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BitTorrent (BT) is one of the most common Peer-to-Peer (P2P) file sharing protocols. Rather than download-
ing a file from a single source, the protocol allows users to join a swarm of peers to download and upload
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behavior investigation, (2) worm propagation modeling, and (3) worm detection and
containment.

Worm behavior investigation needs to analyze strategies adopted by worms for tar-
get finding and detection evasion. Traditionally, P2P worms can be passive worms
[Chen and Gray 2006], waiting for connections to propagate themselves. Though the
abnormality of passive worms is hard to detect, they propagate at a relative low speed,
and thus cause limited damage to the Internet [Tang et al. 2009]. Active topological
P2P worms can search local information (i.e., peer’s neighbor list) to find next victims
[Engle and Khan 2006; Khiat et al. 2006; Zhou et al. 2005]. These worm can be very
efficient, because they do not need to probe random IP addresses, which generates high
rates of failed connections. However, it could be technically hard to obtain local infor-
mation in various P2P configurations and implementations. The software diversity
may prevent the neighbor list reading from different peers. This might be one of rea-
sons why such a worm has not become widespread. To be stealthy, self-stopping worms
[Ma et al. 2005] can stop themselves after compromising a large fraction of vulnerable
peers. Yet, the largely compromised peers may be outdated in a highly dynamic P2P
environment. Nowadays, the high penetration of P2P protocols and implementations
has provided the worm writers chances to design some powerful worms that are previ-
ously unknown. The study of worm behavior remains to be an important aspect of the
worm analysis.

Worm propagation modeling is to study how network/worm parameters affect the
worm propagation. The epidemic model is widely used to characterize the growth of
peers infected by P2P worms [Briesemeister et al. 2003; Ma et al. 2006; Thommes
and Coates 2006; Yao et al. 2006]. The fluid model can depict the arrival and de-
parture behavior of peers for the BT performance analysis [Guo et al. 2005; Qiu and
Srikant 2004]. P2P worms behave differently in different P2P networks, because net-
work configurations and settings (e.g., network size, uploading/downloading band-
width, peer arrival/departure rate, etc.) can greatly affect how fast and how large
a worm duplicates itself. Thus, there is no completely universal model for all P2P
worms.

Worm detection and containment aim to find worm activities and minimize their
damage to a P2P network. The self-defense infrastructure approaches [Douglas et al.
2008; Freitas et al. 2007; Zhou et al. 2005, 2006] try to build secured P2P architectures
to prevent or isolate P2P worms. However, they may jeopardize the fairness of upload-
ing/downloading policy in P2P networks. The disadvantages of worm-anti-worm [Yao
et al. 2008] lies in the fact that it consumes a lot of bandwidth and raises some illegal
issues. Though the feedback control [Wu and Feng 2006] can efficiently detect random
scanning worms, it is difficult to handle P2P worms which can blend worm traffic into
the normal traffic in a P2P network.

In this article, we present a powerful BT worm, called Adaptive BitTorrent worm
(A-BT worm), to identify potential security problems in P2P networks. Such a worm
finds new victims by sending forged requests to a tracker. To reduce its abnormal be-
havior, it sends out only one forged request within a defined time window. By adjusting
the time window size, it can adaptively control its propagation speed. The A-BT worm
is a potential threat to BT-like networks for it has the following properties.

— Timeliness. it has the ability to locate the most recent active peers even in a highly
dynamic BT network.

— Feasibility. it is easy to be implemented by taking advantages of the high penetra-
tion of the BT protocol.

— Adaptivity. it can significantly reduce its abnormal behavior by adaptively adjusting
its propagation speed.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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We build a hybrid model by combining the fluid model with the epidemic model to
estimate the damage caused by the worm. The fluid model evaluates the number of
peers that could be infected in a swarm. The epidemic model measures the number of
peers that have been infected. Our model shows the effect of network parameters on
the worm propagation.

We propose a statistical method to automatically detect the worm from the tracker
by estimating the variance of the time intervals of requests. A normal peer usually
requests at a stable interval, while an infected peer may request at a variable interval.
To slow down the spread of the worm, we design a strategy in which the tracker returns
a biased list of peers (e.g., more secured peers) when receives a request.

Our simulation results show that our hybrid model precisely depicts the worm dam-
age (number of infected peers in a swarm). The A-BT worm can propagate as fast as
the topological P2P worm, more importantly, it is unaffected by the P2P topology. Our
statistical method is effective to detect the worm, though the worm can minimize its
abnormal behavior.

The rest of the article is organized as follows. Section 2 gives a brief introduction to
the BT protocol and shows the details of the peer-to-tracker communication. Section 3
describes how the A-BT worm propagates itself and adaptively adjusts its propagation
speed. In Section 4, we builds a hybrid model to measure the worm damage. Section 5
proposes a statistical method and a safe strategy to detect and contain the worm.
Section 6 validates the hybrid model through simulations, and compares the A-BT
worm with the topological P2P worm. Section 7 reviews the work related to P2P worms.
Finally, Section 8 concludes this article.

2. PROTOCOL OVERVIEW AND DETAILS

In this section, we first give a brief introduction of the BT protocol and then show some
details of the peer-to-tracker communication.

2.1. Overview of the BT Protocol

BitTorrent (BT) is one of the most common Peer-to-Peer (P2P) file sharing protocols,
and it has been estimated that it accounts for more than roughly 27%–55% of all In-
ternet traffic as of February 2009 [Ernesto 2009]. Programmer Bram Cohen designed
the BT protocol in April 2001 and released a first implementation on July 2, 2001. The
protocol distributes a large file without the heavy load on the source computer and net-
work. Rather than downloading a file from a single source, the protocol allows users
to join a swarm of peers to download and upload from each other simultaneously. The
protocol can also work as an alternative method to distribute data and can work over
systems with low bandwidth so even small computers, like mobile phones, are able to
distribute files to many recipients. There have been numerous BT clients available for
a variety of computing platforms.

A BT network commonly consists of trackers, seeders and leechers. A tracker keeps
track of peers who are participating in the process of downloading and/or uploading a
particular file, and makes this information available to others who want to download
the file. Peers in the BT network are either seeders who have a complete file and are
willing to serve it to others, or leechers who are still downloading the file and are willing
to serve the pieces that they already have to others. Before joining a swarm which is
a set of peers sharing a particular file, a peer firstly downloads a .torrent file from a
Web server, which contains a URL list of trackers and other information related to
the sharing file. After that, the peer makes an HTTP GET request to a tracker known
from the URL list. Upon receiving the request, the tracker randomly returns a subset
of peers sharing the file. Finally, the peer attempts to initiate TCP connections with
the returned peers, which then become its neighbors. Files in the BT network consists

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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Fig. 1. An example of the HTTP GET request.

of pieces (32-256KB in size) which in turn consist of blocks (16KB in size). A block is a
portion of data that a peer requests from neighbors.

2.2. Peer-to-Tracker Communication

To exploit the BT protocol for P2P worm design, we are interested in the details of
the communication between a peer and a tracker. The HTTP GET request sent by a
peer contains a tracker’s URL and some CGI parameters. URL and parameters are
separated by “?”. Parameter and value are separated by “=”. Different parameters are
separated by “&”. Figure 1 illustrates an example of a request:

Note that only the first three parameters are indispensable. info hash, is the hashed
value of the information field in a .torrent file. A tracker can classify peers into differ-
ent swarms according to this parameter. peer id is the ID of a peer and parameter port
defines its port used for file sharing. Another useful parameter, numwant, indicates
the number of peers to be returned from a tracker to a requesting peer. Its default
value is 50, but it could be much larger. For example, it is 200 in BitComet, which is a
popular BT client.

After receiving a request, the tracker sends back a response that includes: a list of
active peers (peer id, IP and port), number of seeders, number of leechers, and time
interval between two requests. The sum of seeders and leechers is the size of a swarm,
showing the total number of peers sharing a particular file. The time interval between
two requests is 20 minutes. If the tracker doesn’t receive a request from a peer within
30 minutes, it will assume that the peer has left the swarm, and delete the correspond-
ing record.

An interesting observation is that the tracker distinguishes different peers depend-
ing on their IP and port rather than peer id. In other words, a tracker will add a new
record only if it receives a request containing a new pair of IP and port.

3. A-BT WORM DESIGN

In this section, we describe the strategies used by the A-BT worm to find next targets
and reduce abnormal behavior.

3.1. Target Finding Strategy

An A-BT worm finds potential victims in a BT network by mimicking a normal client
requesting a tracker. Figure 2 shows that peers Pa, and Pb sharing file 1 are in swarm
A. Peers Pc and Pd sharing file 2 and 3 are in swarm B and C, respectively. Assume
that Pa and Pb are vulnerable. Figure 2 illustrates the propagation of the A-BT worm
in swarm A, which contains the following steps.

(1) The peer who initiates the worm propagation, called initiator, downloads a .torrent
file from a web server (e.g., a .torrent file related to file 1), which contains a URL
list of trackers.

(2) The initiator contacts with a tracker known from the list by sending an HTTP GET
request.

(3) The tracker responds to the request by returning a list of active peers who are
sharing file 1. For example, it returns a list containing information of Pa, such as
IP, port, and peer id.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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Fig. 3. The adaptive speed control for the A-BT worm.

decreases the time window size linearly. Otherwise, it increases the time window size
exponentially. Thus, we have:

Wnext = Wpre − φTlife, if Apre < Ath (1)
Wnext = ϕWpre, if Apre ≥ Ath, (2)

where Tlife is the swarm lifespan [Guo et al. 2005], which can be viewed as a constant
for a particular swarm. φTlife represents the decreasing amount of the time window

size for 0 ≤ φ ≤ Wpre
Tlife

. ϕ is an increasing ratio of the time window size for ϕ ≥ 1. Note
that there is no requirement for the synchronization between infected peers and the
tracker.

From Figure 3, we can see that the n-th sampling period is separated into two parts
ρ and (1 − ρ) for 0 ≤ ρ ≤ 1. The probability that the infected peer sends a forged
request within the n-th sampling period β is ρ

Wpre
+ 1−ρ

Wnext
. During the interval [n +

1, n + Wnext − 1], we have β = 1
Wnext

.
The A-BT worm is different from the R-BT worm in that the probability β for A-BT

worm is determined by Equations (1) and (2), rather than a constant. In fact, the R-BT
worm can be regarded as a special case of the A-BT worm with φ = 0 and ϕ = 1.

4. A-BT WORM MODELING

In this section, we firstly describe some terminology and notations used in our model.
We then formulate a hybrid model to display the propagation of the A-BT worm in a
swarm.

4.1. Terminology and Notations

Before describing our model, we define some basic terminology and notations. Figure 4
shows a complete classification tree of vulnerable peers during an infection. The vul-
nerable peers are classified into two categories: infected peers, which are vulnerable
and infected, and uninfected peers, which are vulnerable but not infected.

The infected peers can be further classified into two categories: effective peers, which
are active propagating worms, and ineffective peers, which stop propagating worms.
This classification is based on an assumption that infected peers who leave the swarm
are not effective any more. Such an assumption can make the swarm size predictable,
and thus, simplify our model. All effective peers will eventually leave the swarm and
become ineffective. Based on whether they have a completed file or not, we further
group effective peers into two subcategories: effective seeders and effective leechers.

The uninfected peers can be classified into two categories according to whether or not
they have been returned in a request: returned peers and unreturned peers. A returned
peer can be either a seeder or a leecher, called returned seeder or returned leecher,
respectively.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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Table I. Parameters Used in the A-BT Worm Model

L(t) number of leechers at time index t
S(t) number of seeders at time index t
T length of a sampling period
J[n] number of leechers that join a swarm within the n-th sampling period
B[n] number of leechers that become seeders within the n-th sampling period
D[n] number of seeders that depart from a swarm within the n-th sampling period
L[n] number of leechers in a swarm at time index n
S[n] number of seeders in a swarm at time index n
N[n] total number of peers in a swarm at time index n
RL[n] number of returned leechers within the n-th sampling period
RS[n] number of returned seeders within the n-th sampling period
EL[n] number of effective leechers at time index n
ES[n] number of effective seeders at time index n
I[n] total number of infected peers at time index n
�L[n] changes of leechers in a swarm within the n-th sampling period
�S[n] changes of seeders in a swarm within the n-th sampling period
�EL[n] changes of effective leechers within the n-th sampling period
�ES[n] changes of effective seeders within the n-th sampling period
�I[n] increasing number of infected peers within the n-th sampling period
n0 initial time index of worm attack
λ0 initial value of peer arrival rate
τ attenuation parameter of peer arrival rate
μ uploading bandwidth
η mean upload utilization of leechers
γ rate at which seeders leave a swarm
α probability that a peer to be vulnerable
ω number of returned peers in a request
βi probability that the i-th infected peer generates a forged request within the n-th

sampling period

Following the idea of the fluid model proposed in [Guo et al. 2005; Qiu and Srikant
2004], we have:

J[n] =
∫ (n+1)T

nT
λ0e− t

τ dt, (3)

B[n] =
∫ (n+1)T

nT
μ

(
ηL(t) + S(t)

)
dt, (4)

D[n] =
∫ (n+1)T

nT
γ S(t)dt, (5)

�L[n] = J[n] − B[n] , (6)
�S[n] = B[n] − D[n] . (7)

By Equation (6) and (7), we can obtain the number of leechers L[n] and the number
seeders S[n]. We focus here on the physical meaning of each parameter. The detailed
resolution of the fluid model can be found in Guo et al. [2005]. The total number of
peers at time index n is given by:

N[n] = L[n] + S[n] . (8)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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We now derive how EL[n], ES[n] and I[n] change over time index n. In the follow-
ing we compute the amounts, �EL[n], �ES[n] and �I[n], by which they change re-
spectively over a small sampling period after time index n. This will give us a set of
difference equations that together characterize the A-BT worm propagation.

— �I[n]. The number of uninfected peers in a swarm at time index n is
αN[n] − EL[n] − ES[n]. Since each peer in the swarm, no matter infected or not,
has an equal chance to be returned in a request, the probability that an unin-
fected peer is not returned to any infected peer within the n-th time period is(
1 − min{N[n],ω}

N[n]

)∑EL[n]+ES[n]
i=1 βi . Whenever an uninfected peer is returned, it will be

infected immediately. By the epidemic model, �I[n] = (
αN[n] − EL[n] − ES[n]

)(
1 −

(
1 − min{N[n],ω}

N[n]

)∑EL[n]+ES[n]
i=1 βi

)
.

— RL[n]. The fraction of returned uninfected leechers in all returned uninfected peers
is proportional to that of uninfected leechers in all uninfected peers. Hence, RL[n] =

αL[n]−EL[n]
αN[n]−EL[n]−ES[n]�I[n].

— RS[n]. The ratio of returned uninfected seeders in all returned uninfected peers is
αS[n]−ES[n]

αN[n]−EL[n]−ES[n] . We have RS[n] = αS[n]−ES[n]
αN[n]−EL[n]−ES[n]�I[n].

— �EL[n]. Recall that all returned leechers directly become effective leechers. This
increases the number of effective leechers by RL[n]. On the other hand, some effec-
tive leechers may complete their download and become effective seeders instantly.
There are totally B[n] leechers who become seeders, and the fraction of effective
leechers in all leechers is EL[n]+RL[n]

L[n] . Hence, the reducing number of effective leech-

ers is EL[n]+RL[n]
L[n] B[n]. Combining these two numbers and representing the gross

change, we have �EL[n] = RL(n) − EL(n)+RL(n)
L(n)

B[n].
— �ES[n]. RS[n] returned seeders instantly become effective seeders. As discussed

above, there are EL[n]+RL[n]
L[n] B[n] effective leechers who become effective seeders.

Whenever an effective seeder leaves a swarm, it becomes ineffective. Within the
nth sampling period, there are D[n] seeders that leave the swarm, and the frac-
tion of effective seeders is ES[n]+RS[n]

S[n] . Thus, there are ES[n]+RS[n]
S[n] D[n] newly ineffec-

tive peers. Combining these three numbers to represent the gross change, we have
�ES[n] = RS[n] + EL[n]+RL[n]

L[n] B[n] − ES[n]+RS[n]
S[n] D[n].

Thus, we have the following equations:

�I[n] = (
αN[n] − EL[n] − ES[n]

)(
1 − (

1 − min{N[n] , ω}
N[n]

)∑EL[n]+ES[n]
i=1 βi

)
, (9)

RL[n] = αL[n] − EL[n]
αN[n] − EL[n] − ES[n]

�I[n] , (10)

RS[n] = αS[n] − ES[n]
αN[n] − EL[n] − ES[n]

�I[n] , (11)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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Fig. 6. An example of the sample sequence.

�EL[n] = RL[n] − EL[n] + RL[n]
L[n]

B[n] , (12)

�ES[n] = RS[n] + EL[n] + RL[n]
L[n]

B[n] − ES[n] + RS[n]
S[n]

D[n] . (13)

We should note that, in Equation (9), the parameter βi is essential to the worm speed,
which has been discussed in Section 3.2. Finally, we add the incremental variables and
get I[n + 1] = I[n] +�I[n], EL[n + 1] = EL[n] +�EL[n]. The boundary conditions for
the set of equations above are: L[0] = ES[n0] = 0, S[0] = N[0] = EL[n0] = I[n0] = 1.

5. A-BT WORM DETECTION AND CONTAINMENT

Most existing defense methods may fail to detect and contain the A-BT worm for
the following reasons. The self-defense infrastructure methods [Douglas et al. 2008;
Freitas et al. 2007; Zhou et al. 2005, 2006] cannot slow down the worm because the
worm is not affected by the P2P topology. The feedback control approach [Wu and Feng
2006] is unable to detect the worm since the worm can adaptively adjust its speed.
Thus, there is clearly a need for finding a new way to defend against the A-BT worm.
In this section, we employ a statistical method to automatically detect the worm from
the tracker by investigating the variance of time intervals of requests.

The variance analysis, including the sample mean analysis, can be used to measure
the spread of samples, which has been widely used in many areas, such as seismic de-
tection and investment management in business. To estimate the request generation
rate of a peer, which may be greatly affected by the worm, we sample time interval
between two consecutive requests of the peer. As shown in Figure 6, the samples rep-
resented as a chronological sequence {X[n]} can be viewed as discrete-time signals. In
normal cases, the amplitude of signals is stable, because regular requests are gener-
ated at a regular time interval (20 minutes), and the “background noise” (e.g., network
delay) has little effect on the signal to noise ratio (SNR). However, when a peer is
compromised by the worm, the amplitude of the signal varies a lot, because the forged
requests may divide regular time intervals into some irregular short time intervals. By
measuring the similarity of the signal on multiple peers, we can estimate the damage
caused by the worm.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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Assume that we have obtained M signals, and the signal length is N. The sample
mean of M signals is defined by:

X[n] = 1
M

∑M−1
m=0 Xm[n] . (14)

We use the sample mean X[n] to denote a “reference” signal. The sample variance is
given by

Var(X[n]) =
M−1∑
m=0

N−1∑
n=0

(
Xm[n] − X[n]

)2,

=
M−1∑
m=0

N−1∑
n=0

Xm[n] − M
N−1∑
n=0

X
2
[n] . (15)

We transform the sample variance Var(X[n]) into the range of [0, 1]. Then, the normal-
ized sample variance Var′(X[n]) can be written as

Var′(X[n]) = Var(X[n])∑M−1
m=0

∑N−1
n=0 X2

m[n]

= 1 − M
∑N−1

n=0 X
2
[n]∑M−1

m=0
∑N−1

n=0 X2
m[n]

. (16)

When no attack occurs, Var′(X[n]) will be close to 0. When the worm is widespread,
Var′(X[n]) will become bigger. Thus, we can set a threshold to detect the worm. We
should point out that, in real cases, peers will request the tracker frequently, if they do
not have sufficient neighbors. The threshold setting should be based on some statistical
results. Some advanced techniques can also be applied for the worm detection, such as
data mining, Fourier analysis, coherence analysis and wavelet analysis. With these
techniques, we can identify not only worm activities but also infected peers.

For the worm containment, the tracker can collect some useful information on peers,
such as the number of OS vulnerabilities and the version of the antivirus software
installed. This information could be easily obtained, because most antivirus softwares
provide the function of the vulnerability scanning. The tracker employs a safe strategy
to returns a biased peer set, rather than a random peer set, in response to a request.
The biased peer set, where peers have less OS vulnerabilities or have an up-to-date
antivirus software, can reduce the probability that an uninfected peer is returned in
a request. We believe that the safe strategy will not seriously affect the fairness of
uploading/downloading strategy in the BT network, because it is used only when a
worm attack is detected.

6. SIMULATION RESULTS

In this section, we firstly describe the environment and settings of our simulations. We
then setup several simulations to verify our hybrid model and detection method.

6.1. Simulation Environment and Settings

The study of the worm propagation in a real-world BT network may cause some legal
issues. We deploy our simulations on a powerful simulation platform developed by
University of Electronic Science and Technology of China. This simulation platform
has three components: (1) tracker: on one host, we setup a real-world tracker by using
MyBT server 1.0, which is a software to setup a BT server. (2) initial seeder: on the
same host, we install BitComet 0.93, which is a well-known BT download software, and

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 1, Article 5, Publication date: March 2014.
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Table II. Simulation Settings of the A-BT Worm

File size 15.6MB (500 pieces)
Number of initial seeds S[0] 1
Normalized maximum upload bandwidth μ 0.01 (5 pieces)
Normalized maximum download bandwidth 0.03 (15 pieces)
Number of neighbors of each peer 10
Initial value of peer arrival rate λ0 0.6
Attenuation parameter of peer arrival rate τ 300
Initial time index of worm attack n0 150
Rate at which seeds leave a swarm γ 0.08
Probability that a peer to be vulnerable α 0.8
Number of returned peers in a request ω 10
Mean upload utilization of leechers η 1
Time interval between two normal requests 100
Time window size W 50

use the software to create a .torrent file. (3) simulated peers: on another host, we install
PeerSim [Jesi and Patarin 2005], which is a Java-based discrete-event engine that
can simulate hundreds of peers and observe their activities (e.g., arrivals, departures,
pieces exchange), and implement the basic BT protocol (e.g., unchoking, rarest-first).
Each simulated peer can communicate with the tracker and share real pieces with
both initial seed and other simulated peers.

For simplicity, we do not consider free-ridering [Barbera et al. 2005] in our simula-
tions. In other words, all peers are willing to contribute their upload bandwidth. We
also do not strictly follow unchoking specified in the BT protocol. A peer simply chokes
those neighbors who do not upload any data within a time interval. We believe that
this change may have a very little effect on the results.

Since the piece transmission is resource consuming, we limit the maximum scale of
our simulation to 200 peers. We define the sampling period (1 cycle in PeerSim) as the
unit of time. Unless otherwise specified, the default settings in our simulations are
shown in Table II.

In our simulations, we evaluate the changes in number of leechers L[n], number of
seeds S[n], number of effective leechers EL[n], number of effective seeders ES[n], and
number of infected peers I[n].

6.2. Verification of the Hybrid Model

We compare the results of EL[n], ES[n] and I[n] from Equations (12), (13), and (9) with
that from simulations. Figure 7 shows that there exists a small gap between numerical
results and simulation results. The peak of effective seeds in the simulation result is
around 60, while that in the numerical result is less than 40. We guess that the gap is
mainly caused by the uncertainty in the measurement of the complicated peer behavior
in the BT network. We further measure the mean upload bandwidth utilization of
leechers and seeders. From Figure 8, we can see that the upload bandwidth of seeds is
fully utilized at the beginning, because the initial seed is called upon to do much of the
serving when the swarm size is small. However, when more peers join the network,
the upload bandwidth utilization of seeders drops dramatically from 1.0 to 0.27. On
the other hand, the upload bandwidth utilization of leechers increases and arrives at
its first peak 0.56 at time index 129, which indicates that P2P serving becomes very
effective. We input the simulation results of L[n] and S[n] into the hybrid model, and
recompute EL[n], ES[n] and I[n]. Figure 9 shows that the numerical results match with
the simulation results very well.
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Fig. 11. Comparison between R-BT worm and
A-BT worm.

Fig. 12. Number of forged requests generated
by worms.

Fig. 13. Effect of time window size on worm
detection.

Fig. 14. Effect of vulnerability density on worm
detection.

the vulnerable peers are infected. For the A-BT worm, we set the initial time window
size to 5, the threshold rate of being accessed Ath to 0.4, and the increasing ratio of the
time window size ϕ to 10. Recall that the time window size will increase exponentially
if Apre is larger than Ath. We then observe that the A-BT worm can be as efficient as
the R-BT worm. Figure 12 shows the abnormal behavior of the two worms. We see that
the forged requests generated by the A-BT worm are far less than that generated by
the R-BT worm.

6.4. Effectiveness of the Detection Method

We firstly study the impact of worm parameters on the detection method. We set the
time window size W to be one of {50, 100, 150, 200, 250}, the leaving rate γ to 0.002.
For the A-BT worm, we set the increasing ratio of the window size ϕ to 5. We randomly
select 20 peers from the swarm, and analyze the variance in the time intervals of
requests. Figure 13 shows that Var′(X[n]) for R-BT worm drops from 0.273 to 0.201
when W increases from 50 to 100, and then goes up from 0.201 to 0.253. Var′(X[n]) for
A-BT worm decreases from 0.503 to 0.274 when W increases from 50 to 100, and then
increases to 0.359. When W increases, the forged request generation rate decreases. If
W becomes too large, it may result in large variations in the time interval. That might
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be the reason why Var′(X[n]) of A-BT worm drops first and then goes up slightly. Even
though the A-BT worm is “smart” enough to request the tracker at a very low rate, we
can detect it from the tracker by setting an appropriate threshold for Var′(X[n]).

We then show the impact of network parameters on the detection method. We select
the vulnerability density α from the set {0.1, 0.3, 0.5, 0.7, 0.9}. Other parameters are
the same as that in the previous simulation. From Figure 14, we see that Var′(X[n])
increases when the vulnerability density increases. We can also see that Var′(X[n]) for
A-BT worm is much higher that for R-BT worm, when α is large. These results show
that we can estimate the vulnerability density of the swarm by observing Var′(X[n]).
We can take the safe strategy only when a large fraction peers are vulnerable for the
worm attack.

7. RELATED WORK

P2P worms find targets and propagate themselves in P2P networks. To throttle against
P2P worms, we need to investigate them in terms of: (1) target finding strategies,
(2) worm modeling, and (3) worm containment.

Target finding strategies. P2P worms have various ways to locate potential victims
in P2P networks. Three strategies are commonly used for target finding.

— Passive. Passive P2P worms, such as Gnuman worm [Vamosi 2001] and Banjamin
worm [Singer 2002], attach themselves to shared files and wait for potential victims
to discover and download them.

— Topological. Topological P2P worms propagate through P2P neighbors. These
worms can be further classified into two categories: reactive and proactive. (1) Reac-
tive worms, also called contagion worms, propagate parasitically along with normal
communications. (2) Proactive worms achieve much faster propagation speed by di-
rectly connecting to other peers, whose addresses were cached after previous file
requests and sharing.

— Hit List. Some open source P2P clients, such as Gnutella and BT, can be explored to
generate a hit list. The modified clients can crawl P2P networks actively to discover
as many0002 Tc
4.75over
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detect P2P worms [Zhou et al. 2005]. Though simple it is, this method is hard to be
implemented because the wide scale deployment of guardian nodes is resource con-
suming. (2) Software diversity can also be used to slow down P2P worms. In Verme
[Freitas et al. 2007], all peers are divided into different groups, called islands, ac-
cording to the type of vulnerabilities. To help peers select neighbors, D. McIlwraith,
et al. [Douglas et al. 2008] employ a server, called di-jest server, to compute the dis-
tance of each peer pair which corresponds to the infection probability of a worm.
Y. Zhou et al. [Zhou et al. 2006] give a model to study the effect of software diver-
sity on P2P worm propagation. However, these methods are not practical, because
software developers may not willing to provide several clients for the same protocol.

— Worm-Anti-Worm. The anti-worm spreads itself using the same mechanism as the
malicious worm [Yao et al. 2008]. This method has some obvious limitations. One
is that the spread of antiworm consumes a lot of bandwidth. The other is that most
computer crime laws do not distinguish “worms” from “antiworms”.

— Feedback Control. The feed back scheme [Wu and Feng 2006] slows down P2P
worms by delaying a peer’s request when the peer tries to make connections at
a high rate. Unfortunately, in P2P networks, a normal peer may also attempt to
connect a large number of peers for a high download rate. It is difficult to distin-
guish the abnormal behavior from the normal one.

8. CONCLUSION

In this article, we present a novel P2P worm, called Adaptive BitTorrent worm
(A-BT worm), in BT-like networks, which propagates itself by requesting a tracker
for vulnerable peers. We believe that such a worm could pose a vital threat to the P2P
security for the following reasons: (1) it has the ability to locate most recent active
peers; (2) it is easy to be implemented; (3) it can adaptively adjust its speed to reduce
its abnormal behavior. By combining the fluid model with the epidemic model, we build
a hybrid model to measure the worm damage. We also discuss the possible strategies
to detect and contain the worm.
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