Des Autom Embed Syst (2009) 13: 311-332
DOI 10.1007/s10617-009-9047-1

An effective state-based predictive approach for leakage
energy management on embedded systems

Minyi Guo - Linfeng Pan - Yanqin Yang - Meng Wang -
Zili Shao

Received: 14 January 2009 / Accepted: 20 July 2009 / Published online: 8 August 2009
© Springer Science+Business Media, LLC 2009

Abstract Energy optimization is very important for portable and battery-driven embedded
systems. With the shrinking of transistor sizes, reducing leakage power becomes a signif-
icant issue. In this paper, we propose a novel prediction approach to predict idleness of
functional units for leakage energy management. Using a state-based predictor, historical
utilization information of functional units (FUs) is exploited to adjust the state of the pre-
dictor so as to enhance the accuracy of prediction; based on it, the idleness of the FUs
are predicted and utilized for leakage reduction by applying power gating. We design two
prediction algorithms, the prediction with fixed threshold (PFT) and the prediction with dy-
namic threshold (PDT), respectively. We implement our algorithms based on SimpleScalar
and conduct experiments with a suite of fourteen benchmarks from Trimaran. The experi-
mental results show that our algorithms achieve better results compared with the previous
work.

Keywords Power-gating - Leakage energy management - State-based predictor - Dual
thresholds

This version is a revised version. A preliminary version of this work appears in the Proceedings of the
2008 IEEE/IFIP International Conference On Embedded and Ubiquitous Computing (EUC 2008) [29].
The work described in this paper is partially supported by the grants from the Research Grants Council
of the Hong Kong Special Administrative Region, China (GRF POLYU 5260/07E) and HK PolyU
1-ZV5S, National 863 Program of China (Grant No. 2006AA01Z172 and Grant No. 2008AA01Z106),
National Natural Science Foundation of China (Grant No. 60533040), and National Science Fund for
Distinguished Young Scholars (Grant No. 60725208).

M. Guo - L. Pan - Y. Yang
Department of Computer Science and Engineering, Shanghai Jiao-Tong University, Shanghai 200240,
China

M. Wang - Z. Shao ()
Department of Computing, Hong Kong Polytechnic University, Hong Kong, Hong Kong
e-mail: cszlshao@comp.polyu.edu.hk

@ Springer

mailto:cszlshao@comp.polyu.edu.hk

312 M. Guo et al.

1 Introduction

As portable and battery-powered embedded systems are widely used, energy optimization
becomes an important issue. With 0.18 pm or above technology, dynamic power is the
biggest concern since it accounts for 90% or more of the total chip power [30]. To reduce
dynamic power, the supply voltage is reduced with each processor generation. In order to
maintain performance at lower supply voltage, the threshold voltage is decreased accord-
ingly. As the threshold voltage decreases, transistor leakage current increases exponentially.
The leakage power constitutes about 54% of the total power with 65 nm technology, and it
will be further increased with future technologies [11]. Therefore, reducing leakage power
becomes one of the most important research problems.

Power supply gating is an effective leakage management technique by shutting down the
power supply of idle functional units. With its effectiveness in controlling leakage power, a
lot of power-gating-based techniques have been proposed in recent work [3, 4, 6, 20, 21, 27,
33, 41, 46]. To effectively apply power gating, one of most important problems is how to
predict the sufficiently long idleness of functional units. Various prediction approaches have
been proposed from both software [7-9, 25, 26, 32, 44, 45] and hardware aspects [15, 43].

In [32], a compiler-based approach is proposed to find out the idle region by analyzing
the code. At task level, energy-efficient task scheduling techniques with considerations of
leakage power dissipation have been explored in [7-9, 25, 26, 44, 45]. These techniques
are dependent on the certain hardware configurations. In [15, 43], the threshold-based ap-
proaches are proposed to predict the idleness for leakage savings. With these approaches,
however, decisions are made based on a single threshold. So it may not always produce good
results.

In this paper we propose a state-based predictor to store the historic utilization informa-
tion of functional units, and dynamically adjust its states so as to predict possible idleness
of FUs for power gating. Different from the previous work, decisions are made based on
the state of the predictor that reflects whether or not the previous idle periods are opportu-
nities for power-gating. To the best of our knowledge, this is the first work to introduce a
state-based predictor for power gating. Our main contributions are summarized as follows:

e A state-based predictor is designed based on a four-state finite state machine. The states
of the predictor are dynamically updated with the information of previous idle periods.
Based on the predictor, we can predict the idleness more accurately so as to save more
leakage power compared with the existing prediction approaches.

e Based on the predictor, we design two prediction algorithms, the prediction with fixed
threshold (PFT) and the prediction with dynamic threshold (PDT), respectively. With the
state-based predictor, in our algorithms, we make decisions for applying power gating
based on fixed thresholds (PFT) or dynamic thresholds (PDT).

e Our approach is based on simple control logics and independent of architectures. So it can
be easily implemented into various microprocessor designs. In particular, it is suitable for
DSP processors that are used to process applications with a lot of loops.

e We implement our algorithms into SimpleScalar [17] and conduct experiments with a set
of benchmarks from Trimaran [16]. The experimental results show that our algorithms
achieve better results compared with the previous work in [15, 43]. In particular, our PDT
algorithm allows the fixed-point units to be put into sleep for 54.4% of the idle cycles, and
97.7% for the floating-point units with an average performance loss of 3.2%. Based on
our analysis on the dual core UltraSPARC microprocessor, our approach will introduce
less than 0.2% energy overhead.

@ Springer

An effective state-based predictive approach for leakage energy 313

The rest of the paper is organized as follows. Related work is described in Sect. 2. Con-
cepts and models for power gating are introduced in Sect. 3. A simple example is provided
to show the drawbacks of other predictive approaches in Sect. 4. Our state-based predic-
tion approach is proposed in Sect. 5. Then the experimental results are exhibited in Sect. 6.
Finally, concluding remarks are made in Sect. 7.

2 Related work

Many techniques have been proposed to reduce leakage power, and they can mainly be
divided into two categories: static techniques and dynamic techniques [38].

The static leakage control techniques include design optimization methods for leakage
current reduction in circuit and architecture levels. The use of dual-Vr transistors in criti-
cal paths and non-critical paths is one of the most common static leakage-reduction tech-
niques [19, 24, 37, 39, 40]. Similarly, stack forcing technique is applied in non-critical paths
of the circuit to reduce the leakage due to the stack effect [28]. However, as pointed out
in [38], with the increase of the number of critical paths in a design, the above techniques
cannot efficiently solve the problem. Several techniques are proposed to employ the circuit
styles optimized for low leakage power [23]. However, the circuits implemented based on
this technique have a relatively low performance; therefore, they can only be used in non-
critical paths in a design.

Dynamic techniques identify “idle” or “standby” states while circuits do not need to ex-
ecute operations. These techniques have been applied at both block and chip levels. Since
not all parts of a processor are busy at the same time in practice, block-level techniques can
effectively reduce leakage power. In [1, 2, 18, 42], a block-level technique, called input vec-
tor control (IVC), is proposed to reduce leakage power using the transistors stacking effect.
In this technique, the minimum leakage vector is found for minimizing leakage current. The
minimum vector, however, is hard to be obtained since the problem is solved in exponential
time [18].

Power supply gating is another effective dynamic leakage management technique. The
basic idea of power gating is to shut down the power supply of idle units so as to reduce the
leakage power. It is implemented by adding a “sleep transistor” in series with the power sup-
ply, which is turned off when the circuit block is in idle mode. Body-bias-based techniques
can be combined with a sleep transistor to obtain further leakage power savings [21]. As
power gating can effectively control leakage power, a lot of power-gating-based techniques
have been proposed in recent work [3, 4, 6, 20, 27, 33, 41, 46].

With power gating technique, one of most important problems is how to predict the suf-
ficiently long idleness for power gating. Various prediction approaches have been proposed.
In [32], a compiler-based approach is proposed to identify the region in which functional
units are expected to be idle. At task level, energy-efficient task scheduling techniques with
considerations of leakage power dissipation have been explored in [7-9, 25, 26, 44, 45]. Luo
et al. [25, 26] addressed the problem of variable voltage scheduling of multi-rate periodic
task graphs in heterogeneous distributed real-time embedded systems. Kuo et al. [7-9] de-
veloped various on-line simulated scheduling strategies and a virtually blocking time strat-
egy for procrastination scheduling to reduce leakage power consumption on a uniprocessor
DVS system. Their algorithms derived a feasible schedule for real-time tasks with worst-
case guarantees for any input instance. Xu et al. [44, 45] proposed a dynamic programming
algorithm for periodic tasks on processors with practical discrete speed levels. Their algo-
rithm determined the lower bound of energy expenditure in pseudo-polynomial time. To

@ Springer

314 M. Guo et al.

save leakage energy, special instructions are inserted to communicate with hardware, which
expands the code size. And the scheduling results produced by these techniques are highly
dependent on the configurations of hardware.

The counter-based prediction method has been widely explored in the past [5, 10, 13, 22,
31, 34, 35]. In [5, 10], the idle periods for a component were modeled as stationary discrete-
time Markov processes and semi-Markov processes. In [34], Tajana et al. computed optimal
decisions in advance for different sets of arrival requests and stored the results in a table
that is used for making decisions at runtime. In [22, 31, 35], several genetic algorithms were
proposed to predict lengths of future idle periods. In [13], a novel energy-saving method is
proposed to use program counters to predict I/O activities in the operating system. These
approaches provide effective predictions for power savings for hard disks or other large
systems, but they are too complicated to be applied for functional units on a chip.

In [15], a scheme is proposed to shut down functional units after they are idle for a
fixed time interval based on a counter. For simplicity, we call this technique FTHP (Fixed
Threshold Prediction). In this scheme, since the decisions are based on an aptotic criterion,
it may not always accurately predict the idleness for leakage savings. In [43], a scheme
is proposed to predict idleness based on a threshold that is adjusted dynamically based on
the accuracy of its recent predictions. We call this technique DTHP (Dynamic Threshold
Prediction). With this approach, however, decisions are made based on a single threshold.
So it may not always produce good results.

3 Basic concepts and models

In this section, we introduce some basic concepts and models that will be used in the later
sections.

Power gating uses a suitably sized header or footer transistor as a “sleep transistor”.
When a sufficiently long idle period of the circuit block is detected, a “sleep” signal is
applied to the gate of the “sleep transistor” to turn off the supply voltage of the circuit
block. And when the circuit block is requested for use, the voltage is restored to the working
voltage. A power gating cycle can be mainly divided into three stages: shutting-down signal
generation, voltage decrease and power-on signal generation [15].

Energy overhead is caused by shutting down and powering on. A break-even point is the
time point when the overhead energy incurred by switching on and off the device is equal
to the leakage power savings from the period when FU is in the shutting-down mode. At
the break-even point, the aggregate leakage energy savings compensates the total energy
overhead of transition. After break-even point, the leakage power saving becomes the net
income. We use Tgreakpven tO represent the number of cycles that an FU can reach the break-
even point after it is shut down. It is dependent on the configuration (the block size, the
decoupling capacitance, etc.) of a circuit. There have been several studies related to this. For
example, in [12], the worst-case leakage behavior relative to the dynamic energy is modeled;
in [41], it shows that the value of Tgreakgven can be changed from 1 to 128 cycles; in [15],
based on a parameterizable model, it shows that the value of Tgeukgven Can be as small as
10 cycles.

We can gain energy savings by power gating if and only if the number of consecutive idle
cycles is larger than Tge.kgven; Otherwise, the saved leakage energy can not compensate the
energy overhead of transition. In practice, we cannot shut down an FU as soon as it enters
idle mode, because it is possible that it will be requested in a very short period. Fortunately,
we can approximately predict the idleness of an FU based on a general phenomenon: if the

@ Springer

An effective state-based predictive approach for leakage energy 315

FU has been idle for some time, it is very possible that it will continue being idle for a while.
Therefore, we may gain energy saving if we first wait for Tpeshola Cycles after the FU enters
the idle mode and then generate a “sleep” signal to shut down the FU. Here Tryreshold 1S an
integer value that can be fixed or dynamically changed based on different schemes.

For simplicity, we introduce a new variable as Tpajance:

TBalance = TThreshold + TBreakEven

TBalance 18 used to represent the actual break-even point by waiting Threshold before entering
into the sleep mode, since Trhreshold 18 the number of cycles to wait from the point that an FU
becomes idle to the point that it enters into the sleep mode, and Tgeakgven 1S the number of
cycles that an FU needs to be in the sleep mode for compensating the transition overhead.
Based on the definition of Tgaance, We define “mistake” and “hit” as follows: A mistake
occurs if we shut down an FU when the total length of an idle period is less than Tgajance;
a hit occurs if we shut down an FU when the total length of an idle period is equal to or
greater than Tgyjance-

Given an idle time period #qi, if power gating is applied, the saved energy for an FU can
be calculated as follows:

Eenergy_saved = Eleakagcfsaved - Eoverhead =P leakage * (Zidle_sleep - tbreakeven) (2)

Here, Pieakage 15 the leakage power of the FU; figie_gieep 18 the time that the FU is put into the
shutting-down mode; fyreakeven 1S the time that the FU needs in order to reach the break-even
point after it is shut down, and it can be obtained by the product of Tgeakrven and the cycle
period. Pieakage and #yreakeven are dependent on the circuits design of FUs. For a given FU, our
target is to make the prediction more accurate in such a way that the idle time period can be
correctly utilized S0 figie_sicep Can be larger than fyreakeven- In other words, we attempt to fully
utilize all hit opportunities (as mentioned the above) for energy saving.

4 Example

In this section, we give an example and show how the two previous techniques, FTHP [15]
and DTHP [43], work for managing leakage energy. The example is based on a real pro-
gram, the “mm” from the Trimaran benchmarks [16], which performs the matrix multiply
computation, shown in Fig. 1.

We first run the program on the SimpleScalar simulator [17] with the same configuration
as shown in Sect. 6 and obtain all idle periods during its executions. For demonstration
purpose, we only show the idle periods of fp-ALUQ. The program mainly consists of two
loops, and their corresponding idle periods are shown in Segments A and B, respectively, in
Fig. 1, in which “CPU Cycles” represents the time when the fp-ALUO ends the idle period,
and “Idle Period” represents the length of the idle period (the number of cycles).

Using FTHP [15], an FU will wait for Trpeshola cycles after the FU enters the idle mode
and then generates a “sleep” signal to shut the unit down. Using DTHP [43], a quartet
(T'stepMistake» TstepHits Tmistake-limits Thit-limit) 18 used to adjust the value of Tryrehold- In the quar-
tet, the first two parameters are used to increase/decrease the threshold, and the last two
parameters are used to decide when to apply an adjustment.

Without loss of generality, we use the parameters in Table 1 for FTHP and DTHP. As
shown in Table 1, Tryesnola 18 8 cycles that is fixed for FTHP and is the initial value for
DTHP, and TBreakEven is 10 clock CyC1€S- Tmistake-limita TStepMistakey Thit—limity and TStepHit are

@ Springer

316 M. Guo et al.

CPU | Tdle CPU | Tdle
Cycles | Period Cycles | Period
P 0
Repeat 2371 15 34652 | 21
B < 2373 1 34674 21
ti epeat - 0
imes 37 2390| 16 347151540
times 2392 1 . 3473721 *R 5
2409 16 34759 21 _‘Zp““ Repeat
for (i=0 ; i < NUM ; i++) w11l 1 i 1559
. . . mes .
for (j=0 ; j < NUM ; j++) 35573 21 |- times
ailli] = blilli] = i+j; 3093| 16 35614
3095| 1 35636 | 21
for (i=0 ; i < NUM ; i++) L 3127 31:! 35658 | 21
for =0 ; j < NUM; j++) { 3129 1
s1=0; 3145 15 36472 | 21
for (k=0; k < NUM ; k++) 3147 1 36513 | 40
st +=alilk]*blK][]; 3164 16 36535 | 21
clilli] = s1; 3166 1
}
Segment A Segment B
Fig. 1 Two segments with idle periods of fp-ALUO during the MM execution on SimpleScalar
Table 1 Parameters of FTHP and DTHP
Trhreshold TBreakEven TstepMistake TstepHit Timistake-limit Thit-limit

6 12 1 2 4 20

used to adjust the threshold in DHTP: if consecutive mistakes reach 4 times (Tiistake-limit)»
Trreshola Will be increased by 1 (Tsiepmistake); if consecutive hits reach 20 times (Thit-timit)-
Threshold Will be reduced by 2 (Tsepnit). DTHP sets the upper bound of Tryreshold @S TBreakEven
minus TStepMistake~

If FTHP is used, for Segment A in Fig. 1, in any idle period, fp-ALUO will be shut
down after it enters idle mode for 6 cycles. Because most of the periods in Segment A are
smaller than 18 cycles, it results in large number of mistakes. And for Segment B, there is
no mistake. But for most of the idle periods, we can only obtain very small energy savings.

When DTHP is applied, for Segment A, there is no hit except for the period with a length
of 31 cycles. When the number of consecutive mistakes increases to 4, Tyreshold 1S increased
by 1 and it will keep increasing until it is 11. As the execution enters Segment B, Trhreshold
is 11; because this Tryreshold 1 too large, DTHP keeps making wrong decisions and has little
energy savings in Segment B.

It is important to note that, based on the configuration of Table 1; any value of Tigieperiod
between 6 and 18 cycles will result in a mistake for both FTHP and DTHP. So the data in
Fig. 1 represent a category of applications. On the other hand, if Tryeshola Varies from 6 to 11,
both FTHP and DTHP may make a lot of mistakes or miss hit opportunities. This example
indicates that FTHP and DTHP may make bad mistakes or miss the opportunities in some
cases. The main reason is that a single threshold is not sufficient for predicting the length of
the idle periods. It motivates us to propose a state-based approach to solve the problem next.

@ Springer

An effective state-based predictive approach for leakage energy 317

Fig. 2 The state-based predictor

5 State-based prediction approach

In this section, we propose our state-based prediction approach. First, we propose a state-
based predictor in Sect. 5.1. Then we design two prediction algorithms, the prediction with
fixed threshold (PFT) and the prediction with dynamic threshold (PDT) in Sects. 5.2 and 5.3,
respectively.

5.1 State-based predictor

Let’s consider such an idleness sequence pattern which contains consecutive short idle pe-
riods followed by consecutive larger idle periods. Consecutive long idle periods indicate
that the FU may be slightly used currently, so the coming idle period would be a hit op-
portunity with a high possibility. On the other hand, consecutive short idle periods tell that
applying power-gating for the coming idle period may not be an advisable decision. When
DTHP meets a serial of mistakes, it keeps increasing threshold (to the upper bound). It not
only introduces much overhead due to mistakes, but also reduces the leakage savings for the
coming hit opportunities because of a higher threshold. In some bad cases, the high thresh-
old would make mistakes for the idle periods which would be hit opportunities for a smaller
threshold. In this paper, we use a state-based predictor to solve such problems. The state
machine of the predictor is shown in Fig. 2.

As shown in Fig. 2, the predictor is a finite state machine based on a saturation up-down
2-bit counter [14]. It has four states, “00”, “01”, “10” and “11”. The states “00” (“strongly
not taken”) and “01” (“weakly not taken”) represent that it is very possible (“strongly not
taken”) or possible (“weakly not taken”) that a mistake will occur based on the accuracy of
previous decisions. Similarly, states “10” (“weak taken”) and “11” (“strong taken”) are used
to represent that it is possible or very possible that a hit will occur based on the accuracy of
previous decisions.

The state transitions of the predictor are updated according to whether or not an idle
period is a hit opportunity that is obtained from a counter as shown in Sects. 5.2 and 5.3.
If an idle period is a hit opportunity, then the input is “1”; otherwise, the input is “0”. With
different inputs, the states of the predictor are changed based on the state transition graph in
Fig. 2, and the initial state is “00”. In this way, we can record the information of the previous
idle periods. Based on this predictor, two prediction schemes are proposed in Sects. 5.2 (with
fixed threshold) and 5.3 (with dynamic threshold), respectively.

5.2 PFT: prediction with fixed threshold

Based on the predictor, we first propose a prediction algorithm with fixed threshold. The
algorithm PFT is shown in Fig. 3.

@ Springer

318 M. Guo et al.

Input: The state of an FU (1 busy/0 idle); the current state of the predictor; a counter to record
the length of an idle period.
Output: Sleep Signal for the FU and the input signal for the predictor.

Algorithm:
if FUState == // fu busy
if Counter < Trhreshold
Counter=0;
Return;

else if Counter>=T 1 eshold™ T BreakEven //Should be a hit
Update the predictor with '1';
Counter = 0;
else
Update the predictor with '0'
Counter=0;
endif
else // fuidle
Counter=Counter-+1;
if Counter == TThreshold
if the state of the predictoris "11" or "10"
Generate sleep signal for the FU;
endif
endif
endif

Fig. 3 The PFT algorithm

The inputs of the PFT are the state of an FU (‘1 for busy; ‘0’ for idle), the state of the
predictor, and a counter to record the length of an idle period. In our algorithm, we make the
decision to shut down the FU as follows:

When an FU is not idle (FUState == 1), there are three possible cases:

(a) The FU is requested again and the idle period is less than Tryreshola cycles. The idle
period is so small that there is no chance for leakage reduction. Since we do not make
any decision in such an idle period, we just clear the counter and get ready for the next
idle period.

(b) The FU has been idle for more than Tgaance cycles, which means it is good to apply
power gating. Since it is a hit opportunity, we update the state of the predictor with ‘1’
to store this historical information.

(c) The FU has been idle for more than Trpeshola Cycles but less than Tpyjance cycles. To avoid
making wrong decisions in such idle periods, we update the state of predictor with ‘0’.
In both cases (b) and (c), the counter is cleared.

When the state of the FU is ‘0’, representing that FU is (still) in idle mode, we increase
the counter, and make a decision based on the predictor. If the state of the predictor is “11”
or “10”, we generate a signal to shut down the FU. Otherwise, the FU is kept active.

Next we give an example to show how PFT works by applying it on the program shown
in Sect. 4. We use the same threshold, 8 cycles, as in Sect. 4, and the initial state of the pre-
dictor is “00”. For the first idle period of Segment A, when the idle period is accumulated
to 8 cycles, the predictor predicts “strongly not taken”, which means that it is not an oppor-
tunity for power gating. And the fact proves that it is correct and the state of the predictor
keeps as “00”. The situation for the following idle periods in Segment A is exactly the same

@ Springer

An effective state-based predictive approach for leakage energy 319

as for the first one. When it comes to the idle period with a length as 31 cycles, the state of
the predictor is updated to “01”. And the state is set back to “00” for the following periods.
Though PFT fails to apply power-gating in the idle periods which contain 31 cycles, it suc-
cessfully avoids making any mistake. Compared to FTHP and DTHP, PFT introduces less
power overhead when the FU is heavily used.

All the idle periods in Segment B are hit opportunities. For the first idle period, the pre-
dictor predicts “strongly not taken” in the beginning but it is a wrong decision. The state of
the predictor is updated to “01”. Then for the second idle period, the predictor makes a mis-
take again but the state is updated to “11”. After that, the predictor predicts “strongly taken”
for each period till the end of loop B. For consecutive short idle periods, PFT would make
two mistakes at most and increase the threshold only once. During the whole execution, the
PFT only misses 2 hit opportunities. It obtains remarkably more leakage savings than FTHP
and DTHP.

5.3 PDT: prediction with dynamic threshold

Lowering the threshold gains more leakage savings. For an application with many medium-
sized idle periods which are a little larger than Tgyjance, @ low threshold may make a notable
contribution to reducing leakage. On the other hand, a low threshold may also cause more
mistakes so as to introduce more energy overhead. As the patterns of idle periods in appli-
cations may vary a lot, we may get better results if we can dynamically adjust the threshold.
Therefore, in this section, we propose a variation with dynamic threshold.

From the predictor in Fig. 2, if the state of the predictor is repeatedly updated with “1”,
it tells us that it is possible that we may gain more energy savings by lowering the thresh-
old. On the other hand, switching the state from “10” to “00” means that the predictor has
suffered two consecutive mistakes, which indicates that an FU may be heavily utilized cur-
rently. In this case, therefore, we need a higher threshold to reduce future mistakes. Based
on this idea, we design our PDT algorithm, a prediction algorithm with dynamic threshold,
and it is shown in Fig. 4.

The inputs and outputs of PDT are the same as PFT. Before PDT starts, two variables
bPredicted and HitOpp are initialized. bPredicted represents whether a decision for power
gating has been made for the current idle period, while HitOpp records the number of the
previous consecutive hit opportunities.

Similar to the PFT algorithm, the algorithms first check the status of FU. If FUState is 1,
which it represents that FU is busy, then there are two cases:

(1) Either the FU is always busy or only has a short idle period so that the counter for the
idle cycles is smaller than threshold. In this case, PDT does nothing, but clears up the
counter, as shown in Lines 2—4.

(2) When PDT detects that it is an adequately long idle period (Line 5), both the state
of predictor and HitOpp are updated. If HitOpp reaches Thitiimit, the threshold may be
reduced. And HitOpp is cleared for the coming hit opportunities (Lines 6—11). On the
other hand, if there are two consecutive idle periods which are longer than threshold
but not hit opportunities, the threshold is increased to avoid possible mistakes. In this
case, the state of the predictor is updated from “10” to “00” (Lines 12—-16). Since it is
no longer in an idle period, both the counter and the flag of prediction (bPredicted) are
cleared up (Lines 17, 19).

If FUState is 0, it represents that FU is idle. Then we check the number of idle cycles
(Lines 22-24). When the number of idle cycles reaches the threshold and the predictor

@ Springer

320 M. Guo et al.

Input: The state of an FU (1 busy/0 idle); the current state of the predictor; a counter to
record the length of an idle period.
Output: Sleep Signal for the FU and the input signal for the predictor.

Algorithm:
Input: FU state(1 busy/0 idle)
Output: Sleep Signal Generation

bPredicted=false; //initialize
HitOpp=0;

Function PDT(FUState)

1 if FUState ==1 // Busy

2 if Counter < Threshold

3. Counter=0;

4 Return;

5 else if Counter >= Threshold+BreakEven
/I A hit opportunity

6. Update the predictor with 'l'

7. HitOpp = HitOpp +1;

8. if HitOpp == Thitlimit and Threshold> Tstephit

9. Threshold=Threshold-Tstephit;

10. HitOpp =0;

11. endif

12. else if the state of predictor is "10"

13. Threshold=Threshold+Tstepmistake;

14. endif

15. Update the predictor with '0";

16. endif

17. Counter=0;

18. endif

//initialized for new power gating cycle
19. bPredicted=false;

20. else

21. Counter=Counter+1;

22. if Counter == Threshold

23. if the state of the predictor is "11" or "10"
24. Generate sleep signal

25. bPredicted=true;

26. endif

27. else if Counter == Threshold2 and bPredicted==false
28. Generate sleep signal;

29. endif

30. endif

Fig. 4 The PDT algorithm

predicts ‘taken’, PDT generates a sleep signal for power gating (Lines 22-24). The flag of
the prediction is set as ‘true’, representing that a decision for power gating has been made.
PDT shuts down the FU for long idle periods when it fails to predict for power gating
(Lines 27-29).

@ Springer

An effective state-based predictive approach for leakage energy 321

Next we give an example to show how PDF works by applying it on the program shown in
Sect. 4. When the state of predictor is initialized as “00”, PDT works exactly the same as PFT
does for the Segment A in the example in Sect. 4. For Segment B, PDT makes two wrong
decisions in the beginning, and updates the state of predictor as “11”. After that, the predictor
always predicts “strongly taken”. During the execution, PDT lowers the threshold until the
threshold reaches 1. And we can obtain more energy savings with dynamic threshold. Since
the predictor has the ability to avoid making consecutive mistakes, we could initialize the
primary threshold with a smaller value.

Compared to FTHP, PFT and PDT make more creditable decisions based on the predictor,
which stores the information of previous idle periods. For consecutive hit opportunities, PDT
lower the threshold in time more leakage savings. Compared to DTHP, the threshold of PDT
does not increase rapidly for a sequence of small idle periods.

6 Experiments

We implement our algorithms into the SimpleScalar and conduct experiments with a set of
benchmarks from the Trimaran. In the experiments, we compare our PFT and PDT algo-
rithms with FTHP [15] and DTHP [43]. In this section, we first introduce the experimental
environment. Then we present the results and discussion. Finally, we analyze the power
overhead introduced by our approach.

6.1 Experimental environment

In order to compare these predictive approaches, a modified SimpleScalar is used as our
experiment platform. We integrate FTHP, DTHP and our prediction approaches into Sim-
pleScalar (version 3.0d [17]) respectively. The usage of different FUs is traced and the FUs
are turned on/off according to the predictions and requests. When an FU is turned off, we
record the number of cycles, which can be translated to leakage energy savings. The config-
uration of SimpleScalar used in the experiments and the information of functional units are
shown in Table 2.

To compare the effectiveness of our state-based approaches with the other two ap-
proaches, we used a suite of fourteen benchmarks from Trimaran [16], as shown in Table 3.
These benchmarks produced various patterns of idle periods. Note that the patterns of idle
periods, rather than the sizes of applications, have the biggest impact for the effectiveness
of prediction. We calculated the total energy savings that are obtained based on the power
model in [15]. For a mistake with negative energy savings, the excess of overhead energy
was deducted from total energy savings.

Table 2 Functional units for experiments

Functional unit Available Operational Issue latency
units latency (cycles) (cycles)

Integer ALU 4 1 1

Integer multiplier 1 3 1

Integer divider 1 20 19
Floating-point adder 4 1
Floating-point multiplier 1 1
Floating-point divider 1 12 12

@ Springer

322 M. Guo et al.

Table 3 Information of benchmarks

Benchmarks Integer operations Fp operations Description

Bmm v Vv The matrix multiply computation

dag v X Loops with multiple if-conditions

eight v X Loops with multiple if-conditions

fib v X The Fibonacci number computation

fir v Vv FIR filter code

hyper v X Loops with multiple if-conditions

ifthen Vv X Loops with multiple if-conditions

mm v v The matrix multiply computation

nested v X The computation on multi-dimensional arrays
sqrt Vv VA Newton Raphson method to find the roots
strepy Vv X String copy

switch Vv X Loops with multiple if-conditions

type v X The computation with various data types
wave v Vv The wavefront computation

Table 4 Percentage of the idle cycles put to sleep

FU FTHP(%) DTHP(%) PFT(%) PDT(%)
int-FU 50.4 40.9 48.4 54.4
Fp-FU 91.1 84.5 90.7 97.7
all-FU 1.7 70.1 76.8 83.4

6.2 Results and discussions

The experimental results for different types of functional units with the fixed parameters are
presented in Sect. 6.2.1. We then study the trends and influences with different thresholds
and break-even points in Sect. 6.2.2. All results are normalized to the corresponding results
of DTHP, which are eliminated from the figures. Note that, except the figures with specific
benchmark names, all results are reported as the mean of normalized leakage savings for all
benchmarks.

6.2.1 Performance comparisons with fixed parameters

To compare various functional units, the parameters in Table 1 are first used. Except for
DTHP, other three techniques need a subset of the parameters. For example, PDT is initial-

ized with (TThreshold, TBreakEvena TStepMistakey TStepHit, Thit—limit)-

6.2.1.1 Overview of all functional units Table 4 shows the percentage of the idle cycles
at which functional units are actually utilized (put into sleep) with the four algorithms. For
example, PDT shuts down the floating-point FUs for 97.7% of the idle cycles. Only 2.3% of
the idle cycles are not utilized due to the threshold. From the results, we can see that PDT
is the best for both int-FUs and fp-FUs. The reason why FTHP shuts down more idle cycles
than PFT is that FTHP tries to shut down FU as soon as the threshold is reached. Due to the
heavy overhead introduced by wrong decisions, FTHP performs badly for int-ALUs.

@ Springer

An effective state-based predictive approach for leakage energy 323

[BETHPIDTHP ®PET/DTHP O PDT/DTHP

Normalized Energy Savings (To DTHP)

int- int- int- int- int-M/D fp-ALUO fp-ALU1fp-ALU2 fp-ALU3 fp-M/D
ALUO ALU1 ALU2 ALU3
FUs

Fig. 5 Energy savings for different FUs (Comparing FTHP, DTHP, PFT and PDT, normalized to DTHP
using the parameters in Table 1, and Tipreshold2 = 40)

Figure 5 gives an overview of the energy saving for different functional units. In gen-
eral, both PFT and PDT perform better than previous two approaches. And for int-ALU3,
fp-ALUO and fp-Mul/Div, PDT outperforms the others. On the other hand, for int-Mul/Div
and all fp-ALUs except for fp-ALUO, all predictive approaches have the same performance.
The detailed analysis is presented in next sections.

6.2.1.2 Heavily utilized functional units Most integer ALUs are heavily utilized in all
functional units because they are used by a lot of instructions such as Integer ADD, SUB,
JUMP, BRANCH, MOVE and logic instructions. Most idle periods of integer ALUs are
small pieces, averagely smaller than 30 cycles.

Figure 6 depicts the results of the average energy savings for all integer ALUs. From the
results, we can see that our approaches gain more average energy savings compared with
the other two approaches. The reason is that using DTHP, after some mistakes, the threshold
will be increased, and with a relatively large threshold, a lot of hit opportunities cannot be
utilized for energy savings. On the other hand, FTHP keeps making wrong decisions with
the fixed threshold by shutting down the functional units in the idle periods which do not
last long enough for compensating transition overhead. Therefore, in Fig. 6, FTHP even
increases energy consumption for some benchmarks. Both PFT and PDT work well and
achieve more energy savings compared with FTHP and DTHP. On average, PFT and PDT
achieve 102.1% and 112.6% in energy savings compared to DTHP.

6.2.1.3 Slightly utilized functional units The floating-point ALUs perform the floating-
point ADD/SUB operation, integer to floating-point conversion and floating-point compari-
son. Compared to the integer ALUSs, integer multiplier/divider and floating-point functional
units are less utilized. Except for the first fp-ALU used by the scheduler, the other three
fp-ALUs are idle for most of time during execution.

Figure 7 depicts the results of the total energy savings for these slightly utilized functional
units. The benchmarks of bmm, fir, mm, sqrt and wave have float-point operations; the other
9 benchmarks do not, which means all the floating-point FUs are always idle during the
execution of these 9 benchmarks. From Fig. 7(b), we can find that DTHP performs badly for
benchmark “mm” on fp-ALUO, due to the increased threshold. As there are large amount

@ Springer

324 M. Guo et al.

ODTHP BFTHP OPFT O PDT
!

N

-
(6]

-

0.5 -0l [
0 1l i L
F& & &S Q&
-0.59) S Rt CREEEEE R

Normalized Energy Savings (To DTHP)

1
N

(a) int-ALUO

‘EI DTHP B FTHP OPFT O PDT

|

-
(&)}

-

o
3]

o

\
o
9,

1
-

Normalized Energy Savings (To DTHP)

342 41N
(b) int-ALU1

Fig. 6 Leakage energy savings for each int-ALU. (Comparing FTHP, DTHP, PFT and PDT, normalized to
DTHP, using parameters in Table 1 and Tipreshold2 = 40)

of idle cycles on fp-ALU1, fp-ALU2 and fp-ALU3 in the experiments, all approaches can
utilize most of the opportunities and work well. Still, our two algorithms work better than
FTHP and DTHP in general.

6.2.2 Performance comparisons with various parameters

To show the influences from the threshold and break-even point, we conduct various exper-
iments with different parameters. The experimental results related to floating-point ALUO
are shown in Fig. 8 where all results are normalized to the results of DTHP. Compared to
the other FUs, the idle periods of fp-ALUO provide more power gating opportunities, so the
impact of various parameters is highlighted.

In Fig. 8(a), the results (normalized to the leakage energy savings of PFT) are obtained
by varying the threshold with the other parameters fixed. Since DTHP sets an upper bound
for the threshold, the corresponding Trpreshold has @ maximum value as 12. We can see that

@ Springer

An effective state-based predictive approach for leakage energy 325

15 ‘EIDTHP BFTHP OPFT OPDT

0.5

o

()'Id/L

Normalized Energy Savings (To DTHP)

1307 1206 -2.81
(c) int-ALU2

5 !EI DTHP BFTHP OPFT O DFT‘

R ﬂﬂﬂﬂ%ﬂ][ﬂ] 1IN

3 > Q& @ @
PR) S @ %;;\\‘“\ § @

-25 1211
(d) int-ALU3

Normalized Energy Savings (To DTHP)
N

Fig. 6 (Continued)

with a small threshold, PDT works much better than PFT and DTHP. And the results get
closer from PDT and PFT as the threshold increases. The similar trend can be observed from
Figs. 8(b)—(c), in which the break-even points are increased while the other parameters are
fixed in Fig. 8(b), and both the threshold and break-even points are increased in Fig. 8(c).
It is because there are a large number of medium-sized idle periods, ranging from 15 to
35 cycles in the benchmarks. Therefore, when the threshold or break-even point is more than
35 cycles, these idle periods cannot be optimized by all algorithms. This set of experiment
indicates that a small initial threshold may improve the performance of PDT.

6.3 Performance degradation analysis

For each idle period, if power gating is applied to FU, it costs some time for recharging
the circuits of the FU when the FU is required again. Thus for both correct predictions and
wrong predictions, the waking-up processes prolong the whole execution time. Such time
overhead is called as performance loss. In this section, we investigate the performance loss
when the proposed approaches are applied. In the experiments, we set the time for waking
up the units to 3 cycles as in [15]. The results of performance analysis for PFT and PDT

@ Springer

326 M. Guo et al.

12 {D DTHP B FTHP O PFT O PDT}

1, — —_ N - S -, —_ — — A -[- - — —
0 \‘J. L1} Ll L1} L1} L1} L1} L1} L1} L1} L1} L1} L] Ll
@"Q

o
[e]

o
~

o
N

Normalized Energy Savings (To DTHP)
o
(2]

S RN ® &
& s F@ T F ST SITE e
(a) int-MUL
_ %35
o
e 1
2 @ DTHP BFTHP OPFT O POT
e M
w
o
=Y A | | ——
>
©
[75]
] M .., A e—-—ael
=
2
Se4t—
o
[0
N
T
£
o
=

(b) fp-ALUO

Fig. 7 Leakage energy savings for int-Mul, fp-ALUO, fp-Mul and average results of int-Mul and all
fp-FUs. (Comparing FTHP, DTHP, PFT and PDT, normalized to DTHP, using the parameters in Table 1
and Tihreshold2 = 40)

are depicted in Figs. 9(a) and (b), respectively. The percentages of the cycles in sleep mode
from all idle cycles are also reported for comparisons.

According to the experimental results, all the functional units are separated into 3 groups.
For both PFT and PDT, it is hard to apply power gating for group 1 (int-ALUO, int-ALU1
and int-ALU2), due to large amount of small idle periods. Accordingly, the performance
loss is smaller than 0.3%. For other functional units, PFT and PDT shut down more than
88% of idle cycles with a performance loss of 3.2% on average. For group 2 (int-ALU3,
fp-ALUO and fp-Mul/Div), the performance loss is relatively large. It is because these units
produce large amount of medium-sized idle periods, which increases the number of power
gating actions as mentioned above. And it translates into more cycles for waking-up. For the

@ Springer

An effective state-based predictive approach for leakage energy 327

-
N

ODTHP @FTHP O PFT O PDT

0.8 HTHI MBI HIHRIE HIHEE
0.6 10 [-1M(II]I HIHRIE BIHEE
0.4 MBI HIHRIE BIHEE
0.2 (MBI HIHRIE BIHEE
O U A an an A an an an Ll an an A an an Li

@@Qé}@"\\“‘"\\‘ S Q&

Normalized Energy Savings (To DTHP)

E

Normalized Energy Savings (To DTHP)

N SN

> AR INIRN X Q
SRS Qze’@ & ;}\C’Q\s\\(’ § @

(d) Average

Fig. 7 (Continued)

seldom used FUs in group 3 (int-Mul/Div and other 3 fp-ALUs), most of the idle periods
are very large and in a very small number. By applying power gating for these units, the
proposed approaches save the most leakage energy with the least performance loss. On
the other hand, we also find that PDT detects more power gating opportunities than PFT.
Therefore, with more energy savings, the overhead increases accordingly.

6.4 Power overhead analysis
Our approach is based on simple circuit and can be easily implemented into various proces-
sors. Figure 10 shows a block-level diagram for the implementation. Adopting a similar de-

sign as [43], the circuit to implement PDT is very simple and its power consumption should
consume no more than 600 uW. Take the dual core UltraSPARC microprocessor for exam-

@ Springer

M. Guo et al.

w
[\
oo

1.8 4 —® DIHP/PFT —*— PDT/PFT]

Normalized Energy Savings (to PFT)

0 9 12 15 18 21 24 27 30 33 36 39 42
Threshold
(a) TThreshold Varies, and TBreakEven:14-
1.6 | —=— DTHP/PFT —— PDT/PFT |

Normalized Energy Savings (to PFT)

0
10 15 20 25 30 35 40 45 50 55 60 65
BreakEven Point
(b) TBreakEven Varies, and TThresholdzlo-
1.4 | —=—DTHP/PFT —+—PDT/PFT)

L0 <

L0

04 [~~~ T T T TSI m e

[0

Normalized Energy Savings (to PFT)

10 14 18 22 26 30 34 38 42 46 50 54
BreakEven Point

(C) TBreakEven Varies, TThresho]d: TBreakEven / 2

Fig. 8 Average energy savings for fp-ALUO (Normalized to PFT. Thjgitmit = 20, TstepHit = 1
TMistakeLimit = 4, TStepMiss = 2, and Threshold2 = 40)

@ Springer

An effective state-based predictive approach for leakage energy 329

O Performance Loss B Cycles in Sleep Mode

100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0 |

0.0

Percentage(%)

int-ALUO int-ALU1 int-ALU2 int-ALU3 int-M/D fp-ALUO fp-ALU1 fp-ALU2 fp-ALU3 fp-M/D
FUs

(a) PFT

O Performance Loss B Cycles in Sleep Mode
100.0

90.0 f-------mmmmm oo
80.0 [--------=----mmm-m-

700 f----mmmmmmm oo

60.0 [--------------o—-- -

50.0 [--------=-=--m---m-

400 ----mmmmmm oo

300 f------mmmmmmm oo

200 f--o----mmmmmm— -

10.0 fo.slffo.si"orz
0.0 |

int-ALUO int-ALU1 int-ALU2 int-ALU3 int-M/D fp-ALUO fp-ALU1 fp-ALU2 fp-ALU3 fp-M/D
FUs

(b) PDT

Percentage(%)

Fig. 9 Performance degradation versus percent of cycles in sleep mode using the parameters in Table 1,
Tthreshold2 = 40, and Tiyakeup =3

Fig. 10 The impl i f |
0115 approaci implementation o Power Management Unit
PDT PDT PDT |
1> > o
Idle Idle Idle
Info Sleep Infol |Sleep Info 'Sleep
FUO FUI1 FUn

@ Springer

330 M. Guo et al.

ple, the power consumption of a modern 64-bit ALU consumes approximate 400 mW [36].
Therefore, our approach has very small impact in the total energy (less than 0.2% on the
power budget of a processor). Compared with the energy savings achieved by our approach,
the energy overhead introduced by our approach can be ignored.

7 Conclusion and future work

In this paper, we proposed a novel predictive approach for the power leakage reduction. In
our approach, we used a state-based predictor to store the historic operational profile in-
formation of functional units and to predict the leakage saving opportunities. Based on the
predictor, we proposed two prediction algorithms with fixed and dynamic threshold, respec-
tively. We implemented our techniques in SimpleScalar and conducted experiments based
on a set of benchmarks from Trimaran. The experimental results show that our algorithms
can effectively reduce energy savings compared to the previous work. The predictive tech-
niques in this paper are especially useful for embedded applications which have specific
idleness patterns. For a specific application, certain idleness sequences would be generated.
For each such sequence, we could vary the parameters for a better result of leakage savings.
In embedded systems, it is an important problem to reduce leakage energy caused by on-
chip storage, since on-chip memory occupies a big portion of the silicon die. In our future
work, we will extend our approach to solve this problem.

References

1. Abdollahi A, Fallah F, Pedram M (2002) Minimizing leakage current in VLSI circuits. Technical Report,
Department of Electrical Engineering, University of Southern California, No. 02-08, May 2002

2. Abdollahi A, Fallah F, Pedram M (2002) Runtime mechanisms for leakage current reduction in CMOS
VLSI circuits. In: Proc international symposium on low power electronics and design, August 2002

3. Agarwal K, Deogun H, Sylvester D, Nowka K (2006) Power gating with multiple sleep modes. In: 7th
international symposium on quality electronic design, 27-29 March, 2006, p 5

4. Babighian P, Benini L, Macii A, Macii E (2004) Post-layout leakage power minimization based on
distributed sleep transistor insertion. In: Proceedings of the 2004 international symposium on low power
electronics and design, Aug 2004, pp 138-143

5. Benini L, Bogliolo A, Paleologo GA, De Micheli G (1999) Policy optimization for dynamic power
management. IEEE Trans Comput-Aided Des Integr Circ Syst 18(6)

6. Chang C, Yang W, Huang C, Chien C (2007) New power gating structure with low voltage fluctuations
by bulk controller in transition mode. In: IEEE international symposium on circuits and systems, 27-30
May, 2007, pp 3740-3743

7. Chen J-J, Kuo T-W (2005) Voltage-scaling scheduling for periodic real-time tasks in reward maximiza-
tion. In: 26th IEEE real-time systems symposium (RTSS)

8. Chen J-J, Kuo T-W (2006) Procrastination for leakage-aware rate-monotonic scheduling on a dynamic
voltage scalingprocessor. In: 2006 ACM SIGPLAN/SIGBED conference on language, compilers and
tool support for embedded systems, pp 153-162

9. Chen J-J, Kuo T-W (2006) Allocation cost minimization for periodic hard real-time tasks in energy-
constrained dvs systems. In: Proceedings of the 2006 IEEE/ACM international conference on computer-
aided design, pp 255-260

10. Chung E-Y, Benini L, Bogliolo A, Lu Y-H, De Micheli G (2002) Dynamic power management for
nonstationary service requests. IEEE Trans Comput 51(11)

11. Devgan A, Narendra S, Blaauw D, Najm F (2003) Leakage issues in IC design: trends, estimation and
avoidance. In: Proceedings of ICCAD

12. Dropsho SG, Kursun V, Albonesi DH, Dwarkadas S, Friedman EG (2002) Managing static leakage
energy in microprocessor functional units. In: Micro-annual workshop then annual international sympo-
sium, vol 35, pp 321-332

@ Springer

An effective state-based predictive approach for leakage energy 331

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Gniady C, Butt AR, Hu YC, Lu Y-H (2006) Program counter-based prediction techniques for dynamic
power management. IEEE Trans Comput 55(6):641-658

Hennessy JL, Patterson DA (1996) Computer architecture: a quantitative approach, 2nd edn. Morgan
Kaufmann, San Mateo

Hu Z, Buyuktosunoglu A, Srinivasan V, Zyuban V, Jacobson H, Bose P (2004) Microarchitectural tech-
niques for power gating of execution units. In: Proceedings of the international symposium on low power
electronics and design, pp 32-37

http://www.trimaran.org/

http://www.simplescalar.com/

Johnson MC, Somasekhar D, Roy K (1999) Leakage control with efficient use of transistor stacks in
single threshold CMOS. In: Design automation conference, Proceedings 36th, 21-25 June 1999, pp 442—
445

Kao JT, Chandrakasan AP (2000) Dual-threshold voltage techniques for low-power digital circuits.
1JSSC 35(7):1009-1018

Kao J, Chandrakasan A (2000) Dual-threshold voltage techniques for low-poer digital circuits. IEEE J
Solid-State Circ 35:1009-1018

Keshavarzi A, Ma S, Narendra S, Bloechel B, Mistry K, Ghani T, Borkar S, De V (2001) Effectiveness
of reverse body bias for leakage control in scaled dual-V¢ CMOS ICs. In: Proc int symp low power
electronics and design. Huntington Beach, CA, pp 207-212

Kong F, Tao P, Yang S, Zhao X (2006) Genetic algorithm based idle length prediction scheme for dy-
namic power management. In: IMACS multiconference on computational engineering in systems appli-
cations, Oct 2006, pp 1437-1443

Krishnamurthy R, Alvandpour A, De V, Borkar S (2002) High-performance and low-power challenges
for sub-70-nm microprocessor circuits. In: Proc custom integrated circuits conf, pp 125-128

Kursun V, Friedman EG (2002) Low swing dual threshold voltage domino logic. In: 12th great lakes
symposium on VLSI, April 2002

Luo J, Jha NK (2007) Power-efficient scheduling for heterogeneous distributed real-time embedded sys-
tems. IEEE Trans Comput-Aided Des 26:1161-1170

Luo J, Jha NK, Peh L-S (2007) Simultaneous dynamic voltage scaling of processors and communication
links in real-time distributed embedded systems. IEEE Trans VLSI Syst 15:427-437

Mutoh S, Douseki T, Matsuya Y, Aoki T, Shigematsu S, Yamada J (1995) 1-V power supply high-speed
digital circuit technology with multithreshold voltage CMOS. IEEE J Solid-State Circ 30:847-854
Narendra S, Borkar S, De V, Antoniadis D, Chandrakasan A (2001) Scaling of stack effect and its appli-
cation for leakage reduction. In: Proc int symp low power electronic design (ISLPED), pp 195-200

Pan L, Yang Y, Wang M, Shao Z (2008) A state-based predictive approach for leakage reduction of
functional units. In: IEEE/IFIP international conference on embedded and ubiquitous computing, Dec
2008, pp 52-58

Park JC, Mooney VJ III (2006) Sleepy stack leakage reduction. IEEE Trans Very Large Scale Integr
(VLSI) Syst 14(11)

Raghavan SV, Swaminathan N, Srinivasan J (1999) Predicting behavior patterns using adaptive work-
load models. In: 7th international symposium on modeling, analysis and simulation of computer and
telecommunication systems, 24-28 Oct 1999, pp 226233

Rele S, Pande S, Onder S, Gupta R (2002) In: Optimizing static power dissipation by functional units in
superscalar processors. Lecture notes in computer science, vol 2304. Springer, Berlin, pp 261-276

Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage
reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305-327

Simunic T, Benini L, Glynn P, De Micheli G (2000) Dynamic power management for portable systems.
In: International conference of mobile computing and networking. ACM Press, New York
Swaminathan N, Srinivasan J, Raghavan SV (1999) Bandwidth-demand prediction in ATM networks
using genetic algorithms. Comput Commun 22:1127-1135

Takayanagi T, Shin JL, Petrick B, SuJY, Levy H, Pham H, Son J, Moon N, Bistry D, Nair U, Singh M,
Mathur V, Leon AS (2005) A dual-core 64-bit UltraSPARC microprocessor for dense server applications.
IEEE J Solid-State Circ 40(1):7-18

Tschanz J, Ye Y, Wei L, Govindarajulu V, Borkar N, Burns S, Karnik T, Borkar S, De V (2002) De-
sign optimizations of a high-performance microprocessor using combinations of dual-V allocation and
transistor sizing. In: Symp VLSI circuits dig tech papers, pp 218-219

Tschanz JW, Narendra SG, Ye Y, Bloechel BA, Borkar S, De V (2003) Dynamic sleep transistor and
body bias for active leakage power control of microprocessors. IEEE J Solid-State Circ 38(11)

Wei L, Chen Z, Johnson MC, Roy K, De V (1998) Design and optimization of low voltage high perfor-
mance dual threshold CMOS circuits. In: ACM/IEEE design automation conf, pp 489-494

@ Springer

http://www.trimaran.org/
http://www.simplescalar.com/

332

M. Guo et al.

40.

41.

42.

43.

44,

45.

46.

Wei L, Roy K, Ye Y, De V (1999) Mixed-Vth (MVT) CMOS circuit design methodology for low power
applications. In: ACM/IEEE design automation conf, pp 430-435

Wei L, Roy K, Vivek KD (2000) Low voltage low power CMOS design techniques for deep submicron
ICs. In: Proceedings of the international conference on VLSI design, pp 24-29

Ye Y, Borkar S, De V (1998) A new technique for standby leakage reduction in high-performance cir-
cuits. In: Symp VLSI circuits dig tech papers, pp 4041

Youssef A, Anis M, Elmasry M (2006) Dynamic standby prediction for leakage tolerant microprocessor
functional units. IEEE Computer Society, Washington, pp 371-384

Zhong X, Xu CZ (2005) Energy-aware modeling and scheduling of real-time tasks for dynamic voltage
scaling. In: Proc of IEEE real-time symposium (RTSS’05), pp 366-375

Zhong X, Xu C-Z (2006) System-wide energy minimization for real-time tasks: lower bound and ap-
proximation. In: IEEE/ACM international conference on computer-aided design (ICCAD), pp 516-521
Zhou D, Hu J, Wang L (2007) Design of adiabatic sequential circuits using power-gating technique.
IEEE northeast workshop on circuits and systems, 5-8 Aug 2007, pp 952-955

@ Springer

	An effective state-based predictive approach for leakage energy management on embedded systems
	Abstract
	Introduction
	Related work
	Basic concepts and models
	Example
	State-based prediction approach
	State-based predictor
	PFT: prediction with fixed threshold
	PDT: prediction with dynamic threshold

	Experiments
	Experimental environment
	Results and discussions
	Performance comparisons with fixed parameters
	Overview of all functional units
	Heavily utilized functional units
	Slightly utilized functional units

	Performance comparisons with various parameters

	Performance degradation analysis
	Power overhead analysis

	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

