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Modern mainstream powerful computers adopt multisocket multicore CPU architecture and NUMA-based
memory architecture. While traditional work-stealing schedulers are designed for single-socket architec-
tures, they incur severe shared cache misses and remote memory accesses in these computers. To solve
the problem, we propose a locality-aware work-stealing (LAWS) scheduler, which better utilizes both the
shared cache and the memory system. In LAWS, a load-balanced task allocator is used to evenly split and
store the dataset of a program to all the memory nodes and allocate a task to the socket where the local
memory node stores its data for reducing remote memory accesses. Then, an adaptive DAG packer adopts an
auto-tuning approach to optimally pack an execution DAG into cache-friendly subtrees. After cache-friendly
subtrees are created, every socket executes cache-friendly subtrees sequentially for optimizing shared cache
usage. Meanwhile, a triple-level work-stealing scheduler is applied to schedule the subtrees and the tasks
in each subtree. Through theoretical analysis, we show that LAWS has comparable time and space bounds
compared with traditional work-stealing schedulers. Experimental results show that LAWS can improve
the performance of memory-bound programs up to 54.2% on AMD-based experimental platforms and up to
48.6% on Intel-based experimental platforms compared with traditional work-stealing schedulers.
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1. INTRODUCTION

Although hardware manufacturers keep increasing cores in CPU chips, the number of
cores cannot be increased unlimitedly due to physical limitations. To meet the urgent
need for powerful computers, multiple CPU chips are integrated into a multisocket
multicore (MSMC) architecture, in which each CPU chip has multiple cores with a
shared last-level cache and is plugged into a socket.

To efficiently utilize the cores, programming environments with dynamic load-
balancing policies are proposed. Work sharing [Ayguadé et al. 2009] and work stealing
[Blumofe 1995] are the two best-known dynamic load-balancing policies. For instance,
TBB [Reinders 2007], XKaapi [Gautier et al. 2013b], Cilk++ [Leiserson 2009], and X10
[Lee and Palsberg 2010] use work stealing, and OpenMP [Ayguadé et al. 2009] uses
work sharing. With dynamic load-balancing polices, the execution of a parallel program
is divided into a large amount of fine-grained tasks and is expressed by a task graph
(aka directed acyclic graph or DAG [Gerasoulis and Yang 1992]). Each node in a DAG
represents a task (i.e., a set of instructions) that must be executed sequentially without
preemption.

While all the workers (threads, cores) share a central task pool in work sharing, work
stealing provides an individual task pool for each worker. In work stealing, most often
each worker pushes tasks to and pops tasks from its task pool without locking. When
a worker’s task pool is empty, it tries to steal tasks from other workers, and that is
the only time it needs locking. Since there are multiple task pools for stealing, the lock
contention is low even at task steals. Therefore, work stealing performs better than
work sharing due to its lower lock contention.

However, modern shared-memory MSMC computers and large-scale supercomputing
systems often employ NUMA-based (nonuniform memory access) memory systems, in
which the whole main memory is divided into multiple memory nodes and each node is
attached to the socket of a chip. The memory node attached to a socket is called its local
memory node, and those that are attached to other sockets are called remote memory
nodes. The cores of a socket access its local memory node much faster than the remote
memory nodes. Traditional work stealing is inefficient in this architecture.

Figure 1 gives an example of MSMC computers that employ NUMA-based memory
systems. As shown in the figure, different sockets are connected through interconnect
models. For example, in an Intel-based machine, QPI [Intel 2009] is used to connect
different sockets, while in an AMD-based machine, HyperTransport [Consortium 2010]
is used to connect different sockets. In traditional work stealing, since a free worker
randomly selects victim workers to steal new tasks when its own task pool is empty, the
tasks are distributed to all the workers nearly randomly. This randomness can cause
more accesses to remote memory in NUMA, as well as more shared cache misses inside
a CPU chip, which often degrades the performance of memory-bound applications in
MSMC architectures (to be discussed in detail in Section 2).

To reduce remote memory accesses and shared cache misses, this article proposes
a locality-aware work-stealing (LAWS) scheduler that automatically schedules tasks
to the sockets where the local memory nodes store their data and executes the tasks
inside each socket in a shared-cache-friendly manner. LAWS targets iterative divide-
and-conquer applications that have tree-shaped execution DAGs. While existing work-
stealing schedulers incur bad data locality, to the best of our knowledge, LAWS is the
first locality-aware work-stealing scheduler that improves the performance of memory-
bound programs leveraging both NUMA optimization and shared cache optimization.

The main contributions of this article are as follows:

—We propose a load-balanced task allocator that automatically allocates a task to the
particular socket where the local memory node stores its data and that can balance
the workload among sockets.
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Fig. 1. An example of MSMC architectures that employ NUMA-based memory systems.

—We propose an adaptive DAG packer that can further pack an execution DAG into
cache-friendly subtrees (CF subtrees) for optimizing shared cache usage based on
online-collected information and auto-tuning.

—We propose a triple-level work-stealing scheduler to schedule tasks accordingly so
that a task can access its data from either the shared cache or the local memory node
other than the remote memory nodes.

—We demonstrate that LAWS significantly improves the performance of memory-
intensive applications. The experiment shows that LAWS can achieve a performance
gain of up to 54.2% on an AMD-based experimental platform and up to 48.6% on an
Intel-based experimental platform for memory-intensive applications.

The rest of this article is organized as follows. Section 2 explains the motivation of
LAWS. Section 3 presents locality-aware work stealing, including the balanced data
allocator, adaptive DAG packer, and triple-level work-stealing scheduler. Section 4 gives
the implementation of LAWS. Section 5 validates LAWS theoretically and analyzes the
time and space bounds of programs in LAWS. Section 6 evaluates LAWS. Section 7
discusses the related work. Section 8 draws conclusions.

2. MOTIVATION

Similar to many popular work-stealing schedulers (e.g., Cilk [Blumofe et al. 1996]
and CATS [Chen et al. 2013]), this article targets iterative divide-and-conquer (D&C)
programs that have tree-shaped execution DAGs. Most stencil programs [Shaheen and
Strzodka 2012] and algorithms based on jacobi iteration (e.g., Heat Distribution and
Successive Over Relaxation) are examples of iterative D&C programs.

Figure 2(a) gives a general execution DAG for iterative D&C programs. In a D&C
program, its dataset is recursively divided into several parts until each of the leaf tasks
only processes a small part of the whole dataset.

Suppose the execution DAG in Figure 2(a) runs on an MSMC architecture with a
NUMA memory system as shown in Figure 2(b). In the MSMC architecture, a memory
node Ni is attached to the socket ρi. In Linux memory management for NUMA, if a
chunk of data is first accessed by a task that is running on a core of the socket ρ, a
physical page from the local memory node of ρ is automatically allocated to the data.
This data allocation strategy employed in Linux kernel and Solaris is called the first
touch strategy. In this work, we take advantage of this strategy of memory allocation.

For a parallel program, its dataset is often first accessed by tasks in the first iteration
or an independent initialization phase. By scheduling these tasks to different sockets,
the whole dataset of the program that has the execution DAG in Figure 2(a) is split
and stored in different memory nodes as in Figure 2(b) due to the first touch strategy.
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Fig. 2. An example DAG and the data access pattern in traditional work stealing on MSMC architecture.

However, traditional work stealing suffers from two main problems when scheduling
the execution DAG in Figure 2(a) in MSMC architectures. First, most tasks have to
access their data from remote memory nodes in all the iterations. Second, the shared
caches are not utilized efficiently.

As for the first problem, suppose the whole dataset of the program in Figure 2(a) is [0,
D), and the task t0 is the first task that accesses the part of the data [ D

a , D
b ) (a > b ≥ 1).

If task t0 is scheduled to socket ρi, the part of the data [ D
a , D

b ) is automatically allocated
to the memory node, Ni, of socket ρi, due to the first touch strategy. Suppose task tr in
a later iteration processes the data [ D

a , D
b ). Due to the randomness of work stealing, it

is very likely that tr is not scheduled to socket ρi. In this situation, tr cannot access its
data from its fast local memory node; instead, it has to access a remote memory node
for its data.

As for the second problem, neighbor tasks (e.g., t1 and t2 in Figure 2(a)) are likely
to be scheduled to different sockets due to the randomness of stealing in traditional
work-stealing schedulers. This causes more shared cache misses as neighbor tasks in
DAG often share some data. For example, in Figure 2(a), both t1 and t2 need to read all
their data from the main memory if they are scheduled to different sockets. However,
if we could schedule t1 and t2 to the same socket, their shared data is only read into the
shared cache once by one task, while the other task can read the data directly from the
shared cache.

To solve the two problems, we propose the LAWS scheduler that consists of a load-
balanced task allocator, an adaptive DAG packer, and a triple-level work-stealing sched-
uler. The load-balanced task allocator can evenly distribute the dataset of a program
to all the memory nodes and allocate a task to the socket where the local memory node
stores its data. The adaptive DAG packer can pack the execution DAG of a program into
CF subtrees so that the shared cache of each socket can be used effectively. The triple-
level work-stealing scheduler schedules tasks accordingly to balance the workload and
reduce shared cache misses.

LAWS ensures that the workload is balanced and most tasks can access data from
either the shared cache or the local memory node. The performance of memory-bound
programs can be improved due to balanced workload and shorter data access latency.

3. LOCALITY-AWARE WORK STEALING

In this section, we first give a general overview of the design of LAWS. Then, we present
the load-balanced task allocator, the adaptive DAG packer, and the triple-level work-
stealing scheduler in LAWS, respectively. Lastly, we analyze the time and space bounds
of programs in LAWS.

3.1. Design of LAWS

Figure 3 illustrates the processing flow of an iterative program in LAWS.
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Fig. 3. The processing flow of an iterative D&C program in LAWS.

In every iteration, the task allocator carefully allocates tasks to different sockets
to evenly distribute the dataset of the program to all the memory nodes and allocate
each task to the socket where the local memory node stores its data. In this situation,
the workload of different sockets is balanced in general since the time for processing
the same amount of data is similar among tasks in D&C programs. There may be
some slight load unbalance, which will be resolved by the triple-level work-stealing
scheduler.

For each socket, LAWS further packs the tasks allocated to it into a number of CF
subtrees based on runtime information collected in the first iteration, so that shared
cache can be better utilized. For example, in Figure 2(a), the subtree in each ellipse is a
CF subtree. In the first several iterations, the packer automatically adjusts the packing
of tasks to search for the optimal one that results in the minimum makespan. Because
the execution DAGs of different iterations are the same and the tasks in the same
position of the execution DAGs work on the same part of the dataset in D&C programs,
the optimal packing for the completed iterations is also optimal for future iterations.
Once the optimal packing is found, LAWS packs the tasks in all the following iterations
in a way suggested by the optimal packing.

LAWS adopts a triple-level work-stealing scheduler to schedule tasks in each iter-
ation. The tasks in the same CF subtrees are scheduled within the same socket. If a
socket completes all its CF subtrees, it steals a CF subtree from a randomly chosen
socket in order to resolve the possible slight load unbalance from the task allocator.

Because tasks in the same CF subtree often share some data, the shared data is only
read into the shared cache once but can be accessed by all the tasks of the same CF
subtree. In this way, the shared cache can be better utilized.

It is worth noting that LAWS does not need users to provide any information. All the
information needed is obtained automatically at runtime by LAWS.

3.2. Load-Balanced Task Allocator

The load-balanced task allocator is proposed based on an assumption that a task divides
its dataset into several parts evenly according to its branching degree. This assumption
is true in most of the current D&C programs.

The load-balanced task allocator should satisfy two main constraints when allocating
tasks to sockets. First, to balance workload, the size of data processed by tasks allocated
to each socket should be the same in every iteration. Second, to reduce shared cache
misses, the adjacent data should be stored in the same memory node since adjacent data
is processed by neighbor tasks that should be scheduled to the same socket. Traditional
work-stealing schedulers do not satisfy the two constraints due to the randomness of
stealing.

Suppose a program runs on an M-socket architecture. If its dataset is D, to balance
workload, the tasks allocated to each socket need to process 1

M of the whole dataset.
Note that, in the load-balanced task allocator, we do not need to know the real value
of D. We use D to represent the whole dataset for ease of description. Without loss of
generality, LAWS makes sure that the tasks allocated to the ith (1 ≤ i ≤ M) socket
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Fig. 4. Allocate the tasks to the two sockets of a dual-socket architecture.

should process the part of the whole dataset ranging from (i − 1) × D
M to i × D

M (denoted
by [(i − 1) × D

M , i × D
M )).

To achieve this objective, we need to find out which task processes which part of
the whole dataset. For a task α2 in Figure 4, to find out its part, LAWS analyzes the
structure of the dynamically generated execution DAG when α2 is spawned. Suppose
task α2 is task α1’s ith subtask and the branching degree of α1 is b. If α1 processes the
part of data [Ds, De), Equation (1) gives the part of data that α2 will process:[

(i − 1) × De − Ds

b
+ Ds, i × De − Ds

b
+ Ds

)
. (1)

Figure 4 gives an example of allocating the tasks to the two sockets of a dual-socket
architecture. The range of data beside each task is calculated according to Equation (1).

In the dual-socket architecture, the tasks that process the datasets [0, D
2 ) and

[ D
2 , D) should be allocated to the first socket and the second socket, respectively. For

instance, in Figure 4, because α2 is responsible for processing data range [ D
3 , D

2 ) that is
within [0, D

2 ), it should be allocated to the first socket. For the same reason, the slash-
shaded tasks are allocated to the first socket and the mesh-shaded tasks are allocated
to the second socket. If a task is allocated to a socket, all its child tasks are allocated to
the same socket. For example, all the tasks rooted with α2 will be allocated to the first
socket.

Because the task allocator allocates a task according to the range of its dataset, in
the following iterations, the tasks processing the same part of the whole dataset will be
allocated to the same socket. In this way, the tasks in all the iterations can find their
data in the local memory node. Therefore, the first problem discussed in Section 2 in
traditional work stealing will be solved.

3.3. Adaptive DAG Packer

After the tasks are allocated to appropriate sockets, each socket will still have to execute
a large number of tasks. The data involved in these tasks is often too large to fit into
the shared cache of a socket. To utilize the shared cache efficiently, LAWS further packs
the tasks allocated to each socket into CF subtrees that will be executed sequentially.

It is worth noting that the work-stealing scheduler and each task often generate some
intermediate data during the execution of a program. Therefore, the precise size of data
involved in each task is not known during the execution of a parallel program, even
if the size of the whole input data of the program is known. It is not trivial to further
pack tasks into CF subtrees lacking of precise data usage information. To solve this
problem, as described later, we use an auto-running approach based on online-collected
profiling information to search for the optimal packing.
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3.3.1. Decide Initial Packing. LAWS makes sure that the data accessed by all the socket-
local tasks in each CF subtree can be fully stored in the shared cache of a socket. Note
that the tasks in the same CF subtree (called socket-local tasks) are scheduled in the
same socket and the root task of a CF subtree is called a CF root task. In this way, the
data shared by tasks in the same CF subtree is read into the shared cache once but
can be shared and accessed by all the tasks.

To achieve the previous objective, we need to know the size of the shared cache used
by each task, which cannot be collected directly. To circumvent this problem, in the first
iteration, for any task α, LAWS collects the number of last-level private cache (e.g., L2)
misses caused by it. The size of the shared cache used by α can be estimated as the
number of the above cache misses times the cache line size (e.g., 64 bytes).

The approximation is reasonable for two reasons. First, the core c that executes α does
not execute other tasks concurrently. All the last-level private cache misses of c during
the execution are caused by α. Second, once a last-level private cache miss happens, c
accesses the shared cache or memory and will use a cache line in the shared cache.

For task α, we further calculate its SOSC, which represents the size of shared cache
used by all the tasks in the subtree rooted with α. The SOSC of α is calculated in a
bottom-up manner. Suppose α has m direct child tasks α1, . . . , αm and their SOSCs are
S1, . . . , Sm, respectively. The SOSC of α (denoted by Sα) can be calculated in Equa-
tion (2), where Mα equals the number of last-level cache misses caused by α itself times
the cache line size:

Sα = M α +
m∑

i=1

Si. (2)

Once all the tasks in the first iteration are completed, SOSCs of all the tasks are
calculated. Based on SOSCs of all the tasks, the DAG packer can group the tasks into
CF subtrees by identifying all the CF root tasks as follows.

Let Sc represent the shared cache size of a socket. Suppose α’s parent task is β, and
their SOSCs are Sα and Sβ , respectively. Then, if Sα ≤ Sc and Sβ > Sc, α is a CF root
task, which means all the data involved in the descendent tasks of α just fit into the
shared cache. If Sβ < Sc, α is a socket-local task.

Once all the CF root tasks are identified, the initial packing of tasks into CF subtrees
is determined.

3.3.2. Search-Optimal Packing. If Sα in Equation (2) precisely equals the real size of
shared cache used by the subtree rooted with α, the data involved in any CF subtree
would not exceed the capacity of a socket’s shared cache.

However, Sα is only a close approximation for the following reasons. Suppose tasks
α1 and α2 in the subtree rooted with α share some data. Although they are allocated to
the same socket by the load-balanced task allocator, they can be executed by different
cores. In this case, both α1 and α2 need to read the shared data to the last-level private
cache, and thus the size of the shared data is accumulated twice in Equation (2). On
the other hand, if some data stored in the shared cache has already been prefetched
into the private cache, it does not incur last-level private cache misses and the size
of the prefetched data is missed in Equation (2). The multiple accumulation of shared
data and the prefetching make Sα of Equation (2) slightly larger or smaller than the
actual size of shared cache used by the subtree rooted with α.

Therefore, the initial packing of tasks into CF subtrees is only a near-optimal packing.
LAWS further uses an auto-tuning approach to search the optimal packing. In the
approach, LAWS packs tasks into CF subtrees differently in different iterations, records
the execution time of each iteration, and chooses the packing that results in the shortest
makespan as the optimal packing.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 22, Publication date: July 2015.



22:8 Q. Chen and M. Guo

Fig. 5. Execution time of an iteration when the execution DAG is packed differently.

Figure 5 shows the execution time of an iteration when tasks are packed differently.
If CF subtrees are too large (contain too many socket-local tasks, point 1 in Figure 5),
the data accessed by tasks in each CF subtree cannot be fully stored in the shared
cache of a socket. On the other hand, if CF subtrees are too small (contain too few
socket-local tasks, point 3 in Figure 5), the data accessed by tasks in each CF subtree
is too small to fully utilize the shared cache.

Starting from the packing of the execution DAG into CF subtrees in Section 3.3.1,
LAWS first evaluates smaller CF subtrees. If smaller CF subtrees result in shorter
execution time, CF subtrees in the initial packing are too large. In this case, LAWS
evaluates smaller and smaller CF subtrees until the packing that results in the shortest
execution time (point 2 in Figure 5) is found. If smaller CF subtrees result in longer
execution time, CF subtrees in the initial packing are too small. In this case, LAWS
evaluates larger and larger CF subtrees instead until the optimal packing is found.

ALGORITHM 1: Algorithm for searching the optimal way to pack an execution DAG into
CF subtrees

Input: α1, ..., αm (CF root tasks in the initial packing)
Input: T (Execution time under the initial packing)
Output: Optimal CF root tasks

1 int Tn = 0, Tc = T ; // New & current makespan
2 int EvalLarger = 1; // Eval. larger subtrees?

3 while CF root tasks have child tasks do
4 Set child tasks of the current CF root tasks as the new CF root tasks;
5 Execute an iteration under the new packing;
6 Record the execution time Tn;
7 if Tn < Tc then // Point 1 in Figure 5
8 Tc = Tn; Save new CF root tasks; EvalLarger = 0;
9 else break

10 if EvalLarger == 1 then // Point 3 in Figure 5
11 Restore CF root tasks to {α1, ..., αm};
12 Tc = T ;
13 while CF root tasks have parent tasks do
14 Set parent tasks of the current CF root tasks as the new CF root tasks;
15 Execute an iteration under the new packing;
16 Record the execution time Tn;
17 if Tn > Tc then break;
18 else Tc = Tn; Save new CF root tasks

Algorithm 1 gives the auto-tuning algorithm for searching the optimal way to pack
the tasks allocated to a socket into CF subtrees. To generate larger or smaller CF
subtrees, we select the parent tasks or child tasks of the current CF root tasks as the
new CF root tasks.
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Fig. 6. Architecture of LAWS on an M-socket multicore architecture.

Since the initial packing is already near optimal, LAWS can find the optimal packing
in a few iterations. Theoretically, there is a small possibility that some CF subtrees
are too large while some other CF subtrees are too small. However, since there are a
great many CF subtrees in an execution DAG, it is too complex to tune the size of every
CF subtree independently in a small number of iterations at runtime. To simplify the
problem, we increase or decrease the size of all the CF subtrees at the same time in
Algorithm 1 of this article. Actually, according to the experiment in Section 6.3, our
current auto-tuning strategy in Algorithm 1 works efficiently.

The approach of packing DAGs into CF subtrees in LAWS partially originates from
CATS [Chen et al. 2012], which also packs the execution DAGs of parallel programs into
subtrees for optimizing shared cache usage. However, once a DAG is packed in CATS,
the packing cannot be adjusted even if the packing is not optimal. The experiment in
Section 6.3 shows that the performance of applications can be further improved with
the auto-tuning algorithm described in Algorithm 1. Worse, CATS did not consider the
NUMA memory system at all and suffered from a large amount of remote memory
accesses. We will further compare the performance of CATS and LAWS in detail in
Section 6.

3.4. Triple-Level Work-Stealing Scheduler

Figure 6 gives the architecture of LAWS on an M-socket multicore architecture and
illustrates the triple-level work-stealing policies in LAWS. In Figure 6, the main
memory is divided into M memory nodes and node Ni is the local memory node of
socket ρi. In each socket, core “0” is selected as the head core of the socket.

For each socket, LAWS creates a CF task pool to store CF root tasks allocated to
the socket and the tasks above the CF root tasks in the execution DAG. For each core,
LAWS creates a socket-local task pool to store socket-local tasks.

Suppose a core c in socket ρ is free; in different phases, it obtains new tasks in
different ways as follows.

In the first iteration of an iterative program (and the independent initialization
phase if the program has the phase), there is no socket-local task and all the tasks are
pushed into CF task pools since the tasks have not been packed into CF subtrees. In
the period, c can only obtain a new task from the CF task pool of ρ. Core c is not allowed
to steal a task from other sockets because the dataset of a task will be stored in the
wrong memory node if it is stolen in the first iteration due to the first touch strategy.

Starting from the second iteration, the tasks in each iteration have been packed into
CF subtrees. Adopting triple-level work stealing, free core c can steal a new task from
three levels: socket-local task pool of other cores in its socket ρ, CF task pool of ρ, and
CF task pools of other sockets.

More precisely, when c is free, it first tries to obtain a task from its own socket-local
task pool. If its own task pool is empty, c tries to steal a task from the socket-local task
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pools of other cores in ρ. If the task pools of all the cores in ρ are empty and c is the
head core of ρ, c tries to obtain a new CF root task from ρ’s CF task pool.

LAWS allows a socket to help other sockets execute their CF subtrees. For instance,
after all the tasks in the CF task pool of ρ are completed, the head core of ρ tries to
steal a task from the CF task pools of other sockets. Although ρ needs a longer time to
process the CF subtrees that are allocated to other sockets, the workload is balanced
and the performance of memory-bound programs can be improved.

In LAWS, cores in the same socket are not allowed to execute tasks in multiple CF
subtrees concurrently. This policy can avoid the situation that tasks in different CF
subtrees pollute the shared caches with different datasets. A socket is only allowed to
steal entire CF subtrees from other sockets for optimizing shared cache usage.

4. IMPLEMENTATION

We implement LAWS by modifying MIT Cilk, which is one of the earliest parallel
programming environments that implemented work stealing [Frigo et al. 1998]. It
extends C with three keywords: cilk, spawn, and sync to declare parallelism in the
program. cilk identifies a procedure as a Cilk procedure, spawn is used to generate a
child task, and sync waits for all the child tasks that are generated by the current task
to return. MIT Cilk consists of a compiler and a scheduler. Cilk compiler, named as
cilk2c, is a source-to-source translator that transforms a Cilk source into a C program.
Once a task is generated, a task frame is created to store the information needed by
the task and the scheduler.

Existing work-stealing schedulers adopt either a parent-first policy or a child-first
policy when generating new tasks. In the parent-first policy (called help-first policy in
Guo et al. [2009]), a core continually executes the parent task after spawning a new
task. In the child-first policy (called work-first policy in Blumofe et al. [1996]), a core
continually executes the spawned new task once the child is spawned. The parent-first
policy works better when the steals are frequent, while the child-first policy works
better when the steals are infrequent [Guo et al. 2009].

During the first iteration, LAWS adopts the parent-first policy to generate new tasks,
because it is difficult to collect the numbers of last-level private cache misses caused by
each task with the child-first policy. If a core is executing a task α, with the child-first
policy, it is very likely that the core will also execute some of α’s child tasks before α is
completed. In this case, the number of last-level cache misses caused by α itself, which
is used to calculate SOSCs of tasks, may not be collected correctly as it could include
the number of last-level private cache misses of α’s child tasks.

Starting from the second iteration, LAWS generates tasks above CF root tasks with
the parent-first policy since the steals are frequent in the beginning of each itera-
tion. LAWS generates socket-local tasks with the child-first policy since the steals are
infrequent in each CF subtree.

We have modified the cilk2c compiler to support both the parent-first and child-first
task-generating policy, while the original Cilk only supports the child-first policy. If a
task α is spawned in the first iteration, the task is spawned with the parent-first policy
and is pushed to the appropriate CF task pool based on the method in Section 3.2. If
α is spawned in the later iterations and it is a socket-local task, LAWS spawns α with
the child-first policy and pushes α into the socket-local task pool of the current core.
Otherwise, if α is a CF root task or a task above CF root tasks and it is allocated to
socket ρ, it is spawned with the parent-first policy and pushed into ρ’s CF task pool.

We use the “libpfm” library in Linux kernel to program hardware performance units
for collecting last-level private cache misses of each task. We have also modified the
work-stealing scheduler of MIT Cilk to implement the triple-level work-stealing algo-
rithm in Section 3.4.
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5. THEORETICAL ANALYSIS

In this subsection, we analyzed D&C programs that are the targeted programs of
the popular work-stealing environments, for example, TBB [Reinders 2007], Cilk++
[Leiserson 2009], and X10 [Lee and Palsberg 2010]. Generally speaking, a memory-
bound D&C program has three main features. First, only leaf tasks physically access
the data, while other tasks divide the dataset recursively into smaller pieces. Second,
each leaf task only processes a small part of the whole dataset of the program. Third,
the execution time of a leaf task is decided by its data access time.

5.1. Effectiveness Validation

Based on the three features, we prove that LAWS can improve the performance of
memory-bound D&C programs theoretically.

Consider a memory-bound program that runs on an M-socket architecture. Suppose
a leaf task α in its execution DAG is responsible for processing data of S bytes and
α still accesses B bytes of boundary data besides its own part of data. Let Vl and Vr
represent the speeds (bytes/cycle) of a core to access data from local memory nodes and
remote memory nodes, respectively. Needless to say, Vl > Vr.

If we adopt a traditional work-stealing scheduler to schedule the program, the prob-
ability that α can access all the data from the local memory node is 1

M . Therefore, the
cycles expected for α to access all the needed data in traditional work stealing (denoted
by TR) can be calculated in Equation (3):

TR = S + B
Vl

× 1
M

+ S + B
Vr

× M − 1
M

. (3)

If we adopt LAWS to schedule the program and benefit from the task allocator, α can
access its own part of data from the local memory node. As a consequence, the cycles
needed by α to access all the needed data in LAWS (denoted by TL) can be calculated
in Equation (4), because α also has a high chance to access its boundary data from the
local memory node:

TL ≤ S
Vl

+ B
Vr

. (4)

Deduced from Equations (3) and (4), we can get Equation (5):

TR − TL ≥
(

1
MVr

− 1
MVl

)
× [(M − 1)S − B]. (5)

In Equation (5), because Vr < Vl, we know that 1
MVr

− 1
MVl

> 0. Therefore, TR−TL > 0
if (M − 1)S − B > 0 is always true in almost all the D&C programs empirically since a
task’s own dataset (S) is always far larger than its boundary data (B). In summary, we
prove that α needs a shorter time to access all the needed data in LAWS.

Because leaf tasks need a shorter time to access their data in LAWS than in
traditional work-stealing schedulers, LAWS can always improve the performance of
memory-bound D&C programs even when the optimization on reducing shared cache
misses in LAWS is not taken into account.

5.2. Theoretical Time and Space Bounds

We model the execution of a parallel program as an execution DAG G. Each node in G
represents a unit task, and each edge represents a dependence between tasks. Suppose
an m-socket n-core computer is executing the execution DAG G. For G on the m-socket n-
core computer, Table I lists the parameters that are used to analyze G’s time and space
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Table I. Parameters Used in the Bound Analysis

Parameters Description
Gγ The subtree rooted at task γ in G
m Number of sockets
n Number of cores per socket
c Number of overall cores (m× n)

T1(G) The total number of nodes in G
T∞(G) The critical-path length of G
Tc(G) Makespan of G on a c-core computer

Tc(G f ree) Makespan of the free tier
Tc(Glocal) Makespan of the socket-local tier

Sc(G) Space used by G on a c-core computer

bounds in LAWS. Our following discussion is based on the time and space bounds of
work stealing proved in Blumofe [1995].

5.2.1. Time Bound Analysis. For G, the work T1(G) is the number of nodes in G, and the
critical-path length T∞(G) is the number of nodes along the longest path from the start
node to the end node.

In LAWS, all the CF root tasks divide an execution DAG into two tiers. The tasks
above the CF root tasks consist of a free tier, in which the tasks can be scheduled to
any core; the socket-local tasks consist of a socket-local tier, in which the tasks can
only be scheduled among cores in the same socket. Given a CF root task γ , we use
the notation Gγ to represent the subtree rooted with γ , which includes the set of tasks
that are generated from γ . Therefore, the total work of G is divided as in Equation (6),
where G f ree represents the subgraph of the free tier and k is the total number of CF
root tasks:

T1(G) = T1(G f ree) +
k∑

i=1

T1(Gγi ). (6)

The execution time of G in an m-socket n-core architecture, Tc(G), can be divided into
two parts: the execution time of the free tier Tc(G f ree) and the execution time of the
socket-local tier Tc(Glocal). Even though the two parts can be overlapped, we use their
sum to get the worst bound of Tc(G) as shown in Equation (7):

Tc(G) = Tc(G f ree) + Tc(Glocal). (7)

Since the free tier is executed by m head cores using work stealing, according to the
proof of Blumofe [1995], the execution time of G f ree is bounded by Equation (8):

Tc(G f ree) ≤ T1(G f ree)
m

+ T∞(G f ree). (8)

For the execution of the socket-local tier, each Gγi is executed by ncores within a socket
using work stealing. Therefore, the execution time of Gγi is bounded by Equation (9):

Tn(Gγi ) ≤ T1(Gγi )
n

+ T∞(Gγi ). (9)

Since k CF root tasks are scheduled among m sockets using work stealing, the exe-
cution time of the socket-local tier is bounded by Equation (10):

Tc(Glocal) ≤
∑k

i=1 Tn(Gγi )
m

+ T∞(Glocal). (10)
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Deducing from Equations (9) and (10), we can get Equation (11):

Tc(Glocal) ≤
∑k

i=1 T1(Gγi )
m× n

+
∑k

i=1 T∞(Gγi )
m

+ T∞(Glocal). (11)

From Equations (7), (8), and (11), Tc(G) can be bounded as in Equation (12):

Tc(G) ≤T1(G f ree)
m

+ T∞(G f ree) +
∑k

i=1 T1(Gγi )
m× n

+
∑k

i=1 T∞(Gγi )
m

+ T∞(Glocal). (12)

After further tidying Equation (12) up, we have Equation (13):

Tc(G) ≤T1(G f ree)
m

+ T1(Glocal)
m× n

+
∑k

i=1 T∞(Gγi )
m

+ T∞(G). (13)

Our experiments show that the execution time of the free tier is often less than 5%
of the overall execution time. Therefore, the time bound of Equation (13) is very close
to the traditional work-stealing schedulers such as MIT Cilk for D&C applications.

5.2.2. Space Bound Analysis. According to the proof of Blumofe [1995], the space used by
G in an m-socket n-core architecture is bounded by Equation (14), where S1(G) denotes
the space used by the serial execution of the program:

Sc(G) ≤ m× n × S1(G). (14)

Equation (14) assumes that there are at most m×nworkers expanding the DAG using
the child-first policy. However, since LAWS uses the parent-first policy to expand the
free tier quickly, each of the CF root tasks may use S1 space in the worst case. Therefore,
the space used by the LAWS scheduler Sm×n(G) can be bounded as in Equation (15):

Sc(G) ≤ max{k × S1(G), m× n × S1(G)}. (15)

6. EVALUATION

In this section, we evaluate the performance of LAWS. In the beginning, we introduce
the two experimental hardware platforms used in the experiment. Then, on each ex-
perimental platform, we present the experimental results respectively. More precisely,
we present the performance of memory-bound benchmarks in LAWS, the effectiveness
of the adaptive DAG packer, and the scalability and the overhead of LAWS.

6.1. Experimental Platforms

We use an Intel server and an AMD server to evaluate the performance of LAWS.
Table II lists the detailed hardware configurations. In the Intel server, Intel hyper-
threading (HT) technology that delivers two processing threads per physical core is
disabled.

We compare the performance of LAWS with the performance of Cilk [Blumofe et al.
1996] and CATS [Chen et al. 2012]. Cilk uses the pure child-first policy to spawn and
schedule tasks. Similar to LAWS, CATS also packs the execution DAG of a parallel
program into subtrees to reduce shared cache misses in MSMC architectures. Once an
execution DAG is packed in CATS, the packing cannot be adjusted at runtime even if
the packing is not optimal. In addition, CATS did not consider the underlying NUMA
memory system.

For fairness in comparison, we also implement CATS by modifying Cilk and we have
improved CATS so that it also allocates the data evenly to all the memory nodes in the
first iteration as LAWS does. The Cilk programs run with CATS and LAWS without any
modification. In our experiment, the number of workers (i.e., threads) launched in Cilk,
CATS, and LAWS is equal to the number of physical cores in the hardware platform.
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Table II. Configurations of the Experimental Platforms

CPU AMD Opteron 8380
Num of Sockets 4

AMD Cores per socket 4
Server L2 Cache (per core) 512KB

L3 Cache (per socket) 6MB
DRAM 16GB
Operating System Linux 3.2.0-14

CPU Intel Xeon X7560
Num of Sockets 4

Intel Cores per socket 8 cores (16 HW threads)
Server L2 Cache (per core) 2MB

L3 Cache (per socket) 24MB
DRAM 64GB
Operating System Linux 3.13.0-13

Table III. Benchmarks Used in the Experiments

Name Bound Type Description
Heat/Heat-ir Memory 2D heat distribution
SOR/SOR-ir Memory Successive overrelaxation
GE/GE-ir Memory Gaussian elimination algorithm
9P/9P-ir Memory 2D 9-point stencil computing
6P/6P-ir Memory 3D 6-point stencil computing
25P/25P-ir Memory 3D 25-point stencil computing
Mandelbrot CPU Calculate Mandelbrot set
Queens(15) CPU N-queens problem
FFT CPU Fast Fourier transform
GA CPU Island Model of Genetic Algorithm
Knapsack CPU 0-1 knapsack problem

Furthermore, to avoid any performance variation due to OS-level thread scheduling,
we pin each worker with an individual hardware core.

To evaluate the performance of LAWS in different scenarios, we use benchmarks
listed in Table III that have both regular execution DAGs and irregular execution
DAGs in the experiment. Since there are no standardized large-scale benchmarks
available for work-stealing schedulers so far, most of the benchmarks are examples in
the MIT Cilk package. We port the other benchmarks in the same way the examples of
MIT Cilk are developed. The benchmarks we used are the same as in previous papers
[Blumofe et al. 1996; Chen et al. 2012; Guo et al. 2010]. According to our experiment
in Section 6.4, for current benchmarks, the larger the makespan, the better LAWS
performs, which indicates the potential benefit of LAWS for large-scale benchmarks.

Heat-ir, GE-ir, SOR-ir, 9P-ir, 6P-ir, and 25P-ir implement the same algorithm as
their counterparts, respectively, except their execution DAGs are irregular. We create
the programs with irregular execution DAGs in the same way as suggested in Chen
et al. [2012]. If all the nodes (except the leaf tasks) in the DAG have the same branching
degrees, the execution DAG is regular. All benchmarks are compiled with “-O2.” For
each test, every benchmark is run 10 times and the average execution time is reported
as the result.

6.2. Performance of LAWS

Figure 7 shows the performance of memory-intensive benchmarks in Cilk, CATS, and
LAWS on the AMD server and Intel server.
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Fig. 7. The performance of memory-bound benchmarks in Cilk, CATS, and LAWS.

On the AMD server, for Heat, Heat-ir, SOR, SOR-ir, 9P, and 9P-ir, the input data
used is an 8096 × 1024 matrix. For GE and GE-ir, the input data used is a 2048 × 2048
matrix due to algorithm constraint. For 6P, 6P-ir, 25P, and 25P-ir, the input data is
an 8096 × 64 × 64 3D matrix. On the Intel server, for Heat, Heat-ir, SOR, SOR-ir, 9P,
and 9P-ir, the input data used is an 8096 × 4096 matrix. For GE and GE-ir, the input
data used is an 8192×8192 matrix due to algorithm constraint. For 6P, 6P-ir, 25P, and
25P-ir, the input data is an 8096 × 128 × 128 3D matrix.

As we can see from Figure 7, on the AMD server, LAWS can significantly improve the
performance of benchmarks compared with Cilk, and the performance improvement
ranges from 23.5% to 54.2%. CATS can also improve the performance of benchmarks
up to 19.6% compared with Cilk. On the Intel server, LAWS can also significantly
improve the performance of benchmarks compared with Cilk, and the performance
improvement ranges from 12.5% to 48.6%. CATS can also improve the performance of
benchmarks up to 28.1% compared with Cilk.

In MSMC architectures, the performance of a memory-bound application is decided
by the straggler socket that seldom accesses data from its local memory node because
the tasks in the straggler socket need the longest time to access their data. During the
execution of a memory-bound application, any socket in the MSMC architecture can be
the straggler socket.

To explain why LAWS outperforms both Cilk and CATS for memory-bound ap-
plications on both the AMD server and Intel server, we also collect the shared
cache misses (Event “LLC_MISSES”) and the local memory accesses (Event
“MEM_UNCORE_RETIRED:LOCAL_DRAM”) of the straggler socket using the
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Table IV. Shared Cache Misses and Local Memory Accesses of the Straggler Socket

Regular
Benches

Heat SOR GE 6P 9P 25P

AMD
Server

L3
Cache
Misses

Cilk 5.72E8 1.15E9 2.20E8 2.52E9 5.73E8 2.48E9
CATS 5.31E8 1.07E9 1.47E8 2.42E9 5.39E8 2.38E9
LAWS 4.62E8 1.01E9 2.91E7 2.38E9 5.05E8 2.34E9

Local
Memory
Accesses

Cilk 1.61E7 3.28E7 6.1E6 8.15E7 1.72E7 8.32E7
CATS 2.13E7 4.14E7 4.5E6 1.01E8 2.19E7 9.06E7
LAWS 2.58E7 5.71E7 6.5E5 1.519E8 2.72E7 1.25E8

Intel
Server

L3
Cache
Misses

Cilk 1.19E9 2.39E9 7.82E8 3.48E9 9.41E8 2.31E9
CATS 1.1E9 2.17E9 7.68E8 3.11E9 9.27E9 2.24E9
LAWS 9.96E8 2.01E9 4.96E8 3.07E9 9.23E8 2.22E9

Local
Memory
Accesses

Cilk 9062 79239 112344 110218 7576 269769
CATS 17105 72522 133341 106469 4885 201611
LAWS 27563 99510 145126 131165 27643 373682

Regular
Benches

Heat-ir SOR-ir GE-ir 6P-ir 9P-ir 25P-ir

AMD
Server

L3
Cache
Misses

Cilk 5.74E8 1.01E9 2.30E8 2.54E9 5.77E8 2.48E9
CATS 5.42E8 8.86E8 1.13E8 2.36E9 4.69E8 2.37E9
LAWS 5.05E8 8.76E8 2.87E7 2.34E9 4.46E8 2.35E9

Local
Memory
Accesses

Cilk 1.72E7 2.9E7 5.64E6 7.44E7 1.53E7 8.15E7
CATS 1.86E7 3.04E7 3.58E6 9.73E7 1.93E7 8.58E7
LAWS 2.75E7 3.93E7 4.7E5 1.347E8 2.48E7 1.18E8

Intel
Server

L3
Cache
Misses

Cilk 1.17E9 2.43E9 8.35E8 2.85E9 9.42E8 2.35E9
CATS 1.05E9 2.19E9 8.16E8 2.78E9 9.41E9 2.27E9
LAWS 9.9E8 1.97E9 4.97E8 2.38E9 9.33E8 2.23E9

Local
Memory
Accesses

Cilk 8444 71723 121324 86822 4142 266848
CATS 10309 79019 141726 92804 5250 248204
LAWS 24569 102833 147161 125722 19406 381267

“libpfm” library in Linux. For each benchmark, Table IV lists its shared cache misses
and the local memory accesses of the straggler socket in Cilk, CATS, and LAWS.

As can be observed from Table IV, we can find that the shared cache (L3) misses
are reduced and the local memory accesses of the straggler socket are prominently
increased in LAWS compared with Cilk and CATS. Since LAWS schedules tasks to the
sockets where the local memory nodes store their data, the tasks can access their data
from the local memory node and thus the local memory accesses have been significantly
increased. Furthermore, since LAWS packs tasks allocated to each socket into CF
subtrees to preserve shared data in the shared cache, the shared cache misses are also
reduced.

Only for GE and GE-ir on the AMD server are the local memory accesses of the
straggler socket not increased in LAWS. This is because their input data is small
enough to be put into the shared cache directly. In this situation, most tasks can
access the data from the shared cache directly and do not need to access the main
memory anymore. Because the L3 cache misses are prominently reduced, LAWS can
still significantly improve the performance of GE and GE-ir compared to Cilk and
CATS.

The performance improvement of the benchmarks in CATS is due to the reduced
shared cache misses. However, since CATS cannot divide an execution DAG optimally
like LAWS, it still has more shared cache misses than LAWS, as shown in Table IV.

Careful readers may find that CATS performs much worse here than in the original
paper [Chen et al. 2012]. While CATS can only improve the performance of benchmarks
up to 19.6% here, it can improve their performance up to 74.4% in Chen et al. [2012].
The reduction of performance improvement of CATS comes from the much larger input
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Fig. 8. Execution time of each iteration in all the benchmarks in LAWS on the AMD server and Intel server.

dataset used in this article. This result matches with the findings in Chen et al. [2012].
That is, with the increasing of the size of the input dataset, the percentage of shared
data among tasks decreases and the effectiveness of CATS degrades in consequence.

6.3. Effectiveness of the Adaptive DAG Packer

To evaluate the effectiveness of the adaptive DAG packer in LAWS, we compare the
performance of LAWS with LAWS-NC, a scheduler that only schedules each task to
the socket where the memory node stores its part of data but does not further pack the
tasks into CF subtrees.

From Figure 7, we find that LAWS-NC performs better than Cilk and CATS. This
is because most tasks in LAWS-NC can access their data from local memory nodes.
However, since tasks are not packed into CF subtrees for optimizing shared cache
in LAWS-NC, LAWS-NC incurs more shared cache misses and performs worse than
LAWS.

To evaluate the auto-tuning approach (Algorithm 1) proposed to optimally pack tasks
into CF subtrees, Figure 8 gives the execution time of 200 iterations of all the bench-
marks with irregular execution DAGs in LAWS on the AMD server and the execution
time of 200 iterations of all the benchmarks with regular execution DAGs in LAWS
on the Intel server. All the other benchmarks give a similar result. From the figure,
we find that the execution time of an iteration in all the benchmarks is significantly
reduced after the optimal packing is found in several iterations.

In summary, the adaptive DAG packer in LAWS is effective and the auto-tuning
algorithm for searching the optimal packing of tasks in Algorithm 1 also works fine.

6.4. Scalability of LAWS

To evaluate the scalability of LAWS, we compare the performance of benchmarks with
different input data sizes in Cilk, CATS, and LAWS.

During the execution of all the benchmarks, every task divides its dataset into several
parts by rows to generate child tasks unless the task meets the cutoff point (i.e., the
rows of a leaf task, and eight rows are used in the experiment). Since the dataset size
of the leaf tasks affects the measurement of scalability, we ensure that the dataset size
of the leaf tasks is constant by using a constant cutoff point for the leaf tasks. On the
AMD server, if the input data is an x × y 2D matrix, we set y = 1,024 for all the input
2D matrix. If the input data is an x × y × z 3D matrix, we set y = 64 and z = 64 for all
the input 3D matrix. On the Intel server, if the input data is an x × y 2D matrix, we
set y = 4,096 for all the input 2D matrix. If the input data is an x × y × z 3D matrix,
we set y = 128 and z = 128 for all the input 3D matrix.
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Fig. 9. Performance of Heat-ir and 6P with different input data sizes on the AMD server.

Fig. 10. Performance of SOR-ir and 9P with different input data sizes on the Intel server.

We only adjust the x of the input matrices in the experiment. In this way, we can
measure the scalability of LAWS without the impact of the granularity of the leaf tasks.
In all the following figures, the x-axis represents the x of the input matrixes.

We use Heat-ir and 6P on the AMD server and SOR-ir and 9P on the Intel server
as benchmarks to evaluate the scalability of CATS in scenarios with applications with
a regular execution DAG and an irregular execution DAG. All the other benchmarks
have similar results. We omit them here due to the limited space.

Figure 9 and Figure 10 show the performance of benchmarks with different input
data sizes in Cilk, CATS, and LAWS. We can find that Heat-ir, 6P, SOR-ir, and 9P
achieve the best performance in LAWS for all input data sizes. When the input data
size is small (i.e., x = 1k), LAWS reduces 30.4% execution time of Heat-ir and reduces
36.6% execution time of 6P compared with Cilk on the AMD server. When the input
data size is large (i.e., x = 16k), LAWS reduces 43.6% execution time of Heat-ir and
reduces 45.8% execution time of 6P compared with Cilk on the AMD server. When the
input data size is small (i.e., x = 2k), LAWS reduces 52.5% execution time of SOR-ir
and reduces 34.9% execution time of 9P compared with Cilk on the Intel server. When
the input data size is large (i.e., x = 32k), LAWS reduces 42.7% execution time of
SOR-ir and reduces 24.7% execution time of 9P compared with Cilk on the Intel server.

In Figure 9 and Figure 10, the execution time of benchmarks in Cilk, CATS, and
LAWS increases linearly with the increasing of their input data sizes. Since their
execution time increases much slower in LAWS than in Cilk and CATS, for all the input
data sizes, LAWS can always reduce the execution time of memory-bound applications.
In summary, LAWS is scalable in scheduling both regular execution DAGs and irregular
execution DAGs.
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Fig. 11. L3 cache misses and local memory accesses of the straggler socket in Heat-ir and 6P on AMD server.

Corresponding to Figure 9 and Figure 10, Figure 11 and Figure 12 show the L3
cache misses and the local memory accesses of the straggler socket in executing Heat-
ir, 6P, SOR-ir, and 9P with different input data sizes. Observed from the figure, we can
find that the shared cache misses are reduced, while the local memory accesses of the
straggler socket are increased in LAWS. When the input data size is small (i.e., x = 1k),
LAWS can reduce 82% L3 cache misses and increase 132.1% local memory accesses
compared with Cilk. When the input data size is large (i.e., x = 16k), LAWS can reduce
17.3% L3 cache misses and increase 70.6% local memory accesses compared with Cilk.

Figure 11 and Figure 12 further explain why LAWS performs much better than
CATS. Since LAWS can optimally pack tasks into CF subtrees through auto-tuning,
it can reduce more L3 cache misses of memory-bound benchmarks than CATS. In
addition, since LAWS can schedule a task to the socket where the local memory node
stores its data, it significantly increases local memory accesses. The two key advantages
of LAWS result in the better performance of LAWS.

Careful readers may observe from Figure 12 that LAWS failed to reduce the last-level
shared cache misses for 9P on the Intel server. However, because LAWS significantly
improved the local memory access, 9P still performs much better than Cilk and CATS.

As we all know, if the input data of a memory-bound program is small, the shared
cache is big enough to store the input data. In this case, if the shared cache misses are
greatly reduced, the performance of memory-bound programs can be improved. If the
input data is large, the performance bottleneck of the program is the time of reading
data from main memory. Therefore, CATS performs efficiently when the input data
size is small but performs poorly when the input data size is large. On the contrary,
because LAWS can increase more local memory accesses when the input data size gets
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Fig. 12. L3 cache misses and local memory accesses of the straggler socket in SOR-ir and 9P on the Intel
server.

larger, it performs even better when the input data is large. This feature of LAWS is
promising as the data size of a problem is becoming larger and larger.

6.5. Overhead of LAWS

Because LAWS aims to increase local memory accesses and reduce shared cache misses,
LAWS is neutral for CPU-bound programs. Based on the runtime information, if LAWS
finds that a program is CPU bound, LAWS schedules tasks of the program in traditional
work stealing. Another option is to use techniques in the WATS [Chen et al. 2012;
Chen and Guo 2014] scheduler to improve the performance of CPU-bound programs
by balancing workloads among cores.

Figure 13 shows the performance of several CPU-bound applications in Cilk, CATS,
and LAWS on the AMD server and Intel server. The applications in this experiment
are examples in the Cilk package. By comparing the performance of CPU-bound appli-
cations in Cilk, CATS, and LAWS, we can find the extra overhead of LAWS.

As can be observed from Figure 13, we see that the extra overhead of LAWS is
negligible (less than 3% of the overall execution time) compared with Cilk and CATS.
The extra overhead of LAWS mainly comes from the overhead of distributing data to
all the memory nodes evenly and from the profiling overhead in the first iteration of a
parallel program, when LAWS can determine if the program is CPU bound or memory
bound based on the profiling information.

6.6. Discussion

LAWS assumes that the execution DAGs of different iterations in an iterative program
are the same. The assumption is true for most programs. Even if a program does not
satisfy this assumption, LAWS can still ensure that every task can access its data
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Fig. 13. Performance of CPU-bound benchmarks in Cilk, CATS, and LAWS on the AMD server and Intel
server.

from the local memory node since the load-balanced task allocator allocates tasks
to sockets in each iteration independently according to their dataset in the current
iteration. However, in this situation, the optimization on shared cache utilization is
not applicable since the optimal packing for the past iterations may not be optimal
for future iterations due to the change of the execution DAG. In summary, even if
this assumption is not satisfied, LAWS can improve the performance of memory-bound
programs due to the increased local memory accesses.

As LAWS is neutral for CPU-bound programs, LAWS decides at runtime if an ap-
plication is CPU bound based on profiled information. When LAWS collects cache
misses in the first iteration, it also collects the the number of retired instructions of
the task through a performance-monitoring counter. If the cache miss intensity (i.e.,
cache misses per instruction) of a task is smaller than a given threshold, the task is
labeled as CPU bound. If most tasks of an application are CPU bound, the application
is regarded as CPU bound by LAWS.

7. RELATED WORK

Many works have been done to improve the performance [Guo et al. 2010; Chen et al.
2012] and energy efficiency [Sridharan et al. 2013] of work stealing on various hard-
wares. Related to LAWS, there are two main approaches for improving the performance
of memory-intensive programs in MSMC architectures: increasing local memory ac-
cesses and reducing shared cache misses.

Many works have been done to improve the performance of a particular application
[Shaheen and Strzodka 2012; Yang et al. 2011; Castro et al. 2009] or general applica-
tions [Vikranth et al. 2013; Pilla et al. 2011; Muddukrishna et al. 2013] by increasing
local memory accesses in the NUMA memory system (i.e., the first approach). nuCATS
and nuCORALS [Shaheen and Strzodka 2012] improved the performance of iterative
stencil computations for the NUMA memory system by optimizing temporal blocking
and tiling. While nuCATS and nuCORALS focused on the tiling scheme for stencil
programs, through online scheduling, LAWS can improve the performance of iterative
stencil programs without changing the tiling scheme. A dynamic work-stealing strat-
egy [Vikranth et al. 2013] is proposed for on-chip NUMA multicore processors based
on the topology of underlying hardware. NUMALB [Pilla et al. 2011], a NUMA-aware
load balancer, is proposed to improve parallel system performance based on Charm++
[Kale and Krishnan 1993]. NUMALB balances the workload while avoiding unneces-
sary migrations and reducing across-core communication. While these schedulers only
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increase local memory accesses, LAWS can further reduce the shared cache misses and
performs better for memory-intensive programs.

With the second approach, several work-stealing schedulers [Acar et al. 2002; Guo
et al. 2010; Quintin and Wagner 2010; Gautier et al. 2013a] have been proposed to tackle
the cache-unfriendly problem in various parallel architectures (e.g., multi-CPU and
multi-GPU architectures [Gautier et al. 2013a]). From a theoretical perspective, a the-
oretical bound on the number of cache misses for random work stealing was presented
and a locality-guided work-stealing algorithm was implemented on a single-socket
SMP [Acar et al. 2002]. The effects of false sharing in algorithms using traditional
work stealing are also analyzed [Cole and Ramachandran 2013]. In CONTROLLED-
PDF [Blelloch et al. 2008], which is proposed for single-socket architectures, the DAG
of a program is divided into L2-supernodes that are similar to CF subtrees in LAWS.
By executing L2-supernodes sequentially, the cache misses can be reduced. However,
the L2-supernodes are determined based on the space complexity function provided by
users and cannot be adjusted at runtime even if the DAG is not divided appropriately.
Furthermore, the scheduler does not consider the underlaying NUMA memory system
at all.

In SLAW [Guo et al. 2010], workers are grouped into places and a worker is only
allowed to steal tasks from other workers in the same place. The scheduling policy is
similar to the triple-level work-stealing policy in LAWS. However, SLAW only consid-
ered the stealing policy and did not consider the NUMA memory systems and did not
pack tasks for optimizing shared cache usage as LAWS does. Similar to LAWS, HWS
[Quintin and Wagner 2010] and CAB [Chen et al. 2011] used a rigid boundary level to
divide tasks into global tasks and local tasks (similar to socket-local tasks in LAWS).
By scheduling local tasks within the same socket, the shared cache misses can be re-
duced. Users have to give the level manually in HWS or provide a number of command
line arguments for the scheduler to calculate the boundary level in CAB. To relieve this
burden, CATS [Chen et al. 2012] was proposed to divide an execution DAG based on
the information collected online, without extra user-provided information. While the
adaptive DAG packer in LAWS can find the optimal packing of tasks into CF subtrees
through auto-tuning, all the previously mentioned schedulers cannot optimally parti-
tion an execution DAG. In addition, they did not consider the NUMA memory system.
Our experiment results also show that LAWS significantly outperforms CATS.

Based on METIS [Karypis and Kumar 1998], an offline graph-based locality analysis
framework [Yoo et al. 2013] is proposed to analyze the inherent locality patterns of
workloads. Leveraging the analysis results, tasks are grouped and mapped according to
cache hierarchy through recursive scheduling. Because the framework relied on offline
analysis, a program has to be executed at least one time before it can achieve good
performance in the framework. On the contrary, LAWS can improve the performance
of programs online without any prerequisite offline analysis, because it can pack tasks
into CF subtrees based on online-collected information and auto-tuning.

8. CONCLUSIONS

Traditional work-stealing schedulers suffer from shared cache pollution and the small
number of local memory accesses in MSMC architectures with the NUMA-based mem-
ory system. To solve these two problems, we have proposed the LAWS scheduler,
which consists of a load-balanced task allocator, an adaptive DAG packer, and a
triple-level work-stealing scheduler. The load-balanced task allocator evenly dis-
tributes the dataset of a program to all the memory nodes and allocates a task to
the socket where the local memory node stores its data for increasing local memory
accesses. Based on auto-tuning, for each socket, the adaptive DAG packer can opti-
mally pack the allocated tasks into CF subtrees to optimize shared cache usage. The
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triple-level work-stealing scheduler schedules tasks in the same CF subtree among
cores in the same socket and makes sure that each socket executes its CF subtrees
sequentially. Experimental results show that LAWS can improve the performance
of memory-bound programs up to 54.2% on the AMD-based experimental platform
and up to 48.6% on the Intel-based experimental platform compared with traditional
work-stealing schedulers. Furthermore, the extra overhead of LAWS for CPU-intensive
applications is negligible.
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