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a b s t r a c t

Most existing context reasoning approaches implicitly assume that contexts are precise and complete.
This assumption cannot be held in pervasive computing environments, where contexts are often
imprecise and incomplete due to unreliable connectivity, user mobility and resource constraints. To this
end, we propose an approach called CRET: Context Reasoning using extended Evidence Theory. CRET
applies the evidence theory to context reasoning in pervasive computing environments. Because evidence
theory is limited by two fundamental problems – computation-intensiveness and Zadeh paradox, CRET
presents evidence selection and conflict resolution strategies. Empirical study shows that CRET is
desirable for pervasive applications.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Pervasive computing aims to create smart environments that
embed computation and communication in a manner that contex-
tually interacts with users to ease their daily life [1,2]. Context rea-
soning enables pervasive applications to automatically adapt to the
changeable contexts and to unobtrusively integrate users into their
environments. The proliferation of pervasive applications has fos-
tered an increasing attention to context reasoning, where contexts
often refer to pieces of information that captures the characteris-
tics of pervasive computing.
Contexts collected in pervasive computing environments are

often imprecise and incomplete [3–5]. A number of sensing and
computational devices, such as hand-held devices, sensor net-
works and Radio Frequency IDentification (RFID), can detect con-
texts, but they cannot provide precise contexts. For instance, in a
smart meeting room, a sensor detects a context — the location of
the user is meeting room. Usually, the sensor does not know the ex-
act location of the user. Furthermore, sensors often miss pieces of
contextual information. When the user talks in the meeting room,
he or she uses many mimics to express his or her idea appropriate
to the topic. In this case, contexts collected by sensors are highly
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imprecise and incomplete. This is because the sensor technol-
ogy, collected data and their interpretation as contexts are prone
to error. The sources of errors consist of, but are not limited to,
inaccurate measurement and noise from external environments
[6,7]. This case is just a common example in pervasive computing
environments, and it is an essential requirement for context rea-
soning to handle such contexts.
A variety of context reasoning approaches have been pro-

posed to assist pervasive applications in adaption, but they mainly
focus on inferring contexts from precise and complete con-
texts. Bayesian network [8,9], case-based [10], logic-based [11],
ontology-based [12–14] and rule-based [15] have been exploited
in pervasive computing environments. The typical scenario is given
as below. Sensors are embedded into physical spaces to continu-
ously collect and report their readings. Once the contexts change,
context reasoning will infer hidden contexts according to sensor
readings, and then notifies pervasive applications to adapt. How-
ever, most existing approaches implicitly assume that the contexts
being checked are complete and precise. This assumption cannot
hold in pervasive computing environments, where contexts are of-
ten imprecise and incomplete due to unreliable connectivity, user
mobility, and resource constraints.
Evidence theory is a technique for reasoning the truth from

pieces of information [16]. It has achieved widespread success
in auditing, decision support, financial asset evaluation, process
engineering and quality control. However, evidence theory is
severely limited by two fundamental problems — computation-
intensiveness and Zadeh paradox. In evidence theory, Dempster’s
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rule is used to combine evidence, but it is extremely computation-
intensive when combining a large amount of evidence [17]. It
has been proven that Dempster’s rule of combination is NP-
complete [18]. This problemcanbe partially compensated byBayes
approximation, but it only works for singleton evidence [19]. On
the other hand, evidence theory does not consider conflicting
evidences, which may lead to a conclusion in favor of a less
probable event, a phenomenon known as the Zadeh paradox [20].
Contexts which are highly imprecise, incomplete and vary with
individuals, significantly restrict evidence theory in pervasive
computing environments.
In this paper, we propose an approach – CRET: Context Rea-

soning using extended Evidence Theory – to deal with incon-
sistent contexts in pervasive computing environments. CRET is
applied to context collection, representation, storage and reason-
ing in our context-aware architecture. In order to reduce com-
putation overhead, CRET presents a k − l strategy for evidence
selection to filter the less important evidence. This strategy sorts
the evidence according to the weighted sum of their masses and
then selects evidence with the highest beliefs. With respect to the
Zadeh paradox, CRET introduces conflicting factors. To summarize,
the main contributions of this paper are two-fold. (1) It introduces
an approach using evidence theory for context reasoning in per-
vasive computing environments. It systematically shows how to
apply evidence theory to context reasoning. (2) It solves the two
fundamental problems of evidence theory by evidence selection
and conflict resolution strategies.
The remainder of this paper is organized as follows. Section 2

introduces the related work. Section 3 briefly gives an overview
of the evidence theory. Section 4 describes the CRET approach
in detail and discusses evidence selection and conflict resolution
strategies. Section 5 reports our empirical study and Section 6
concludes our work with future directions.

2. Related work

Context reasoning is an important technique for context-
awareness and has generated a great many approaches. In general,
they can be classified into case-based, logic-based, ontology-based,
probabilistic and rule-based approaches. In this section, we briefly
give an overview of them, as well as the advances in evidence
theory.
Case-based context reasoning approaches infer contexts based

on the past cases [21,10,22]. Case-based approaches, however, suf-
fer from two problems. One is how to automatically abstract facts
and generate cases, and the other is how to measure the simi-
larity among cases. Rule-based approaches share the similar idea
with case-based approaches, together with the similar limitations
[15,23].
Logic-based context reasoning, involving first-order and tem-

poral logic, is another popular reasoning scheme [8]. Gaia project
used it to represent context in the form of predicate, and reasoned
about high-level context based on the pre-defined rules [11]. Logic-
based approaches are designed for exact reasoning so that they
are not suitable for inference from imprecise and incomplete con-
texts. Moreover, they do not take semantics into consideration.
Note that approaches based on the fuzzy logic (e.g., Type I and Type
II fuzzy logic) are dedicated to fuzzy reasoning, but their systems
are not easy to implement and their computation overheads are
quite heavy.
Ontology-based reasoning approaches incorporate the seman-

tics into context representation and reasoning [24]. With the sup-
port of powerful ontology software such as Stanford Protégé, IBM
IODT andMaryland Swo, ontology iswidely used for context repre-
sentation in pervasive applications. Yet, it has limited capability in
dynamically inferring contexts. It requires defining all the rules or
training a model beforehand, and a premise that all ontologies re-
lated to the specific domainmust be defined already. Normal users
in pervasive applications cannot satisfy these requirements due to
lack of comprehensive knowledge about their domains, and thus
they cannot but resort to domain experts. This incurs higher hu-
man cost and restricts the ontology application.
Probabilistic reasoning approaches make use of probability

theory to predict uncertain contexts. Bayesian network can be re-
garded as a standard, even canonical, probabilistic reasoning tech-
nique [8,25–28]. It represents contexts by graph and probability. It
requires that all hypotheses should be exclusive and exhaustive,
which cannot be held in pervasive applications. Meanwhile, the
Bayesian network is also criticized for its exponential computation
overhead [29,30].
In contrast, evidence theory seems to be a better choice for

inference from imprecise and incomplete contexts for its capability
of constructing the ground truth from pieces of information. It
relaxes the requirement held by the Bayesian network, and allows
for probability assignment to sets or intervals. It has attracted
a great deal of attention and generated many applications in
various domains [31–34]. However, evidence theory suffers from
two rudimentary problems — computation-intensive and Zadeh
paradox. These two problems become conspicuous in pervasive
applications, because contexts are not only continuously varied
and generated, but also highly conflicting. In [19], Bayesian
approximation was proposed to reduce the computation overhead
of evidence theory, but it works for those applications that only
care about singleton evidence. In [35], constant approximation cuts
down the computation overhead at the cost of accuracy. Regarding
the Zadehparadox, severalmethods have beenproposed in [36,37],
but they cannot solve the Zadeh paradox completely.

3. Background

Evidence theory is a mathematical theory of evidence that
constructs a coherent picture of reality through computing the
probability of an event given evidence [16,38]. It is founded on the
grounds of the following concepts and principles.

3.0.1. Frame of discernment

Let Θ be the Frame Of Discernment (FOD), denoting a set
of mutually exclusive and exhaustive hypotheses about problem
domains. Correspondingly, 2Θ is the power set ofΘ .

3.0.2. Mass

Mass stands for a belief mapping from 2Θ to the interval
between 0 and 1, represented as m. The masses of the empty set
and the sumof all the subsets in power set are 0 and 1, respectively.
Mass can be assigned to sets or intervals. Let ∅ and C be the empty
set and a subset ofΘ . Massm is defined as Eq. (1).

m : 2Θ → [0, 1]
m(∅) = 0∑
C⊆Θ

m(C) = 1.
(1)
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3.0.3. Belief and plausibility

The belief of a hypothesis is the sum of the beliefs for those
hypotheses that are its subsets. Conversely, the plausibility of a
hypothesis is the sum of all the beliefs of sets that intersect with
it. Eq. (2) gives their definitions:

Bel(C) =
∑
B|B⊆C

m(B)

Pls(C) =
∑

B|B∩C 6=∅

m(B),
(2)

where B is a subset of Θ . Bel is the degree of belief to which the
evidence supports C , constituted by the sum of the masses of all
sets enclosed by it. Pls denotes the degree of belief to which the
evidence fails to refute C , that is, the degree of belief to which
it remains plausible, i.e., the possibility that the hypothesis could
possibly happen.

3.0.4. Dempster’s rule

In order to aggregate the evidence from multiple sources,
Dempster’s rule plays a significantly meaningful and interest-
ing part. Let Ci be a subset of Θ and mj(Ci) be a mass assign-
ment for hypothesis Ci collected from the j-th source. For subsets
{C1, C2, . . . , Cn} and mass assignments {m1,m2, . . . ,mn}, Demp-
ster’s rule is given as:

m{C} = (m1 ⊕m2 ⊕ . . .⊕mn)(C)

=
1
K

∑
τ=C

m1(C1) ·m2(C2) . . .mn(Cn), (3)

where τ equals to C1 ∩ C2 ∩ . . . ∩ Cn, and K is the normalizing
constant that is defined as Eq. (4).

K = 1−
∑
τ=∅

m1(C1) ·m2(C2) . . .mn(Cn). (4)

Eqs. (3) and (4) show that Dempster’s rule combines evidence
over the set of all evidence. Its complexity grows exponentially
with the increase of the amount of evidence. In [18], the complexity
of Dempster’s rule is proved as NP-complete. Meanwhile, once
some probabilities of evidence are zero, Dempster’s rule will get a
wrong inference that a less probable event is regarded as the most
probable event that could happen. This phenomenon is named for
Zadeh paradox.

4. Context reasoning using extended evidence theory in perva-
sive computing environments

We present a context-aware architecture for pervasive appli-
cations, where CRET: Context Reasoning using extended Evidence
Theory, is applied. We first introduce our context-aware architec-
ture and then describe CRET in detail, followed by discussions.

4.1. System model

Fig. 1 illustrates our context-aware architecture, which is a
hierarchical module consisting of context providers, a manager
and consumers. The context providers gather context data on the
environments from sensors. Note that contexts may come from
applications, and our context collection is capable of collecting
contexts at intervals or on demand. The context manager pre-
processes contexts and responds to requests from adapters and
services. After the context information is generated, the context
manager will format it and remove inconsistencies in the prepro-
cessing step, and then move into the reasoning step where hidden
Context collection
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Fig. 1. Context-aware architecture. Context-awareness is provided by context
collection, preprocessing, reasoning and distribution.

contexts are derived from present and historical contexts. A his-
torical context database is introduced to store the past contexts,
because contexts that are updated frequently increase in size con-
siderably. Finally, the context manager notifies adapters and ser-
vices, and distributes contexts to them according to their specific
privacy and security requirements and their resource constraints.
We are implementing a prototype to demonstrate our context-
aware architecture. We employ TinyOS 2.0, Micaz and Microsoft
SQL server to collect, preprocess and store contexts. Our proto-
type currently supports devices with Bluetooth, Wi-Fi and WLAN
function.
It is noteworthy to point out that CRET is applied to context col-

lection, reasoning and storage in the contextmanager. This enables
the contextmanager to handle imprecise and incomplete contexts.
The goal of this study is to provide a context-aware architecture
with context reasoning functionality. The current version of CRET
is a centralized approach, where a static node is selected to cen-
trally control the system. From here on, we describe the process
of applying evidence theory to pervasive applications and then ex-
tend evidence theory to overcome its two significant problems.

4.2. CRET model

We model the sensor-driven pervasive applications as a
hierarchical structure, consisting of sensors, objects, and activity
layers [39]. Sensors are deployed to monitor objects in the sensor
layer. All objects are in the object layer, where some objects are
monitored by sensors. Activities are in the activity layer, which
can be inferred according to the contexts of objects. In order to
formally describe our model, we define S = {s1, s2, . . . , sn} as
the set of sensors, O = {o1, o2, . . . , on} as the set of objects,
A = {a1, a2, . . . , an} as the set of activities, SO as simple objects,
monitored by sensors directly, DO as deduced objects, obtained
from SO, CO as composite objects, comprised of SO or DO, E as the
set of evidence, and D as discount rate, reflecting the reliability of
sensor readings. The system infers the activity candidate set and
then makes a decision using Dempster’s rule.
Fig. 2 illustrates our systemmodel, where o5 and o6 are deduced

object and composite object, and lines with various arrows denote
relationships among sensors, objects and activities. Objects o1, o2,
o3 and o4 are monitored by sensors s1, s2, s3 and s4, respectively.
Object o5 is deduced from o1, and o6 is made up of objects o2 and
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Fig. 2. System model for CRET.

o3. Suppose a scenario that a sensor is deployed to monitor the door
of a refrigerator where coffee, milk and tea are stored. When the door
is open, users make a drink by selecting coffee, milk or tea, or their
combinations as simple a1 or a2, or complex activity a3. In this case,
the refrigerator is type of object o4, coffee, milk and tea are type of
object o5 and their combinations are type of object o6.
In Sections 4.3–4.5, we describe how to apply CRET to this

scenario. The process of applying CRET consists of (1) propagating
evidence in the sensors layer, (2) propagating evidence in the
objects layer, and (3) recognizing activities. In Section 4.6, we solve
the two problems of CRET - intensive computation and Zadeh
paradox.

4.3. Propagating evidence in the sensors layer

Sensors are vulnerable and vary drastically with environments,
which leads to unreliable sensor readings. Therefore, it is impor-
tant to take into account the reliability of sensors in the evidence
aggregation process. As proposed by Shafer [16], this reliability can
be controlled by the discount rate,which is derived from the sensor
reliability model [31]. In CRET, the sensor discount rate is incorpo-
rated, given as Eq. (5):

mr(C) =
{
(1− r)m(C) C 6= Θ
r + (1− r)m(Θ) otherwise, (5)

where r is the sensor discount rate with its value between 0 and
1. When r is 0, the sensor is completely reliable; when r is 1, the
sensor is absolutely unreliable.
In the beginning, sensors s1, s2, s3 and s4 are installed and

working with discount rates as 0.02, 0.02, 0.1 and 0.2. Evidence on
sensor nodes is represented by masses as: ms1(s1) = 1, ms2(s2) =
1, ms3(⇁ s3) = 1 and ms4(s4) = 1. Then, the discounted masses
are calculated as:
mr(s1) = 0.98, mr(s1,⇁ s1) = 0.02
mr(s2) = 0.98, mr(s2,⇁ s2) = 0.02
mr(⇁ s3) = 0.9, mr(s3,⇁ s3) = 0.1
mr(s4) = 0.8, mr(s4,⇁ s4) = 0.2.

There is a relationship between sensors and their associated
objects. For example, given the frames Θa and Θb of sensor sa
and its associated object ob, the relationship between sensor sa
and object ob denotes the evidence propagation from sensors to
objects layers. CRET associates objectswith sensors bymaintaining
a compatible relationship between them, which is defined as
evidential mapping by Eq. (6):

Γ : m(ob) = f (sa− > ob), (6)
Table 1
Evidential mapping.

Relationship Evidence value

{o1} −→ {o5} 0.9
{⇁ o1} −→ {⇁ o5} 1.0
{o1} −→ {o5,⇁ o5} 0.1
{o1,⇁ o1} −→ {o5,⇁ o5} 1.0

{o4} −→ {a2} 0.3
{⇁ o4} −→ {⇁ a2} 1.0
{o4} −→ {a2,⇁ a2} 0.7
{o4,⇁ o4} −→ {a2,⇁ a2} 1.0

where f is a mapping function, propagating the evidences from
sensor sa to object ob. For objects o1, o2, o3 and o4 in Fig. 2, their
masses are computed as:

Γ : m(o1) = mr(s1) = 0.98
Γ : m(o1,⇁ o1) = mr(s1,⇁ s1) = 0.02
Γ : m(o2) = mr(s2) = 0.98
Γ : m(o2,⇁ o2) = mr(s2,⇁ s2) = 0.02
Γ : m(⇁ o3) = mr(s3) = 0.9
Γ : m(o3,⇁ o3) = mr(s3,⇁ s3) = 0.1
Γ : m(o4) = mr(s4) = 0.8
Γ : m(o4,⇁ o4) = mr(s4,⇁ s4) = 0.2.

In this step, the evidence is propagated to all the sensors and
objects. With the help of the mapping function, the masses of
sensors are transferred to the objects layer.

4.4. Propagating evidence in the objects layer

This step intends to propagate evidence in the objects layer.We
collect evidence from the observations illustrated in Table 1. Note
that evidence {o1} −→ {o5} refers to that a 0.9 confidence about
object o5 when we observe object o1. We take simple object o4,
deduced object o5 and composite object o6 to explain this step.

4.4.1. Calculating masses for the deduced objects: DO← E
Although the deduced objects are not monitored directly by

sensors, evidential mapping is capable of calculating their masses
from their evidence. For instance, evidential mapping propagates
masses from objects o1 to o5 as:

m({o5}) = m({o1}) ∗m({o1} → {o5})
= 0.882

m({o5,⇁ o5}) = m({o1}) ∗m({o1} → {o5,⇁ o5})
+m({o1,⇁ o1}) ∗m({o1,⇁ o1}
→{o5,⇁ o5})

= 0.118.

4.4.2. Calculating masses for the composite objects: CO← E
This step aims to propagate evidence to the composite objects.

This is also achieved by evidential mapping and is much more
complex than those of the deduced objects. It includes two
substeps: a) calculating masses to the sets of objects that comprise
the composite objects, and b) calculating masses of the composite
objects. In the first step, CRET computes the masses of these sets
using Eq. (6).

Γ : m1({o2, o3}) = m({o2}) = 0.98
Γ : m2({o2, o3}) = m({o3}) = 0.9
Γ : m1({(o2, o3),⇁ (o2, o3)}) = m({o2,⇁ o2}) = 0.02
Γ : m2({(o2, o3),⇁ (o2, o3)}) = m({o3,⇁ o3}) = 0.1.

Thus, we get different beliefs for observation combinations
from two sources, e.g., beliefs ofm1({o2, o3}) andm2({o2, o3}) from
readings of sensors s2 and s3. How to generate the masses of the
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composite objects is an interesting job. We present an aggregation
mechanism by using the weighted sum, defined as Eq. (7):
m(C) = m1⊕̂m2⊕̂ . . . ⊕̂mn(C)

=

n∑
i=1
wi ·mi

n∑
i=1
mi

, (7)

where C is a subset of Θ , wi is the weight for mi(A) and
∑n
i=1wi

equals to 1. Let ri be the discount rate for massmi. The weight ofwi
is calculated by Eq. (8).

wi =
ri
n∑
i=1
ri
. (8)

Theorem 1. The mass m(C) that is calculated by Eq. (7) is a proper
mass.
Proof. A proper mass means that a mass must satisfy all the
requirements given by Eq. (1). Because mi is less than 1, the value
of

∑n
i=1 wi·mi∑n
i=1 wi

is between 0 and 1. When C is an empty set, the value
of m(C) is equal to 0. Suppose we have l subsets of Θ . The sum of

m(Cj) is calculated as
∑l
j=1

∑n
i=1 mji∑n

i=1 mi
that is equal to

∑n
i=1

∑l
j=1 mij∑n

i=1 mi
. The

value of
∑l
j=1mij ismi so that the sumof all the subsets ofΘ equals

to 1. Therefore,m(C) is a proper mass. �

In our case, parametersw2 andw3 are computed as 0.6 and 0.4,
and$ equals to the value ofw2 ∗m1({o2, o3})+w3 ∗m2({o2, o3}).
Eq. (9) shows the evidential mapping form{(o6)}. In the sameway,
we get the mass value ofm({o6,⇁ o6}).
m{(o6)} = m({o2, o3})

=
$

w2 + w3
= 0.948. (9)

4.4.3. Generating an activity candidate set from objects: A← O
So far, we have generated an activity candidate set in which

users may do one or more activities at a time. Although knowing
precisely what the users want is impossible, observations show that
most routine tasks are predictable. In fact, an object-activity map-
ping table is collected in CRET that conforms closely to the reality
of how users work. This mapping table varies with each scenario
and can be collected from the observations. For Fig. 2, activity a1
obtains the masses propagated by objects o5 and o6 according to
the object-activity mapping table. Then its mass is calculated as:
m1({a1}) = m({o5}) = 0.882
m2({a1}) = m({o6}) = 0.948
m1({a1,⇁ a1}) = m({o5,⇁ o5}) = 0.118
m2({a1,⇁ a1}) = m({o6,⇁ o6}) = 0.052.
For the same reason, the mass of activity a2 is calculated as Eq.

(10). At this point, CRET has generated an activity candidate set and
is ready for user activity recognition in the next step.

ma2({a2}) = mo4({o4}) ∗m({o4} → {a2})
= 0.24

ma2({a2,⇁ a2}) = mo4({o4})∗
∗m({o4} → {a2,⇁ a2})+
+ mo4({o4,⇁ o4})∗
∗m({o4,⇁ o4} → {a2,⇁ a2})

= 0.76.

(10)

4.5. Recognizing user activities: ai ← A

This step focuses on recognizing user activities from the activity
candidate set. For example, activity a1 is chosen because of its
bigger mass than that of other activities. Observations in previous
Table 2
An example of activity candidate set.

Activity m1 m2 m- Final result

{a1} 0.40 0.20 ?
{a2} 0.30 0.20 ?
{a3} 0.20 0.30 ?
{a1, a2} 0.05 0.15 ?
{a2, a3} 0.04 0.10 ?
Θ = {a1, a2, a3} 0.01 0.05 ?

steps reveal that the original accuracy of sensors has a significant
impact on the final results. Two methods are available to avoid
the influence of sensor reliability. One method is to use powerful
sensors to improve accuracy, but this increases cost and prevents
pervasive computing. The other method is to use multiple sensors
to monitor the same objects or sample the same context several
times. In most cases, the latter method is preferred for pervasive
applications because it inflicts less cost.
To describe clearly the mechanism of activity recognition, we

extend the example used in Section 4.4.3. Suppose that we collect
the evidence for the same scenario and process it by the steps
mentioned above (see Table 2). According to the Eq. (4), the
normalizing constant K is calculated as

K = 1−
∑
B∩C=∅

m1{B} ·m2{C}

= 1− {m1{a1} ·m2{a2} + · · ·
+ m1{a2, a3} ·m2{a1}}

= 1− {0.4 ∗ 0.2+ · · · + 0.04 ∗ 0.2}
= 0.477.

Note that the calculation of the normalizing constant is com-
puted over the entire set of evidence.When the amount of evidence
and sources increase, Dempster’s rule requires exponential time to
calculate the normalizing constant. Existing work [18] has proved
that the complexity of Dempster’s rule is NP-complete. Moreover,
when some evidence is zero, Dempster’s rule will get wrong re-
sults, which is well-known as the Zadeh paradox. According to the
Eq. (3), the combination mass of activity a1 is computed as

m{a1} = m1 ⊕m2({a1})

=

∑
B∩C=a1

m1(B) ·m2(C)

K
= 0.3606.

In the same way, we calculate the combined masses m{a2},
m{a3}, m{a1, a2}, m{a2, a3} and m{Θ} as 0.3795, 0.2201, 0.0241,
0.0147 and 0.0010, respectively. After all the combination masses
have been obtained, applications will compute the beliefs using
Eq. (2) and then recognize the activities. Correspondingly, activity
a2 in Table 2 is selected as the prediction. Up to now, all the
steps of applying CRET to pervasive computing environments have
been described. However, two problems are still not solved — the
intensive computation that arises from calculating the normalizing
constant and combined masses [16], and the Zadeh paradox that
emerges from conflicting evidences [20].

4.6. Evidence selection and conflict resolution strategies

In order to solve the problems of evidence theory, we present
two strategies (i.e., evidence selection and conflict resolution to the
Zadeh paradox).

4.6.1. Evidence selection strategy
The calculation for the normalizing constant K in Dempster’s

rule is time-consuming because it requires traversing all the
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evidence and masses. We find that an observation illustrated as
Lemma 1 can reduce the operations for the normalizing constant
to |Θ|. Note that Dempster’s rule, which uses the Eq. (4) to
calculate the normalizing constant, is appropriate for calculating
the combined mass for any one hypothesis without calculating all
the combined masses.

Lemma 1. The normalizing constant K can be computed from all the
masses that are to be normalized.

Proof. Let m1, m2, . . ., mn be n masses that are to be normalized.
Given that the normalizing process is to normalize all the masses,
the normalizing constant K must equal to

∑n
i=1mi. �

The other computation overhead of CRET emerges from the
calculation of the combined masses. Suppose we calculate the
combined mass for the evidence C by calculating its unnormalized
mass and then normalizing it. The total number of operations
required is proportional to log(|C |) + log(|Θ|) for ordered lists,
but is exponential in |Θ| for n-dimensional array representation.
Because the decisions made by pervasive applications, in most
cases, rely on the most related contexts, CRET employs a process
of selecting evidence. This process consists of two substeps.
First, CRET defines the importance of evidences by ti that is

given as:

ti =
n∑
j=1

wj ·mj, (11)

where j is the number of masses and wj is the weight of mass mj
for evidence i. Consider that themasses frommultiple sources have
different impact on thedecision-making for pervasive applications.
CRET is capable of tuning wj to emphasize the most important
masses.
Second, CRET selects themost related evidence by k− l strategy.

Let n be the amount of evidence, k be the minimum amount of
evidence to be kept, l be the maximum amount of evidence to be
kept, η be the threshold on the sum ofmasses of selected evidence,
Σ be the sum of masses of selected evidence, ϑ be the number
of selected evidence and LSP be the least small probability event.
Lines from 5 to 17 in Algorithm 1 are k − l selection strategy for
evidence selection.When l is equal to k, the selection strategy turns
into the top K selection strategy. Note that the step of randomized
quicksort in the k− l strategy is just marking the order of evidence
according to the ti and does not swap evidence orders during the
sorting process.
Fig. 3. A well-known example of the Zadeh paradox.

Fig. 4. Introducing conflicting factors for the Zadeh paradox.

4.6.2. Conflict resolution to Zadeh paradox
The Zadeh paradox refers to the situation that Dempster’s rule

becomes problematic when combining conflicting evidencewhose
sum masses are zero [20]. Fig. 3 illustrates a well-known example
of the Zadeh paradox, where activity a2 is a low probability
event supported by little evidence, while activities a1 and a3 are
strongly supported by some evidence. Dempster’s rule, however,
implies that activity a2 with belief as 1 should be absolutely
believed, and activities a1 and a3 get the beliefs as 0. This result
is counter-intuitive. In pervasive computing environments, the
evidence is often highly imprecise and incomplete and thus the
Zadeh paradox is more likely to happen. In our experiments, we
find that the Zadeh paradox has a great impact on the performance
of CRET.
According to [17,37], all the masses are conditional beliefs

(i.e., m(x|e) = m(x)) and thus evidence are partially believed.
In essence, it is the masses of activities a1 and a3 that cause the
unsatisfactory results. In order to remove the Zadeh paradox, we
introduce conflicting factors. Fig. 4 illustrates the assignment of
conflicting factors where they are added to the FOD, which affects
the degree of beliefs for all hypotheses.

Definition 1. Let ε be the measurement for the Zadeh paradox, and
set its value equal to the minimum combined mass of the evidence.

Definition 1 shows themeasurement for the Zadehparadox. The
less the ε, the better the performance of solving the Zadeh paradox.
Theorem 2 proves that conflicting factors can reduce the influence
of the Zadeh paradox.

Theorem 2. Conflicting factors can decrease the value of ε for that
well-known example of the Zadeh paradox.

Proof. In Fig. 3, the combined mass m{a1} is 0.99−δ2
1−δ2+(δ2+0.0001)/δ1

according to the Dempster’s rule. Given a specific δ2, we infer that
massm{a1} is monotonic increasing. For the same reason, we infer
that the combined massm{a3} is monotonic increasing. According
to the principle that the sum of all combined masses is a sum
up to 1, the combined mass for activity a2 decreases. That means
measurement ε becomes smaller. Thus, conflicting factors reduce
the influence of the Zadeh paradox. �
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Table 3
Result of Zadeh paradox.

Approach Evidence Theory Yager Smet CRET

{a1} 0 0 0 0.49
{a2} 1.0000 0.0001 0.0001 0.015
{a3} 0 0 0 0.49
∅ 0 0 0.9999 0
Θ = a1, a2, a3 0.00 0.9999 0 0.005

The conflict resolution strategy is composed of three steps. It
first identifies the LSP from the result of selection strategy. Then, it
minimizes the plausibility function for LSP to calculate conflicting
factors. Finally, it recognizes user activities by using Dempster’s
rule. Conflicting factors for conflicting evidence are defined as Eq.
(12), where m′(x|e) is a new mass assignment and m′(Θ) is the
mass assignment for the FOD.

m′(x|e) = (1− δ) ·m(x|e),

m′(Θ) = δ ∗m(x|e)+m(δ).
(12)

Given that the plausibility describes the degree of belief to
which the evidence fails to refute a specific hypothesis, we infer
that the less the plausibility for the least small probability event
(e.g., activity a2) is, the better result Dempster’s rule can achieve.
Therefore, we get an optimization problem as Eq. (13).

Minimize: Pls(LSP, δ)
subject to: δ ∈ (0, 1). (13)

Take Table 2, for example. The values for δ1 and δ2 are derived as
0.01 by minimizing the plausibility function for activity a2. Table 3
illustrates the final result, denoting that activities a1 and a3 are
most likely to happen. CRET achieves the best results among all the
solutions. Yager [36] and Smet [37] just identify the least probable
event without pointing out the most probable event. We also test
that these work over other cases of the Zadeh paradox, which
shows that the results of CRET are the closest to the ground truth.

4.7. Discussion

Comments. Evidence theory has achieved widespread success in
various domains. In this paper, we have shown how to apply
it to pervasive applications by extending it so as to reduce the
computation overhead and avoid the Zadeh paradox. Note that
the k − l evidence strategy is unique in complexity reduction.
It neither defines any mass function nor gives new combination
rule (e.g. [40]) but it remarkably reduces the size of the evidence
set, and thus accelerates the evidence combination. Furthermore,
it differentiates the evidence from various sources by using a
set of weights that can be specified according to application
requirements. With respect to the Zadeh paradox, Dempster’s rule
does not consider the conflicting evidence. Without conflicting
evidence, Dempster’s rule performs quite well, which is the reason
that we extend it rather than propose a new combination rule.
Complexity. For k − l evidence selection strategy, the time
complexity is O(n), where n is the amount of evidence. The space
complexity is also O(n). For the conflict resolution strategy, the
time complexity is O(ϑ), where ϑ is the amount of evidence used
in Dempster’s rule. Because ϑ is much less than n, CRET is scalable
even for a large amount of evidence.

5. Evaluation

In order to evaluate our proposed approach, we carried out
a series of experiments. In particular, we tried to answer the
following questions:
• What is the overall performance of CRET? Does it work better
than other approaches in pervasive computing environments?
• How do two problems of evidence theory (i.e., intensive com-
putation and Zadeh paradox) affect the performance of CRET?
Fig. 5. Recognition rate of recognizing users’ activities.

5.1. Experimental settings

We extracted ten users’ activities from Houser_n project that
is a joint project for studying and designing strategies in real
living environments [41]. We selected singleton activities and
complex activities together from PLCouple1 dataset as the test ac-
tivities. This dataset provides log files recording the real activities,
videos and experimental data. The selected singleton activities are
watching TV,walking in the kitchen, standing still,walking in the live
room,walking with carrying load, kneeling, running, squatting, bend-
ing in the dining area and bending in the kitchen. The combinations of
these singleton activities are possible complex activities that may
be executed by users. According to the statistics, we collected the
contexts information (e.g., the evidence and relationships between
objects and activities). Due to unavailability of discount rates of all
sensors, we assume all sensors work properly with zero discount
rate. We first extracted the activity set that consists of singleton
and complex evidence. Then, we did experiments nine times, and
each time we used different months’ data.
We select a recognition rate as the evaluation metric in our

experiments. The recognition rate is defined as the ratio of the
number of correctly recognized activities to the total number of
activities.We run the programon aWindows XP (SP3) systemwith
3.0 GHz Pentium IV CPU and 1.5 G memory.

5.2. Overall performance

In this section,we conducted a series of experiments to evaluate
Bayesian network and CRET. We select Bayesian network [42],
because it is regarded as a typical or even canonical approach
for inferring contexts in pervasive computing environments [8,
9,25–28]. Note that rule-based and logic-based approaches are
designed for exact reasoning, which lead to working improperly
when handling imprecise and incomplete contexts.
Fig. 5 shows the results. The x-axis is the i-th experiment. CRET

outperforms the others approaches by about 28.65% in terms of
recognition rate. Original evidence theory achieves a better result
than the Bayesian network. This is because the evidence used in
experiments is not highly conflicting. Due to two reasons, Bayesian
network cannot achieve a high recognition rate. We take Table 2,
for example, to explain the reasons that Bayesian network fails to
handle such evidence.
There are six hypothesesα, β ,γ ,η, ξ andΘ , denoting a1, a2, a3,

{a1, a2}, {a2, a3} and {a1, a2, a3}, respectively. First, α relates to
η and Θ , while η, ξ and Θ correlate each other. They are
not exclusive and exhaustive (e.g., {a1, a3} is missing). Second,
causal Bayesian network cannot establish the hierarchical relation-
ships among hypotheses when constructing its structure. In fact,
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Fig. 6. Scalability with k− l evidence selection strategy.

Table 4
Results for the example of Zadeh paradox.

Approach Evidence Yager Smet CRET

{a1} 0 0 0 0.49
{a2} 1.0000 0.0001 0.0001 0.015
{a3} 0 0 0 0.49
∅ 0 0 0.9999 0
Θ = a1, a2, a3 0.00 0.9999 0 0.005

hypothesesα,β and γ are in the same levelwith η, ξ andΘ . There-
fore, the two requirements in Bayesian network cannot be satis-
fied, which leads to its failure.

5.2.1. Scalability with selection strategy
Scalability is an important concern for context reasoning ap-

proaches. However, CRET is computation-intensive, which signifi-
cantly affects its performance. Therefore, we present the selection
strategy to reduce its computation overhead. To evaluate the scala-
bility of CRET, we conducted the experiments by simulation. In our
experiments, we increased the amount of evidence that is com-
bined from 5 to 50. We simply set all the weights for masses as the
samewhen using k− l selection strategy. The other parameters are
set as k = 10, l = 40 and δ = 0.6.
Fig. 6 illustrates the results of scalability experiments. With the

growthof the amount of evidence that is combined, the times for all
approaches increase. Among all approaches, CRET is most efficient,
which is guaranteed by selection strategy. According to the Fig. 5,
we infer that the selection strategy really assists CRET in reducing
computation overhead without loss of overall performance. Com-
pared with the original evidence theory, Bayesian network needs
less time, but its computation overhead is still heavy. Although
Yager [36] and Smet [37] partially solve the Zadeh paradox, they
require more time than original evidence theory. This is because
they spend much time identifying conflicting evidences and solv-
ing the conflict.

5.2.2. Performance regarding Zadeh paradox
The Zadeh paradox has a significant impact on the performance

of evidence theory. Yager and Smet proposed twomethods to solve
it. In order to compare our algorithm with them, we conducted
the experiments from two aspects. We first checked whether
they work for Table 2. Then, we evaluated them on the dataset
mentioned in Section 4.6.2.
Table 4 illustrates the combination results for the example of

Zadeh paradox. CRET achieves the best results among all solutions.
The work of Yager and Smet just identifies the least probable
event without pointing out the most probable events. We also
tested them over other cases of Zadeh paradox (Table 2 is an
Fig. 7. Sensitivity of the k− l selection strategy.

extreme case of Zadeh paradox), which shows that the results of
CRET are most close to the truth. This is achieved by the conflict
resolution strategy. Fig. 5 shows the results of recognition rate that
Smet, Yager and CRET achieved. The solutions of Smet and Yager
outperform the original evidence theory in terms of recognition
rate. This is because they solve some cases that do not contain the
highly conflicting evidence as Table 2.
Fig. 6 illustrates their scalability performance. With the growth

of the amount of evidence to be combined, CRET requires the least
time, while Yager and Smet approaches require exponential time.
This is achieved by the evidence selection strategy, and previous
work does not consider scalability too much.

5.3. Sensitivity of the k− l selection strategy

CRET is affected by several parameters. Most important param-
eters are from k − l strategy. In order to evaluate the influence of
its parameters k and l, we conducted a series of experiments. The
weights for all the masses are set as the same values.
Fig. 7 illustrates the sensitivity of the k − l selection strategy.

By setting the value of k bigger than 10, the k− l strategy ensures
that CRET can achieve a high recognition rate. Meanwhile, CRET
is capable of tuning the value of the parameter l to control the
accuracy degree that it aims to achieve. By tuning the parameters
k and l, CRET can infer contexts in an efficient way. In our
experiments, we set the values for these two parameters as 10 and
40 in our experiments.

6. Conclusion

Context reasoning is a challenging issue in pervasive com-
puting. One major reason is imprecise and incomplete contexts
collected from environments. To this end, we propose CRET— Con-
text Reasoning using Extended Evidence theory, which proves it is
possible to assist users in daily life by automatically capturing their
contexts and then adapting system behaviors.
Currently, CRET still suffers from several limitations. One

limitation is the lack of semantics in context representation. We
have to look for relationships among various elements in pervasive
computing environments, such as sensors, objects and activities.
Ontology-based models are much better in such knowledge
representation than both Bayesian network and evidence theory.
We are investigating ontology-based models as a feed-in to
the propose approach. Another limitation is the central control.
We need to implement CRET in a distributed manner, because
central control may not be guaranteed in pervasive computing
environments that are distributed with users’ frequent movement
at their will. Finally, we will study how to detect and interpret
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concurrent activities in asynchronous and dynamic pervasive
computing environments.

Acknowledgments

We would like to thank Vaskar Raychoudhury for his technical
discussions. We also thank Nicole Kwoh for her proofreading.
This work is supported by the National High Technology

Research andDevelopment Program (863 Program) of China (Grant
No. 2006AA01Z172 and 2008AA01Z106), the National Natural
Science Foundation of China (Grant No. 60533040, 60725208 and
60773089), and Shanghai Pujiang Program (Grant No. 07pj14049).
This work is also partially supported by Hong Kong Polytehnic

Univ under the grant G-U513.

References

[1] M.Weiser, The computer for the twenty-first century, Scientific American 265
(3) (1991) 94–104.

[2] M. Satyanarayanan, Pervasive computing: vision and challenges, Personal
Communications, IEEE 8 (4) (2001) 10–17. (See also IEEE Wireless Commu-
nications).

[3] C. Xu, S.C. Cheung, Inconsistency detection and resolution for context-aware
middleware support, in: ESEC/FSE-13: Proceedings of the 10th European
Software Engineering Conference, 2005, pp. 336–345.

[4] X. Chang, S.C. Cheung, W.K. Chan, Y. Chunyang, Heuristics-based strategies
for resolving context inconsistencies in pervasive computing applications, in:
ICDCS’08, 2008, pp. 713–721.

[5] S. Jeffery, M. Garofalakis, M. Franklin, Adaptive cleaning for RFID data streams,
in: Proceedings of the 32nd International Conference on Very large data bases,
2006, pp. 163–174.

[6] E. Elnahrawy, B. Nath, Cleaning and querying noisy sensors, in: Proceedings
of the 2nd ACM International Conference on Wireless Sensor Networks and
Applications, 2003, pp. 78–87.

[7] K. Liu, L. Chen, Y. Liu, M. Li, Robust and efficient aggregate query processing
in wireless sensor networks, Mobile Networks and Applications 13 (1) (2008)
212–227.

[8] A. Ranganathan, J. Al-Muhtadi, R.H. Campbell, Reasoning about uncertain
contexts in pervasive computing environments, IEEE Pervasive Computing 3
(2) (2004) 62–70.

[9] M. Mamei, R. Nagpal, Macro programming through bayesian networks: Dis-
tributed inference and anomaly detection, in: Proceedings of the 5th Annual
IEEE International Conference on Pervasive Computing and Communications,
2007, 2007, pp. 87–96.

[10] A. Kofod Petersen, M. Mikalsen, Context: Representation and reasoning:
Representing and reasoning about context in a mobile environment, Revue
d’intelligence artificielle 19 (3) (2005) 479–498.

[11] A. Ranganathan, R.H. Campbell, An infrastructure for context-awareness based
on first order logic, Personal Ubiquitous Comput. 7 (6) (2003) 353–364.

[12] J. Shen, Y. Yang, Extending RDF in distributed knowledge-intensive applica-
tions, Future Generation Computer Systems 20 (1) (2004) 27–46.

[13] X. Wang, D. Zhang, T. Gu, H. Pung, Ontology based context modeling
and reasoning using OWL, in: Pervasive Computing and Communications
Workshops. Proceedings of the 2nd IEEE Annual Conference on, 2004, pp.
18–22.

[14] Y.J. Joung, F.Y. Chuang, OntoZilla: An ontology-based, semi-structured and
evolutionary p2p network for information systems and services, Future
Generation Computer Systems 25 (1) (2009) 53–63.

[15] A. Bikakis, T. Patkos, G. Antoniou, D. Plexousakis, A survey of semantics-based
approaches for context reasoning in ambient intelligence, in: Proceedings
of the Workshop Artificial Intelligence Methods for Ambient Intelligence,
Springer, 2007, pp. 15–24.

[16] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press,
1976.

[17] L. Liu, R.R. Yager, Classic works of the Dempster-Shafer theory of belief
functions: An introduction, in: Studies in Fuzziness and Soft Computing, Vol.
219/2008, Springer, 2008, pp. 1–34.

[18] P. Orponen, Dempster’s rule of combination is # p-complete, Artificial
Intelligence (1990) 243–245.

[19] F. Voorbraak, A computationally efficient approximation of Dempster-Shafer
theory, International Journal of Man-Machine Studies 30 (5) (1989) 525–536.

[20] L. Zadeh, Review of a mathematical theory of evidence, AI Magazine 5 (3)
(1984) 81.

[21] J. Cassens, A. Kofod-Petersen, Designing explanation aware systems: The quest
for explanation patterns, in: Proceedings of the 22nd International Conference
on Artificial Intelligence Workshop, 2007, pp. 303–316.

[22] J.A.F. Nieto, M.E.B. Gutierrez, B.P. Lancho, Developing home care intelligent
environments: From theory to practice, in: Proceedings of the 7th Interna-
tional Conference on Practical Applications of Agents and Multi-Agent Sys-
tems, 2009, pp. 2–12.
[23] M. Hedges, T. Blanke, A. Hasan, Rule-based curation and preservation of data:
A data grid approach using iRODS, Future Generation Computer Systems 25
(4) (2009) 446–452.

[24] T. Gu, H.K. Pung, D.Q. Zhang, Toward an OSGi-based infrastructure for context-
aware applications, IEEE Pervasive Computing 3 (4) (2004) 66–74.

[25] A.D. Sarma, O. Benjelloun, A. Halevy, J. Widom, Working models for
uncertain data, in: Proceedings of the 22nd International Conference on Data
Engineering, ICDE’06, 2006, pp. 162–174.

[26] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, E. Malm, Managing context
information in mobile devices, IEEE Pervasive Computing 2 (3) (2003) 42–51.

[27] G. Biegel, V. Cahill, A framework for developing mobile, context-aware
applications, in: Pervasive Computing and Communications, Proceedings of
the 2nd IEEE Annual Conference on, 2004, 361–365.

[28] Y. Ma, D.V. Kalashnikov, S. Mehrotra, Toward managing uncertain spatial
information for situational awareness applications, IEEE Transactions on
Knowledge and Data Engineering 20 (10) (2008) 1408–1423.

[29] G.F. Cooper, The computational complexity of probabilistic inference using
bayesian belief networks (research note), Artificial Intelligence 42 (2-3) (1990)
393–405.

[30] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine
Learning 29 (2-3) (1997) 131–163.

[31] S. McClean, B. Scotney, M. Shapcott, Aggregation of imprecise and uncertain
information in databases, IEEE Transactions on Knowledge and Data
Engineering 13 (6) (2001) 902–912.

[32] R. Murphy, Dempster-Shafer theory for sensor fusion in autonomous mobile
robots, IEEE Transactions on Robotics and Automation 14 (2) (1998) 197–206.

[33] X. Hong, C. Nugent, M. Mulvenna, S. McClean, B. Scotney, S. Devlin, Evidential
fusion of sensor data for activity recognition in smart homes, Pervasive and
Mobile Computing 5 (3) (2009) 236–252.

[34] H.Wu, Sensor data fusion for context-aware computing using DS theory, Ph.D.
thesis, Carnegie Mellon University, 2003.

[35] D. Dubois, H. Prade, Consonant approximation of belief functions, Interna-
tional Journal of Approximate Reasoning 4 (5–6) (1990) 419–449.

[36] R. Yager, On the Dempster-Shafer framework and new combination rules,
Information Sciences: an International Journal 41 (2) (1987) 93–137.

[37] P. Smets, The combination of evidence in the transferable belief model, IEEE
Transactions on Pattern Analysis and Machine Intelligence 12 (5) (1990)
447–458.

[38] A.P. Dempster, A generalization of bayesian inference, Journal of the Royal
Statistical Society, Series B 30 (1968) 205–247.

[39] D.Q. Zhang, J.N. Cao, J.Y. Zhou, M.Y. Guo, Extended Dempster-Shafer theory
in context reasoning for ubiquitous computing environments, in: Proceedings
of the 7th IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, 2009.

[40] K. Huang, L. Wang, D. Zhang, Y. Liu, Optimizing the BitTorrent performance
using an adaptive peer selection strategy, Future Generation Computer
Systems 24 (7) (2008) 621–630.

[41] Department of Architecture, Massachusetts Institute of Technology, House_n
project. http://architecture.mit.edu/house_n/intro.html.

[42] N.L. Zhang, D. Poole, Exploiting causal independencies in Bayesian network
inference, Journal of Artifical Intelligence Research (1996) 301–328.

Daqiang Zhang received the B.S. and M.S. degrees from
Anhui University inManagement and Computer Science in
2003 and 2006, respectively. He is a joint Ph.D. candidate
at Shanghai Jiao Tong University and The Hong Kong Poly-
technic University, China. His current research focuses on
context-awareness in mobile computing, pervasive com-
puting and wireless sensor networks, involving context
collection, storage, dissemination, reasoning and privacy
and security.

Minyi Guo received the B.S. andM.E. degrees in Computer
Science from Nanjing University, China in 1982 and 1986,
respectively. He received the Ph.D. degree in Information
Science from University of Tsukuba, Japan in 1998. From
1998 to 2000, Dr. Guo had been a research associate
of NEC Soft, Ltd. Japan. He was a visiting professor of
the Department of Computer Science, Georgia Institute of
Technology. He was a full professor at The University of
Aizu, Japan and is a full professor at Shanghai Jiao Tong
University, China.
He is an IEEE senior member and has published more

than 150 papers inwell-known conferences and journals. Hismain interests include
automatic parallelization and data-parallel languages, bioinformatics, compiler
optimization, high performance computing, and pervasive computing.

http://architecture.mit.edu/house_n/intro.html
http://architecture.mit.edu/house_n/intro.html
http://architecture.mit.edu/house_n/intro.html
http://architecture.mit.edu/house_n/intro.html
http://architecture.mit.edu/house_n/intro.html
http://architecture.mit.edu/house_n/intro.html
http://architecture.mit.edu/house_n/intro.html
http://architecture.mit.edu/house_n/intro.html


216 D. Zhang et al. / Future Generation Computer Systems 26 (2010) 207–216
Jingyu Zhou received the B.S. degree in Computer Science
from Zhejiang University, China, in 1999. He received
the M.S. and Ph.D. degrees in Computer Science from
University of California at Santa Barbara in 2003 and 2006.
He joined the Software Institute at Shanghai Jiao Tong
University in 2006.
He is generally interested in information retrieval,

systems, and security. His current work is on vertical web
search, including information retrieval, Chinese analysis,
and search systems. His past work includes: network
and application security, parallel scientific computing,

cluster-based storage systems andmiddleware systems, and cluster-based Internet
services.

Dazhou Kang received his BE, ME and Ph.D. degree in
computer science from Southeast University at Nanjing,
China in 2003, 2005 and 2008. From 2008 to 2009, he
is a research associate at The Hong Kong Polytechnic
University. Currently, Dr. Kang is a postdoctoral fellow
in the Department of Computer Science and Engineering,
Nanjing University. His current interests include semantic
web, knowledge reasoning and software engineering.
Jiannong Cao is a full professor and associate head of
the Department of Computing at Hong Kong Polytechnic
University. He is also the director of the Internet and
Mobile Computing Lab http://www4.comp.polyu.edu.hk/
%7Eimc/ in the department. Before joined the Hong Kong
Polytechnic University in 1997, he has been on faculty
of computer science in James Cook University http://
www.jcu.edu.au and The University of Adelaide http://
www.adelaide.edu.au in Australia, and the City University
of Hong Kong http://www.cityu.edu.hk. Jiannong Cao is
an adjunct professor of Beijing Jiaotong University http:

//www.njtu.edu.cn/en/, National University of Defense Technology http://www.
nudt.edu.cn/ and Northwest Polytechnic University http://www.nwpu.edu.cn/,
and a guest professor of Central South University http://www.csu.edu.cn/english/
overview/index.htm in China. He also held several visiting positions, including a
visiting research professor in the National Key Lab for Novel Software Technology
http://keysoftlab.nju.edu.cn/site/ndjsjx/, Nanjing University of China, a visiting
fellow in the School of Computer Engineering http://www3.ntu.edu.sg/SCE/,
Nanyang Technological University of Singapore, a visiting scholar at the Institute of
Software http://www.ios.ac.cn/english/index.action, Chinese Academy of Science,
and Peking University http://net.pku.edu.cn/ Overseas Scholar Lecture Program.
Jiannong. Cao received the B.Sc. degree in computer science from Nanjing

University http://www.nju.edu.cn, China, in 1982, and the M.Sc. and Ph.D. degrees
from Washington State University http://www.wsu.edu, USA, in 1986 and 1990,
all in computer science. From 1982 to 1983, he studied as a MSc. student in the
Graduate School of the Chinese Acadmy of Science http://www.gscas.ac.cn/ in
Beijing.

http://www4.comp.polyu.edu.hk/%7Eimc/
http://www4.comp.polyu.edu.hk/%7Eimc/
http://www4.comp.polyu.edu.hk/%7Eimc/
http://www4.comp.polyu.edu.hk/%7Eimc/
http://www4.comp.polyu.edu.hk/%7Eimc/
http://www4.comp.polyu.edu.hk/%7Eimc/
http://www4.comp.polyu.edu.hk/%7Eimc/
http://www.jcu.edu.au
http://www.jcu.edu.au
http://www.jcu.edu.au
http://www.jcu.edu.au
http://www.jcu.edu.au
http://www.adelaide.edu.au
http://www.adelaide.edu.au
http://www.adelaide.edu.au
http://www.adelaide.edu.au
http://www.adelaide.edu.au
http://www.cityu.edu.hk
http://www.cityu.edu.hk
http://www.cityu.edu.hk
http://www.cityu.edu.hk
http://www.cityu.edu.hk
http://www.njtu.edu.cn/en/
http://www.njtu.edu.cn/en/
http://www.njtu.edu.cn/en/
http://www.njtu.edu.cn/en/
http://www.njtu.edu.cn/en/
http://www.njtu.edu.cn/en/
http://www.njtu.edu.cn/en/
http://www.njtu.edu.cn/en/
http://www.nudt.edu.cn/
http://www.nudt.edu.cn/
http://www.nudt.edu.cn/
http://www.nudt.edu.cn/
http://www.nudt.edu.cn/
http://www.nwpu.edu.cn/
http://www.nwpu.edu.cn/
http://www.nwpu.edu.cn/
http://www.nwpu.edu.cn/
http://www.nwpu.edu.cn/
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://www.csu.edu.cn/english/overview/index.htm
http://keysoftlab.nju.edu.cn/site/ndjsjx/
http://keysoftlab.nju.edu.cn/site/ndjsjx/
http://keysoftlab.nju.edu.cn/site/ndjsjx/
http://keysoftlab.nju.edu.cn/site/ndjsjx/
http://keysoftlab.nju.edu.cn/site/ndjsjx/
http://keysoftlab.nju.edu.cn/site/ndjsjx/
http://keysoftlab.nju.edu.cn/site/ndjsjx/
http://www3.ntu.edu.sg/SCE/
http://www3.ntu.edu.sg/SCE/
http://www3.ntu.edu.sg/SCE/
http://www3.ntu.edu.sg/SCE/
http://www3.ntu.edu.sg/SCE/
http://www3.ntu.edu.sg/SCE/
http://www.ios.ac.cn/english/index.action
http://www.ios.ac.cn/english/index.action
http://www.ios.ac.cn/english/index.action
http://www.ios.ac.cn/english/index.action
http://www.ios.ac.cn/english/index.action
http://www.ios.ac.cn/english/index.action
http://www.ios.ac.cn/english/index.action
http://www.ios.ac.cn/english/index.action
http://net.pku.edu.cn/
http://net.pku.edu.cn/
http://net.pku.edu.cn/
http://net.pku.edu.cn/
http://net.pku.edu.cn/
http://www.nju.edu.cn
http://www.nju.edu.cn
http://www.nju.edu.cn
http://www.nju.edu.cn
http://www.nju.edu.cn
http://www.wsu.edu
http://www.wsu.edu
http://www.wsu.edu
http://www.wsu.edu
http://www.gscas.ac.cn/
http://www.gscas.ac.cn/
http://www.gscas.ac.cn/
http://www.gscas.ac.cn/
http://www.gscas.ac.cn/

	Context reasoning using extended evidence theory in pervasive computing environments
	Introduction
	Related work
	Background
	Frame of discernment
	Mass
	Belief and plausibility
	Dempster's rule

	Context reasoning using extended evidence theory in pervasive computing environments
	System model
	CRET model
	Propagating evidence in the sensors layer
	Propagating evidence in the objects layer
	Calculating masses for the deduced objects: DO leftarrow E
	Calculating masses for the composite objects: CO leftarrow E
	Generating an activity candidate set from objects: A leftarrow O

	Recognizing user activities: ai leftarrow A
	Evidence selection and conflict resolution strategies
	Evidence selection strategy
	Conflict resolution to Zadeh paradox

	Discussion

	Evaluation
	Experimental settings
	Overall performance
	Scalability with selection strategy
	Performance regarding Zadeh paradox

	Sensitivity of the  k - l  selection strategy

	Conclusion
	Acknowledgments
	References


