our selection criteria; therefore,
in our code transfer, we first replace the write-only/write-advance-read array by their corresponding
read-only array for each array pair in Array Pair Set. In this way, we can utilize the space of
read-only arrays. Correspondingly, we need to transfer initial values between two arrays in an
array pair. Next, we allocate SPM space for each array in the loop. If an array can utilize the space
of an other array, it will be replaced in the first step. Therefore, we do not need to allocate space

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



744 Y. YANG ET AL.

Input: Array_Pair_Set, the original code for a loop, and the iteration number N in one block.

Output: The transformed code.

Algorithm:

1. for each array pair <Ai, Bi> in Array_Pair_Set

2. do Change Bi to Ai in the loop;

3. Add the prologue for initial value assignment;

4. for each array Ai in the loop

5. do The minimum off-chip memory address of array element of array Ai is mapped to the initial SPM 

address to store array Ai;

6. for each N iterations

7. do Insert the DMA instructions to transfer a block of data;

8. Transfer the given loop into a two-level loop by executing N iteration in the inner loop;

9. Insert the DMA instructions to store data back to off-chip memory; 

Figure 7. The code transformation algorithm.

  Ws[0] = 1; Ws[1] = 2;
  for( ie = 2; ie < 242; ie = ie+20)
  {
    ie’ = ie mod 20 ;
    DMA( AD_X[ie], AS_Xs[ie’ -2], 20) ;
    DMA ready
    for ( ib = 2 ; ib < 22 ; ib ++)
    {
      Ws[ib] = Xs[ib-2]-Ws[ib-1]-Ws[ib-2];
       Ys[ib-2] = Ws[ib]+Ws[ib-1]+Ws[ib-2];
     }
    DMA(AS_Ws[ie’ ], AD_W[ie], 20);
    DMA(AS_Ys[ie’ -2], AD_Y[ie], 20);
    DAM ready
    Ws[0] = Ws[ib-1]; Ws[1] = Ws[ib];
  }

  Ws[0] = 1; Ws[1] = 2;
  for( ie = 2; ie < 242; ie = ie+30)
  {
    ie’ = ie mod 30 ;
    DMA( AD_X[ie], AS_Xs[ie’ -2], 30) ;
    DMA ready
    for ( ib = 2 ; ib < 32 ; ib ++)
    {
      Ws[ib] = Xs[ib-2]-Ws[ib-1]-Ws[ib-2];
       Xs[ib-3] = Ws[ib]+Ws[ib-1]+Ws[ib-2];
     }
    DMA(AS_Ws[ie’ ], AD_W[ie], 30);
    DMA(AS_Xs[ie’ -3], AD_Y[ie], 30);
    DAM ready
    Ws[0] = Ws[ib-1]; Ws[1] = Ws[ib];
  }

  X[-3] = W[0] = 1; X[-2] = W[1] = 2;
  for( ie = 2; ie < 242; ie = ie+30)
  {
    ie’ = ie mod 30 ;
    DMA( AD_X[ie], AS_Xs[ie’ -2], 30) ;
    DMA ready
    for ( ib = 2 ; ib < 32 ; ib ++)
    {
      Xs[ib-3] = Xs[ib-2]-Xs[ib-4]-Xs[ib-5];
       Ys[ib-2] = Xs[ib-3]+Xs[ib-4]+Xs[ib-5];
     }
    DMA(AS_Xs[ie’ -3], AD_W[ie], 30);
    DMA(AS_Ys[ie’ -2], AD_Y[ie], 30);
    DAM ready
    Ws[0] = Ws[ib-1]; Ws[1] = Ws[ib];
  }

(a) (b) (c)

Figure 8. The code transformation for the loop shown in Figure 5: (a) the code without space
overlapping; (b) the code with space overlapping between arrays X and Y; and (c) the code with

space overlapping between arrays X and W.

for it. Then we transform the loop into two levels by grouping N iterations into an inner loop,
where N is the number of iterations we can put into one block and is obtained by Equation (7).
Finally, we insert DMA operations for implementing block-level data transfer. When inserting
DMA operations, for arrays with space overlapping, we need to transfer the data back to original
arrays. An example is given in Figure 8 to show the code transformation for the loop shown in
Figure 5.

3.4. Discussion

In this paper, we focus on optimizing arrays with the properties as described in Section 3.1. All the
loops in the benchmarks we tested shown in Section 4 have such properties. To deal with general
arrays, the dynamic SPM technique with data pipelining proposed in [40] can be applied. In this
technique, memory accesses of multiple iterations are grouped and put into different portions of
the SPM in order to improve data locality of regular array accesses. When the CPU executes

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



COMPILER-ASSISTED DYNAMIC SPM MANAGEMENT 745

instructions and accesses data from one portion of the SPM, DMA operations can be performed
to transfer data between the off-chip memory and another portion of SPM simultaneously.

In our technique, when two arrays are selected for space overlapping, they must be in distinct
memory areas. The pointer aliasing problem may appear when arrays are inputted as the parameters
of function calls, i.e. the arrays may exist in the same space due to runtime conditions. In this case,
our technique can only be applied when we can guarantee that the arrays are in distinct memory
areas—for example, in C programs, their pointers are labeled with the C99 keyword ‘restrict’.

In this work, we focus on optimizing loop kernels as they are the most time and power consuming
parts of the whole applications. For references to arrays outside loops, we can combine our
technique with static SPM techniques in the previous work [6, 8, 10–17] by partitioning the SPM
into two sections—one for the references to arrays outside loops using static SPM allocation
techniques and the other for the references inside loops using our dynamic allocation technique.
How to effectively combine the two techniques will be studied in the future work.

4. EXPERIMENTS

4.1. Experimental setup

We implement our approach based on the IMPACT compiler [38] and conducted experiments on
the cycle-accurate VLIW simulator of Trimaran [39]. The experimental configuration for Trimaran
simulator is shown in Table I.

In our experiments, we extract 12 loop kernels from Mediabench and DSPstone benchmarks,
and the loop kernels are shown in Table II. In Table II, the required memory size for each loop
kernel is given in Column ‘Data Size’. In our technique, each array is assigned to a DMA channel.
To test the run-time performance, we use the following DMA parameters, Cdi=100 and Cdt=1,
that have been used in [29]. Cdi is the number of cycles for CPU initializing a DMA block transfer,
and Cdt is the number of cycles for DMA transfer a byte between off-chip memory and SPM.

The benchmark characteristics are shown in Table III. For each benchmark the number of arrays
and the array classification are shown in the second and third columns, respectively. The SPM
allocation results for the two schemes, the technique in [20], and our proposed ISOS technique, are
shown in the last column. For the sake of convenience, we name the technique in [20] as DSML
(Dynamic Scratch-pad-memory Management for Loops).

The data in Table III show that ISOS can effectively achieve space overlapping, compared with
DSML. For example, for benchmark mmpen, DSML allocates the SPM space for 4 arrays, while
our ISOS technique allocates the space for 3 arrays. The reason is that space overlapping can be
achieved by writing the data of the write-only array into the SPM space used by the read-only
arrays. In the experiments, the block size is determined by the given SPM size and the number of

Table I. The configuration for the Trimaran simulator.

Parameters Configuration

Function units 2 integer ALU,
2 floating point ALU,
2 load-store units,
1 branch unit

Instruction latency 1 cycle for integer ALU,
1 cycle for floating point ALU,
2 cycles for load in SPM,
1 cycle for store,
1 cycle for branch

Register file 64 integer registers,
64 floating point registers

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



746 Y. YANG ET AL.

Table II. The loop kernels from MediaBench and DSPstone.

Source Application Abbreviation Data size Descriptions

Mediabench
mpeg2 enctransfrm mmpen 10.6KB Forward/inverse transformation
mpeg2 decrecon mmpde 7.8KB Compute the linear address based on

cartesian/raster coordinates provided
mesa drawpix mmedr 15.6KB Compute shift value to scale 32-bit

units down to depth values
gsm lpc mgslp 128KB Fast Autocorrelation
epic collapse ortho pyr mepco 31.8KB A QMF-style pyramid using an

arbitrary filter
rasta fft mraff 224KB Calling routine for complex fft of a

real sequence
rasta lpccep mfalp 5.9KB Computes autoregressive cepstrum

from the auditory spectrum
rasta post audspec mrapo 19.6KB Apply equal-loudness curve

DSPstone
fix point n real updates dfinr 18.8KB N complex updates—filter

benchmarking
fix point fft bit reduct dfiff 63.9KB Benchmarking of an integer stage

scaling FFT
fix point lms dfilm 19.8KB Lms—filter benchmarking
fix point biquad section dfibi 26.5KB Benchmarking of an one iir biquad

Table III. The benchmark characteristics.

Abbreviation Number of arrays Array classification SPM space allocation

mmpen 4 1 write-only 3 read-only DSML:4 array space ISOS:3
array space

mmpde 2 1 write-only 1 read-only DSML:2 array space ISOS:1
array space

mmedr 2 1 write-only 1 read-only DSML:2 array space ISOS:1
array space

mgslp 4 2 write-only 2 read-only DSML:4 array space ISOS:2
array space

mepco 3 2 write-only 1 read-only DSML:3 array space ISOS:2
array space

mraff 2 1 write-only 1 read-only DSML:2 array space ISOS:1
array space

mfalp 2 1 write-only 1 read-only DSML:2 array space ISOS:1
array space

mrapo 3 1 write-only 2 read-only DSML:3 array space ISOS:2
array space

dfinr 4 1 write-only 3 read-only DSML:4 array space ISOS:3
array space

dfiff 2 1 write-only 1 read-only DSML:2 array space ISOS:1
array space

dfilm 4 2 write-advance-read 2
read-only

DSML:4 array space ISOS:2
array space

dfibi 3 1 write-only 1 read-only 1
write-advance-read

DSML:3 array space ISOS: 2
array space

arrays for each benchmark. The number of blocks for processing each loop is shown in Tables IV
and V.

4.2. Results and discussion

We compare our ISOS technique with DSML. In all experiments, the time performance is normal-
ized based on that of DSML.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



COMPILER-ASSISTED DYNAMIC SPM MANAGEMENT 747

Table IV. The number of blocks for processing each loop (the SPM size is fixed).

DSML ISOS DSML ISOS DSML ISOS

Abbreviation SPM: 256B SPM: 512B SPM: 1KB

mmpen 42 32 21 16 11 8
mmpde 31 16 16 8 8 4
mmedr 62 31 31 16 16 8
mgslp 512 256 256 128 128 64
mepco 127 85 64 42 32 21
mraff 896 597 448 299 224 149
mfalp 24 12 12 6 6 3
mrapo 78 52 39 26 20 13
dfinr 75 56 38 28 19 14
dfiff 256 170 128 85 64 43
dfilm 79 40 40 20 20 10
dfibi 106 71 53 35 27 18

Table V. The number of blocks for processing each loop (the SPM size is the percentage of the data size).

DSML ISOS DSML ISOS DSML ISOS

Abbreviation SPM: 1% of data size SPM: 2% of data size SPM: 3% of data size

mmpen 100 75 50 38 34 25
mmpde 100 50 50 25 34 17
mmedr 100 50 50 25 34 17
mgslp 100 50 50 25 34 17
mepco 100 67 50 33 34 22
mraff 100 67 50 33 34 22
mfalp 100 50 50 25 34 17
mrapo 100 67 50 33 34 22
dfinr 100 75 50 38 34 25
dfiff 100 67 50 33 34 22
dfilm 100 50 50 25 34 17
dfibi 100 67 50 33 34 22

From the loop partitioning point of view, DSML is a special loop tiling technique to determine
the optimal tile size with the SPM space allocation and corresponding data transfer. Similar to
DSML, our ISOS technique is a loop tiling technique as well, and it can determine the tile size
with the SPM allocation considering space overlapping. Different from DSML, the tile generation
approach in ISOS is relatively simple by directly grouping consecutive iterations in innermost
loops based on space overlapping. Therefore, by comparing DSML (a technique with a relatively
complicated tile-generation optimization scheme but without space overlapping) with ISOS (a
technique with a relatively simple tile-generation approach and space overlapping), we can see the
impact of the space overlapping exploration.

We have carried out comprehensive experiments by showing the performance of our algorithm
under different situations. First, we consider the case with the fixed SPM size, which is used to
demonstrate the various run-time performances reached by applications with different sizes on a
given SPM size. Second, we consider the case of taking the SPM size as the percentage of data
size, which can be used to show the performance of the algorithms independent from data sizes
of applications.

The experimental results with fixed SPM sizes are shown in Figure 9. Figure 9 shows the
experimental results for different benchmarks when the SPM size varies from 128 bytes to 20KB,
respectively. From the figure we can see that ISOS can achieve better time performance compared
with DSML with various SPM sizes in all loop kernels. The average improvements are 13.15,
19.05, and 25.52% when the SPM sizes are 1KB, 512 bytes, and 256 bytes, respectively.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



748 Y. YANG ET AL.

Figure 9. The time performance comparisons of ISOS and DSML with different
SPM sizes (normalized to DSML).

We then conduct experiments by setting the SPM size as the percentage of the memory space
each loop kernel needs (shown in Column ‘Data Size’ in Table II). As the memory spaces needed are
different for different loop kernels, we want to compare the performances for different benchmarks
with the same SPM/memory percentage. Figure 10 shows the results when the percentage of
SPM/Data Size varies from 0.5 to 60%, respectively. We can see that the improvement is decreasing
as the ratio varies from 0.5 to 60%. The reason is that the gap between ISOS and DSML becomes

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



COMPILER-ASSISTED DYNAMIC SPM MANAGEMENT 749

Figure 10. The time performance comparisons of ISOS and DSML with different
percentages of SPM/Data Size (normalized to DSML).

smaller. From Figures 9 and 10, we can see that our ISOS can achieve better results compared
with DSML in all cases.

As shown in Figures 9 and 10, the run-time performance of ISOS increases with the increase
of the SPM size. We find that some applications such as ‘mraff ’ do not show the significant
run-time performance improvement with the increase of the SPM sizes. Figure 11 shows the
detailed performance comparisons among the four applications, ‘mmpen’, ‘mgslp’, ‘mraff ’, and
‘dfilm’, when the SPM sizes vary from 128 bytes to 40KB. Here, for each benchmark, the run-time
performance of ISOS is normalized to that achieved when the SPM size is 128 Byte. We can see

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



750 Y. YANG ET AL.

Figure 11. The normalized run-time performance on varying applications when the SPM
sizes change from 128 bytes to 40KB.

(a) (b)

Figure 12. The normalized run-time performance: (a) various parameters for DMA transfer and
(b) various parameters for DMA initialization.

that the factor of the SPM size has different influences with different applications. For example, it
gives little influence on ‘mraff ’ but big influence on ‘mmpen’. This is because the ISOS strategy
reduces the cost of data transfer with the increase of the SPM sizes; if data transfer costs dominate
within an application, the run-time performance increases significantly.

Figure 12(a) shows the normalized run-time performance of all the applications when we keep
the same Cdi but apply different Cdt. Most of the applications achieve less speedup when the cost
of Cdt increases. For example, the improvements of ‘mralp’ are 25.72%, 21.53%, 14.47%, when
Cdt is equal to 1, 2, 5, respectively. This is because the costs of data transfer increase when Cdt is
changed from 1, to 2 and 5, while the gain from space overlapping is fixed. On the other hand, when
Cdt increases, the effect of eliminating redundancy is remarkable. Thus for some applications, it
may improve the performance. For example, in ‘dfilm’ and ‘dfibi’, we can see that the more Cdt
is set, the more speedup we can achieve. For application ‘dlibi’, it achieves the improvements of
21.16, 27.22, and 36.03% when Cdt is equal to 1, 2 and 5, respectively. Figure 12(b) shows the
impact on Cdi, the cost of DMA initialization for one channel. We can find that the bigger Cdi is
set, the more speedup we can obtain. The speedup is proportional to the cost of DMA initialization,
since the space overlapping can decrease the number of blocks by grouping more iterations into
one block.

5. CONCLUSION

In this paper, we proposed a compiler-assisted iteration-access-pattern-based space overlapping
technique for dynamic SPM management (ISOS) with DMA. In ISOS, we exploited the chance
to overlap SPM space so as to further utilize the limited SPM space and reduce the number of
DMA operations. We implemented our technique based on IMPACT and conducted experiments
using a set of benchmarks from DSPstone and Mediabench on the cycle-accurate VLIW simu-
lator of Trimaran. The experimental results show that our technique achieves significant run-time
performance improvement compared with the previous work.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



COMPILER-ASSISTED DYNAMIC SPM MANAGEMENT 751

ACKNOWLEDGEMENTS

This work is partially supported by the grants from the Research Grants Council of the Hong Kong
Special Administrative Region, China (GRF 5269/08E), HK PolyU (1-ZV5S), National 863 Program of
China (Grant No. 2006AA01Z172 and 2006AA01Z199), National Natural Science Foundation of China
(Grant No. 60533040 and 60773089), National Science Fund for Distinguished Young Scholars (Grant
No. 60725208), and Shanghai Pujiang Program (No. 07pj14049).

REFERENCES

1. Dominguez A, Nguyen N, Barua RK. Recursive function data allocation to scratch-pad memory. Proceedings of
the 2007 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Salzburg,
Austria, 2007; 65–74.

2. The ElanTMSC520 Microcontroller Technical Reference Manual, 2001. Available at: http://www.amd.com/
files/connectivitysolutions/e86embedded/elansc520/22003b.pdf [August 2001].

3. The S3C2500 User’s Manual, 2003. Available at: http://www.samsung.com [May 2003].
4. DaVinciTM Digital Media Processors-user Guides, 2008. Available at: http://www.ti.com [October 2008].
5. The ARM1136JF-S and ARM1136J-S Technical Reference Manual, 2009. Available at: http://www.arm.com [July

2009].
6. Panda PR, Dutt N, Nicolau A. Efficient utilization of scratch-pad memory in embedded processor applications.

Proceedings of the European Design and Test Conference, Paris, France, 1997; 7–11.
7. Panda PR, Dutt N, Nicolau A. Memory Issues in Embedded Systems-on-chip. Kluwer Academic: Boston, 1999.
8. Avissar O, Barua R, Stewart D. An optimal memory allocation scheme for scratch-pad-based embedded systems.

ACM Transactions on Embedded Systems (TECS) 2002; 1(1):6–26.
9. Kandemir M, Kadayif I, Sezer U. Exploiting scratch-pad memory using presburger formulas. Proceedings of the

14th International Symposium on System Synthesis (ISSS), Montreal, Canada, 2001; 7–12.
10. Banakar R, Steinke S, Lee B-S, Balakrishnan M, Marwedel P. Scratchpad memory: Design alternative for Cache

On-chip memory in embedded systems. Proceedings of the 10th International Symposium on Hardware/Software
Codesign (CODES), Colorado, U.S.A., 2002; 73–78.

11. Steinke S, Wehmeyer L, Lee B, Marwedel P. Assigning program and data objects to scratchpad for energy
reduction. Proceedings of the Design, Automation and Test Conference in Europe, Paris, France, 2002; 409–415.

12. Wehmeyer L, Marwedel P. Influence of onchip scratchpad memories on WCET prediction. Proceedings of the
Fourth International Workshop on Worst-Case Execution Time (WCET) Analysis, Sicily, Italy, 2004; 120–130.

13. Wehmeyer L, Helmig U, Marwedel P. Compiler-optimized usage of partitioned memories. Proceedings of the
Third Workshop on Memory Performance Issues (WMPI2004), Munich, Germany, 2004; 114–120.

14. Avissar O, Barua R, Stewart D. Heterogeneous memory management for embedded systems. Proceedings of
the ACM Second International Conference on Compilers, Architectures, and Synthesis for Embedded Systems
(CASES), Atlanta, Georgia, U.S.A., 2001; 34–43.

15. Hiser JD, Davidson JW. EMBARC: An efficient memory bank assignment algorithm for retargetable compilers.
Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems, Washington, DC, U.S.A., 2004; 182–191.

16. Panda PR, Dutt N, Nicolau A. On-chip vs Off-chip memory: The data partitioning problem in embedded-
processor-based systems. ACM Transactions on Design Automation of Electronic Systems 2000; 5(3):682–704.

17. Sjodin J, Froderberg B, Lindgren T. Allocation of global data objects in On-chip RAM. Compiler and Architecture
Support for Embedded Computing Systems, Washington, DC, U.S.A., 1998; 205–220.

18. Udayakumaran S, Dominguez A, Barua R. Dynamic allocation for scratch-pad memory using compile-time
decisions. ACM Transactions on Embedded Computing Systems (TECS) 2006; 5(2):472–511.

19. Steinke S, Grunwald N, Wehmeyer L, Banakar R, Balakrishnan M, Marwedel P. Reducing energy consumption
by dynamic copying of instructions onto Onchip Memory. Proceedings of the 15th International Symposium on
System Synthesis (ISSS), Kyoto, Japan, 2002; 213–218.

20. Kandemir M, Ramanujam J, Irwin J, Vijaykrishnan N. Dynamic management of scratch-pad memory space.
Proceedings of the Design Automation Conference, Las Vegas, NV, U.S.A., 2001; 690–695.

21. Li L, Nguyen QH, Xue J. Scratchpad allocation for data aggregates in superperfect graphs. Proceedings of the
ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’07), San Diego, U.S.A., 2007; 207–216.

22. Verma M, Wehmeyer L, Marwedel P. Dynamic overlay of scratchpad memory for energy minimization. Proceedings
of the International Conference on Hardware/Software Codesign and System Synthesis(CODES+ISIS), Stockholm,
Sweden, 2004; 104–109.

23. Verma M, Steinke S, Marwedel P. Data partitioning for maximal scratchpad usage. Proceedings of the 2003
Conference on Asia South Pacific Design Automation, Kitakyushu, Japan, 2003; 77–83.

24. Angiolini F, Benini L, Caprara A. An efficient profile-based algorithm for scratchpad memory partitioning. IEEE
Transactions on Computer-Aided Design 2005; 24(11):1660–1676.

25. Udayakumaran S, Barua R. Compiler-decided dynamic memory allocation for scratch-pad based embedded
systems. Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), Philadelphia, U.S.A., 2003; 276–286.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe



752 Y. YANG ET AL.

26. Cho H, Egger B, Lee J, Shin H. Dynamic data scratchpad memory management for a memory subsystem with an
MMU. Proceedings of the International Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’07), San Diego, U.S.A., 2007; 195–206.

27. Schreiber R, Darren C. Near-optimal allocation of local memory arrays. HP Technical Reports HPL-2004-24,
2004; 11–13.

28. Anantharaman S, Pande S. Compiler optimizations for real time execution of loops on limited memory embedded
systems. Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS), Madrid, Spain, 1998; 154–164.

29. Li L, Gao L, Xue J. Memory coloring: A compiler approach for scratchpad memory management. Proceedings
of the International Conference on Parallel Architectures and Compilation Techniques, St. Louis, MO, U.S.A.,
2005; 329–338.

30. Dominguez A, Udayakumaran S, Barua R. Heap data allocation to scratch-pad memory in embedded systems.
Journal of Embedded Computing (JEC) 2005; 1(4):521–540.

31. Kandemir M, Ramanujam J, Irwin MJ, Vijaykrishnan N, Kadayif I, Parikh A. A compiler-based approach
for dynamically managing scratch-pad memories in embedded systems. IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems 2004; 23(2):243–260.

32. Vijaykrishnan N, Kandemir M, Irwin MJ, Kim HS, Ye W. Energy-driven integrated hardware-software
optimizations using simple power. Proceedings of the International Symposium on Computer Architecture,
Vancouver, BC, Canada, 2000; 95–106.

33. Using the STM32f101xx and STM32F103xx DMA controller, 2009. Available at: http://www.st.com [June 2009].
34. Wang Z, O’NEIL TW, Sha EH-M. Optimal loop scheduling for hiding memory latency based on two-level

partitioning and prefetching. IEEE Transactions on Signal Processing 2001; 49(11):2853–2864.
35. Wang Z, Sha EH-M, Hu XS. Combined partitioning and data padding for scheduling multiple loop nests.

Proceedings of the 2001 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, Atlanta, Georgia, U.S.A., 2001; 67–75.

36. Balasa F, Catthoor F, De Man H. Exact evaluation of memory size for multi-dimensional signal processing
systems. Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, New York, U.S.A.,
1993; 669–672.

37. De Greef E, Catthoor F, De Man H. Memory size reduction through storage order optimization for embedded
parallel multimedia applications. Parallel Computing 1997; 23:1811–1837.

38. Chang PP, Mahike SA, Chen WY, Warier NJ, Hwu WW. IMPACT: An architectural framework for multiple-
instruction-issue processors. Proceedings of the 18th International Symposium on Computer Architecture (ISCA),
Toronto, Canada, 1991; 266–275.

39. The Trimaran Compiler Research Infrastructure, 2010. Available at: http://www.trimaran.org/ [January 2010].
40. Yang Y, Wang M, Yan H, Shao Z, Guo M. Dynamic scratch-pad memory management with data pipelining for

embedded systems. Concurrency and Computation: Practice and Experience 2010; 22:1874–1892.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2011; 41:737–752
DOI: 10.1002/spe


