
Synergy of Dynamic Frequency Scaling and
Demotion on DRAM Power Management:

Models and Optimizations
Yanchao Lu, Bingsheng He, Xueyan Tang, Senior Member, IEEE, and

Minyi Guo, Senior Member, IEEE

Abstract—Main memory (or DRAM) is one of the most significant components to the computer system’s performance and energy

consumption. Dynamic frequency scaling (DFS) and DRAM low-power states (Demotion) are two main-stream techniques for DRAM

power management. DFS reduces the operation frequency of memory channels and DRAM devices when the memory bandwidth is

under-utilized, whereas demotion transits individual memory ranks to low-power states during long idle periods. Despite that there

have been fruitful research work for DFS and demotion separately, little attention has been paid to the synergy between these two

techniques. To bridge this gap, this paper conducts a comprehensive study on the synergy between DFS and demotion. In particular,

we leverage queuing theory to develop analytical models for the energy consumption and performance of DRAM systems with DFS

and demotion. These models provide valuable insights into the synergy between DFS and demotion. We further attempt to minimize

the energy consumption by considering both DFS and demotion while keeping a pre-defined performance penalty budget. To reduce

the optimization complexity, we develop simple yet effective heuristics to search near-optimum DFS-demotion configurations. We

experimentally compare our design with other state-of-the-art DRAM energy saving policies using detailed simulations of a large

set of workloads. Experimental results show the accuracy of our analytical models and the effectiveness of our optimizations.

Index Terms—Demotion, dynamic frequency scaling, energy consumption, main memory systems, in-memory processing

Ç

1 INTRODUCTION

ENERGY consumption has become a major factor in the
design and implementation of modern computer sys-

tems. In many systems, mainmemory (or DRAM) is a critical
component for the performance and energy consumption.
As processors have moved to a multi-/many-core era, more
applications run simultaneously with their working sets in
the main memory. Emerging applications such as in-mem-
ory data analytics [1] and RAMCloud [2] boost the memory
capacity of modern computing systems. Such hunger for
mainmemory of larger capacity makes the amount of energy
consumed bymainmemory approaching or even surpassing
that consumed by processors in many servers [3], [4].
For example, it has been reported that main memory con-
tributes to asmuch as 40-46 percent of total energy consump-
tion in server applications [5], [6]. For these reasons,
this paper investigates whether and how we can leverage
DRAM power management techniques to reduce the energy
consumption of mainmemory.

There have been various energy saving techniques
on exploiting the power management capability of main

memory. Two important and common techniques are
DRAM low-power states (Demotion) [7], [8], [9], [10] and
dynamic frequency scaling (DFS) [11], [12]. The common
theme of demotions is to transit individual memory ranks
to low-power states during (long) idle periods, whereas
DFS dynamically scales the operation frequency of
memory channels and DRAM devices to make the active
memory power proportional to memory loads. DFS can
reduce the memory power when the memory bandwidth
is under-utilized.

Despite that there have been fruitful research studies for
DFS and demotion separately, little attention has been paid
to the synergy between those two techniques. Actually,
there is a complex interplay between DFS and demotion in
DRAM power management. On the one hand, a lower
memory frequency in DFS leads to lower background
power consumptions for memory devices. However, this
also results in a longer application execution time and
increases the energy consumption of a memory access.
Moreover, it usually reduces the length of memory idle
periods, and thus degrades the effectiveness of demotions.
On the other hand, operating memory devices at a higher
frequency reduces the memory access energy and creates
more opportunities for demotions, at the cost of increased
background power consumptions and state transition over-
heads (i.e., the resynchronization energy and delay). We
find that there is a tradeoff between DFS and demotion in
optimizing memory energy consumption. Fig. 1 shows the
results of two state-of-the-art demotion (RAMZzz [10]) and
DFS (MemScale [12]) approaches with different optimiza-
tion goals (The detailed experimental setup can be found
in Section 5). We study two common optimization goals,

� Y. Lu and M. Guo are with the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: chzblych@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn.

� B. He and X. Tang are with the School of Computer Engineering, Nanyang
Technological University, Nanyang Ave, Singapore 639798.
E-mail: {bshe, asxytang}@ntu.edu.sg.

Manuscript received 3 Dec. 2013; revised 28 Aug. 2014; accepted 10 Sept.
2014. Date of publication 25 Sept. 2014; date of current version 10 July 2015.
Recommended for acceptance by C.-Z. Xu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2360534

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015 2367

0018-9340� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

i.e., energy consumption and energy-delay2 (ED2). All val-
ues are normalized to those of RAMZzz. Demotion is more
efficient for some cases on workloads, optimization goals,
and performance penalty budgets, whereas DFS wins in
other cases. This interplay motivates us to study the synergy
between DFS and demotion, and to find the suitable DFS-
demotion configuration for maximizing energy saving.

In this paper, we develop performance models and
optimization techniques for exploiting the synergy
between DFS and demotion. This is in contrast with the
previous studies on DRAM power management, which
focused on either DFS [11], [12] or demotion only [10],
[13], [14], [15]. We start by developing queuing theory-
based analytical models for the energy consumption and
performance of DRAM systems with DFS and demotion.
The models provide valuable insights into the synergy
between DFS and demotion. We show that: (1) DFS and
demotion have their own energy-efficient scopes on dif-
ferent workloads and DRAM architectures; (2) the opti-
mum energy consumption depends nontrivially on the
DFS-demotion configurations, which vary with different
workloads and DRAM architectures.

Through modeling, we find that a naive approach of
combining DFS and demotion can be far from optimal in
practice. For example, Deng et al. [12] combined a single
low-power state (fast-exit powerdown) with their DFS,
which produces only marginal energy saving in their
experiments. A dynamic and adaptive approach is more
suitable than a static combination. Therefore, we propose to
adjust the DFS-demotion configuration periodically. In each
period, our cost model can predict the energy consumption
and performance of a DFS-demotion configuration. How-
ever, a brute-force search over the entire DFS-demotion
space can be too costly. Thus, we develop simple yet effec-
tive heuristic mechanisms to reduce the runtime overhead.
Our models and optimizations are able to work for different
goals such as energy consumption and ED2. In this paper,
we focus on the optimization goal of minimizing the energy
consumption while keeping the performance penalty within
a given budget.

We evaluate our design using detailed simulations of a
large set of workloads. We use the SPEC 2006 benchmark to
evaluate our approach in comparison with the state-of-the-art
approach using demotion or DFS techniques only [10], [12] as
well as the static combination of DFS and demotion [12]. The
experimental results show that our approach achieves an
average energy consumption reduction of 11-70 percent over
the demotion-only approach, 20-67 percent over the DFS-only
approach, 22-54 percent over the static combination of DFS

and demotion. Moreover, our heuristic mechanisms produce
near-optimal results with only 8 percent higher energy con-
sumption on average than the optimum.

The contributions of this work are summarized as fol-
lows. First, we develop analytical models to study the syn-
ergy between DFS and demotion, which reveal the
interplay between DFS and demotion. Second, leveraging
the analytical models, we develop optimization techniques
for dynamic DFS-demotion configurations. We further
develop simple and effective heuristics to reduce the
computational complexity of optimizations. To the best of
our knowledge, this is the first work to dynamically adapt
DFS-demotion configurations for DRAM power manage-
ment. Finally, we conduct extensive experiments to show
the effectiveness of our design over different workloads
and DRAM architectures.

Organization. The rest of the paper is organized as fol-
lows. We introduce the background and review related
work in Section 2. Section 3 presents analytical models for
the synergy between DFS and demotion. Section 4 describes
our proposed optimizations. The experimental results are
presented in Section 5. We conclude this paper in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 DRAM Power Management

We study the DDR-series (e.g., DDR3 and DDR4) based
main memory system in this paper. In power management,
a memory rank is the smallest physical unit that we can con-
trol. Specifically, individual ranks serve memory requests
independently and can also operate at different power
states. A busy rank may work in the active state (ACT),
while an idle rank may be set to a low-power (or power-
down) state in order to save energy consumption. Note, all
the memory ranks should work at the same memory frequency in
the current DRAM architecture. Regardless of the memory
architecture, the total power consumption of the DRAM
system can be divided into two parts: operation power and
background power. The operation power is the power
required to activate the DRAM device to perform memory
reads and writes. The background power accounts for all
the power consumption when there is no memory access.
Background power is a major component in the total
DRAM power consumption [16], [17].

2.2 DRAM Demotion

Modern DRAM architectures support a number of low-
power states, which hardware components to be disabled
[18], [19]. Each state is characterized with its power
consumption and the time that it takes to transition back to
the active state (i.e., resynchronization time). Typically, the
lower power consumption a state has, the higher the
resynchronization time is. Table 1 summarizes the major
power state transitions of DDR3. For each state, we show its
normalized power consumption (normalized to that of
ACT) and the resynchronization time back to ACT. The
power consumption data are calculated from DRAM Sys-
tem Power Calculator [20]. The resynchronization times are
obtained from DRAMmanufacturers’ data sheets [18].

Entering a low-power state when a rank is idle can signi-
ficantly reduce the background power consumption. For

Fig. 1. The tradeoff between RAMZzz [10] and MemScale [12] across
different optimization goals. The penalty budget of energy optimization
is 10 percent, and that of ED2 optimization is 5 percent.

2368 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

example, the pre-charge power-down with fast exit state
(PRE_PDN_FAST) consumes only 52 percent of the power
of ACT. However, to exit from a low-power state, the dis-
abled hardware components need to be reactivated and the
rank needs to be restored to the active state. Transitions to
different power states cause very different latencies and
energy penalties. For example, the self-refresh with slow
exit state (SR_SLOW) has much higher resynchronization
latency and energy cost than PRE_PDN_FAST. If a memory
rank makes a wrong decision to transit itself into SR_SLOW
during a short idle period, the energy penalty can outweigh
the saved energy. Furthermore, the high resynchronization
latency can degrade the memory performance considerably
if such wrong decisions happen frequently. Only suffi-
ciently long idle periods should make use of deeper low-
power states.

Existing research on demotions can be roughly divided
into two categories: 1) how to make correct decisions on
state transitions [7], [10], [13], [14], [21], and 2) how to
extend the idle periods effectively [10], [15], [16], [21].

For the first category, a number of models (e.g., based
on history [10], [13] and exponential distributions [7]) have
been developed to guide decision making on demotions.
Hur and Lin [13] developed adaptive history-based sched-
uling in the memory controller. Diniz et al. [14] limited the
energy consumption by adjusting the power states of
DRAM. Fan et al. [7] developed an analytic model to esti-
mate the idle time of DRAM chips using an exponential
distribution. Wu et al. [10] developed a history-based pre-
diction model to estimate the power-down timeout (the
amount of time spent from the beginning of an idle period
before a transition to a low-power state is made) for accu-
rate control of power state transitions. Compared with all
these demotion-only studies, this paper combines the
demotion and DFS techniques in queuing theory based
analytical models.

Page migration has been considered to be an effective
approach to extend the idle periods. Huang et al. [16] stored
frequently-accessed pages into hot ranks and left infre-
quently-used and unmapped pages in cold ranks. Sudan
et al. [15] used a similar page migration mechanism
between cold and hot ranks, and always set cold ranks with
a pre-selected low-power state. Wu et al. [10] developed
dynamic page migrations to adapt to data access patterns.
While page migrations have been demonstrated to be effec-
tive in simulations, these techniques bring some tricky
implementation issues that prohibit their practical usage in
current DRAM architectures. First, page migrations bring
performance and energy penalty (migrating pages cause

more memory reads and writes, and memory service inter-
ruptions), and are usually too complex to be integrated into
current memory systems. Second, page migrations usually
require modifications to not only the DRAM controller
but also operating systems. For these reasons, we do not
consider page migration in this study.

2.3 DRAM Dynamic Frequency Scaling

Memory dynamic frequency scaling is a more recent
approach to reduce the DRAM energy consumption [11],
[12]. When the memory bandwidth is under-utilized, lower-
ing the memory frequency can bring potential energy sav-
ings. Adjusting frequency on current DRAM architectures
has little runtime overhead. The time of transitions between
different frequencies is around 1ms [11].

Lowering the memory frequency affects both the power
and performance of the memory system. We study the
impacts of DFS on power consumptions, resynchronization
times, and memory accesses for DDR3 architectures. Table 2
summarizes the results on the background and operation
powers, low-power states’ resynchronization times, and
average memory access latency for DDR3 architectures at
1,333 and 800 MHz. The background powers are calculated
for a 1 GB DDR3 DRx4 R-DIMM, obtained from the calcula-
tion by David et al. [11]. The operation energy stands for an
average energy consumption per read or write [11]. The
low-power states’ resynchronization times and average
memory access latency are obtained from DRAM System

TABLE 1
Power States for DDR3 at 1,333 MHz

Power State Normalized
Power

Resynchronization
Time (ns)

ACT 1.0 0
ACT_PDN 0.612 6
PRE_PDN_FAST 0.520 18
PRE_PDN_SLOW 0.299 24
SR_FAST 0.170 768
SR_SLOW 0.104 6,768

TABLE 2
Impacts of DFS on DDR3 DRx4 R-DIMM Architectures

Power State Power (W)
at 1,333 MHz

Power (W)
at 800 MHz

ACT 1.34 1.09
ACT_PDN 0.82 0.67
PRE_PDN_FAST 0.70 0.58
PRE_PDN_SLOW 0.40 0.35
SR_FAST 0.23 0.19
SR_SLOW 0.14 0.14

Power State Resync Time (ns)
at 1,333 MHz

Resync Time (ns)
at 800 MHz

ACT 0 0
ACT_PDN 6 8
PRE_PDN_FAST 18 20
PRE_PDN_SLOW 24 26
SR_FAST 768 1,280
SR_SLOW 6768 7,280

Operation Energy (nJ)
at 1,333 MHz

Energy (nJ)
at 800 MHz

Average energy/read 56 64.7
Average energy/write 61 72

Operation Latency (ns)
at 1,333 MHz

Latency (ns)
at 800 MHz

Average latency/access 51 55

LU ET AL.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND... 2369

Power Calculator [20] and DRAM manufacturers’ data
sheets [18]. A memory access includes activation and pre-
charge operations, reading/writing data arrays, data out-
put, and I/O termination.

From this table, we make the following observations.
First, changing memory frequency has a significant impact
on the power states in the DRAM architecture. Typically, the
lower thememory frequency, the lower the power consump-
tion of each power state. However, the resynchronization
time of each low-power state increases with decreasing
memory frequency (the resynchronization time is associated
with tCK , which scales with the memory frequency). DFS has
a direct impact on the demotion decision. On one hand, it
enhances the energy efficiency of each low-power state since
the power consumption of each low-power state is further
reduced at lower memory frequencies. On the other hand, it
leads to larger performance degradation as well as increased
energy penalty when transiting into low-power states.

Second, the operation (read and write) energy is higher at
lower memory frequencies. This is because the memory
access takes longer time at lower frequencies. However, as
demonstrated in [11], [12], the reduction in the background
power is normally more significant than the increase in the
operation energy consumption. Therefore, DFS can reduce
the memory system energy consumption.

Third, lowering memory frequency increases the mem-
ory access latency. Overall, the increment of memory access
latency is sub-linear to the decrement of frequency. Since
the memory bus runs slower at lower frequencies, DFS can
reduce the length of idle periods between memory requests.

There have been several studies on leveraging DFS to
reduce DRAM energy consumption. David et al. [11] evalu-
ated the effects of lower memory frequency on a real hard-
ware platform, and switched the memory frequency and
voltage based on memory bandwidth utilization at the run-
time. Deng et al. [12] developed similar DFS schemes, based
on performance and energy models. In their experiment,
they developed a static approach that combines a single
low-power state (fast-exit powerdown) with their DFS
scheme. Our model analysis and experiment will demon-
strate that the static approach is suboptimal for different
workloads and DRAM architectures. Therefore, we propose
adaptive selection of the DFS-demotion configuration at the
runtime. A follow-up work of Deng et al. [22] combines
CPU DVFS with memory DFS to save system energy. How-
ever, it does not consider main memory demotion as we do
in this work.

Besides optimizations targeting at general DRAM sys-
tems, some researchers have also proposed energy sav-
ing techniques for specific applications such as databases
and virtual machines. Cache-centric optimizations (either
cache-conscious [23] or cache-oblivious [24]) reduce
memory access and create more opportunities for energy
savings. Dynamic memory allocation mechanisms such
as ballooning and hotplug [25] provide an opportunity
for rank-aware DRAM power saving in virtualization
environments. Finally, there has been some work on
combining demotion and DFS on the CPU (e.g., [26],
[27], [28]). However, their models and optimizations are
specifically designed for the CPU, which are not applica-
ble to the main memory. The synergy between demotion

and DFS for the main memory has not been well stud-
ied. To the best of our knowledge, this paper is the first
of its kind in studying demotion and DFS on DRAM in a
systematic approach.

3 MODELING MEMORY DFS AND DEMOTION

In order to understand the potential benefits of combining
memory DFS and demotion techniques, we develop analyti-
cal models to estimate the energy consumption and perfor-
mance of different combinations of DFS and demotion
settings. The model captures the DRAM architecture fea-
tures and workload parameters. With the model, we are
able to gain insight into the power-performance optimiza-
tion space shaped by different DFS-demotion configura-
tions, and understand the potential improvement offered
by the optimal DFS-demotion configuration. Table 3 lists
the parameters used in our model.

3.1 Memory Energy and Performance Models

We first present the assumptions for our model. First, we
assume that the times between memory requests (inter-
arrival times) follow a Poisson distribution. Second, the
DRAM system enables both demotion and DFS techniques,
with N power states (Si, i ¼ 0; . . . ; N � 1) and M memory
frequencies (fi, i ¼ 0; . . . ;M � 1), respectively. For simplic-
ity, we denote the active state by S0, and the rest N � 1 low-
power states by S1, S2; . . . ; SN�1 in the descending order of
their power consumptions. We also sort all the supported
frequencies in the descending order: f0 > f1 > f2 > � � � >
fN�1. DFS is applied to all memory ranks, i.e., all memory

TABLE 3
Parameters and Variables Used in the Analytical Model

Parameters Description

Workload Characteristics

� The arrival rate of memory requests at the
highest memory frequency (i.e., f0).

f The proportion of memory reads in all
memory requests.

DRAMArchitecture Features

N The number of available power states, i.e., S0

(active state), . . ., SN�1.
M The number of available memory frequencies,

i.e., f0 (default), . . ., fM�1.
Pi;j The power consumption of state Si at fre-

quency fj.
Ri;j The resynchronization time of state Si at

frequency fj.
gj The memory access latency at frequency fj.
gj The average energy cost per memory read

at frequency fj.
vj The average energy cost per memory write

at frequency fj.

System Configurations

D The maximum allowed performance degrada-
tion, i.e., the delay budget.

DFS-Demotion Configurations

Di The power-down timeout of state Si.
f The memory frequency.

2370 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

ranks should have the same frequency at any time. In con-
trast, each rank can make its own demotion decisions. A
memory rank transits to the power state Si if the idle period
exceeds a power-down timeout Di (i ¼ 1; . . . ; N � 1). The
state transition incurs a time penalty Ri;j (the resynchroniza-
tion time of state Si at frequency fj). We view multiple
power state transitions as a chain of state transitions from
higher-power states to lower-power states. We define the
demotion configuration of a memory rank to be a vector of

power-down timeouts ~D ¼ ðD0;D1; . . . ;DN�1Þ, where Di rep-
resents the power-down timeout of state Si, i ¼ 1; . . . ; N � 1
(For simplicity, we set D0 ¼ 0 as the power-down timeout of
state S0, i.e., the active state). When the idle period length
becomes longer than Di, we perform the state transition
from Si�1 to Si.

We model the energy consumption and performance of
each memory rank individually, since the ranks operate
independently. In particular, we derive the estimation for a
rank at memory frequency fj and power-down timeouts ~D.
With queuing theory, we model a memory rank as an M/
D/1 queuing system with arrival rate � (� is the arrival
rate of memory requests for a given rank at frequency f0),
and a determined service time gj (i.e., the memory access
latency at memory frequency fj). Inspired by previous
studies [5] and [29], we extend the conventional M/D/1
model with an exceptional first service time to model the
effects of demotion and frequency scaling. If a memory
request arrives and finds the rank busy (i.e., the rank is
serving other memory requests), it has a normal memory
access latency gj at memory frequency fj. Otherwise, the
rank is idle and the memory access would be delayed by
an initial setup time I . The initial setup time I is the
resynchronization time for powering up the rank from a
low-power state. Let x be a random variable representing
the idle period length for the memory rank. Then, the ini-
tial setup time I at memory frequency fj and power-down

timeouts ~D is given by

I ¼
R0;jð¼ 0Þ; if 0 � x < D1;
Ri;j; if Di � x < Diþ1; i ¼ 1; . . . ; N � 2;
RN�1;j; if x � DN�1:

8<
: (1)

The inter-arrival time between two memory requests con-
forms to the exponential distribution with parameter �.
Because of the memoryless property of exponential distri-
bution, the idle period length x conforms to the same distri-
bution (the exponential distribution with parameter �).

Thus, the first and the second moments E½I � and E½I 2� of
the initial setup time are given by

E½I � ¼
Z 1

0

I�e��x dx ¼
XN�1

i¼0

Ri;jðe��Di � e��Diþ1Þ (2)

E½I 2� ¼
Z 1

0

I2�e��x dx ¼
XN�1

i¼0

R2
i;jðe��Di � e��Diþ1Þ: (3)

Note that we set R0;j ¼ 0, D0 ¼ 0, and DN ¼ 1. According to
Welch’s previous work [29], the expected response time for
an M/D/1 server with an exceptional first service time is
given by

E½R�ðfj;~DÞ ¼
�g2j

2ð1� �gjÞ þ
2E½I � þ �E½I 2�
2ð1þ �E½I �Þ þ gj: (4)

E½R�ðfj;~DÞ consists of three parts: 1) the expected queueing
delay for a standard M/D/1 queue, 2) the expected
resynchronization delay caused by demotion (calculated by
the initial setup time I and the probability for a memory
request to be delayed by the resynchronization), and 3) the
expected memory access latency gj at memory frequency fj.
Plugging Eqs. (2) and (3) into Eq. (4), we obtain the expected

response time for one memory request E½R�ðfj;~DÞ at mem-

ory frequency fj and power-down timeouts ~D.
We now derive the expected energy consumption of one

memory request. We decompose the expected energy cost of a
memory request (denoted as E½E�ðfj;~DÞ) into two parts in
Eq. (5): 1) E½Eop�ðfjÞ, the average energy cost per memory

read/write at frequency fj; and 2) E½Ebk�ðfj;~DÞ, the expected
preceding background energy consumption (i.e., that between
the lastmemory access and the currentmemory access).

E½E�ðfj;~DÞ ¼ E½Eop�ðfjÞ þ E½Ebk�ðfj;~DÞ: (5)

E½Eop�ðfjÞ is given by

E½Eop�ðfjÞ ¼ f � gj þ ð1� fÞ � vj; (6)

where gj and vj are the average energy costs per memory
read and write, respectively, and f is the proportion of
memory reads in all memory accesses.

To estimate the preceding background energy consump-
tion (E½Ebk�ðfj;~DÞ), we first calculate the probability u that
an arrived memory request finds the memory rank idle.
Since the expected busy period length for the memory rank

is E½B� ¼ gjþE½I �
1��gj

according to the results of a previous work

[29], the expected number of memory requests served dur-
ing a busy period is E½B�=gj. The first memory request of a
busy period finds the system idle, while the others find it
busy. Thus, u is given by

u ¼ gj
E½B� ¼

gjð1� �gjÞ
gj þ E½I� : (7)

When an arrived memory request finds the memory rank
idle, the preceding background energy consumption
depends on the preceding idle period length x. We consider
the situation that Di � x < Diþ1 (i ¼ 0; . . . ; N � 1). The
DRAM first consumes an accumulated energy ACðfj; iÞ ¼Pi�1

k¼0ðPk;jðDkþ1 � DkÞÞ (i.e., spending Dkþ1 � Dk time at each
state Sk with Pk;j power, k ¼ 0; . . . ; i� 1), then holds Pi;j

power for x� Di time at state Si, and finally dissipates P0;j

power for Ri;j time when activated (i.e., the resynchroniza-
tion energy penalty). Thus, the background energy cost
when Di � x < Diþ1 is Pi;jðx� DiÞ þACðfj; iÞ þ P0;jRi;j.
Since the preceding idle period length x conforms to the
exponential distribution with parameter �, the probability

for x to satisfy Di � x < Diþ1 is e��Di � e��Diþ1 . Thus, the
expected background energy cost is given by

LU ET AL.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND... 2371

E½Ebk idle�ðfj;~DÞ ¼
XN�1

i¼0

(
ðe��Di � e��Diþ1Þ

� Pi;j

Z Diþ1

Di

x�e��x dx� Di

 !
þ ACðfj; iÞ þ P0;jRi;j

 !)

¼
XN�1

i¼0

(�
e��Di � e��Diþ1

�� �Pi;j

� e��Di

�
ð�Di þ 1Þ

� e��Diþ1

�
ð�Diþ1 þ 1Þ � Di

�
þ ACðfj; iÞ þ P0;jRi;j

�)
:

(8)

If a memory request arrives when the memory rank is busy,
the background energy consumption is zero. Therefore,
the expected preceding background energy consumption

E½Ebk�ðfj;~DÞ is given by

E½Ebk�ðfj;~DÞ ¼ u � E½Ebk idle�ðfj;~DÞ: (9)

3.2 Numerical Studies

In the following, we conduct numerical studies based on the
analytical models. Specifically, we study the impact of
workload features, DRAM architectures and system config-
urations including the budget for performance degradation.
Following the current DDR3 DRAM architectures, we con-
sider N ¼ 6 power states (an active state and five power-
down states in the DDR3 architecture) for demotion, and
M ¼ 6 memory frequencies (1,333, 1,066, 800, 667, 533, 267
MHz) for DFS.

To understand how the DFS-demotion configuration
affects the energy consumption, we change the number of
power states used (denoted by n) and the number of mem-
ory frequencies used (denoted by m) for DRAM. Specifi-
cally, we set n and m with 1, 2, 3, and 6 as shown in Table 4.
For example, n ¼ 1 means that the memory ranks stay only
in ACT. m ¼ 1 means that DRAM operates only at the high-
est memory frequency 1,333 MHz.

We aim to minimize the energy consumption of the mem-
ory system while keeping the program performance penalty
within a pre-defined budget. The penalty budget is defined
by a performance slowdownD (e.g., 10 percent performance
loss) relative to the program performance without any
DRAM power management. We consider the expected pro-
gram execution time of an idle period of the memory system
(i.e., the CPU computation phase) and one memory request
(i.e., the memory access phase). For simplicity, we study a

single-rank memory system. We calculate the expected pro-
gram performance under the memory frequency fj and

power-down timeouts ~D by T ðfj;~DÞ ¼ Tcpu þ Tmem. We
assume that the CPU computation happens in and only in
the idle period of the memory system. Thus, Tcpu ¼ 1=�,
which is insensitive to changes in the memory system.

Tmem ¼ E½R�ðfj;~DÞ, which varies with the memory fre-
quency and power-down timeouts. Hence, the optimal DFS-
demotion configuration under a given performance penalty
budget D is defined as, the optimal memory frequency f and

power-down timeouts ~D that minimize E½E�ðfj;~DÞ, while satisfy-
ing the program performance T ðfj;~DÞ � ð1þDÞ � T ðf0; ~DbaselineÞ
. ~Dbaseline ¼ ð0;1; . . . ;1Þ, which means the memory system

is always in ACT. T ðf0;~DbaselineÞ is maximum program per-
formancewhen thememory system runs at the highestmem-
ory frequency (f0) without any state transitions.

By default, we set the proportion of memory reads
f ¼ 1:0 (i.e., all memory requests are read operations), and
the penalty budget D ¼ 10%. The power consumption and
resynchronization time of each power state, and the average
energy cost per memory read/write at f0 (i.e., 1,333 MHz)
are obtained from manufactures’ datasheet [18]. The values
of these parameters at frequencies other than f0 are scaled
according to Micron’s System Power Calculator [20] and
Technical Note on DDR3 Power [30]. For the memory
access latency gj, we calculate it according to the DRAM
specification, i.e., the sum of tRCD, tCL, tRP , and tBURST .
These DRAM timing parameters stand for the times of an
activation command, a pre-charge command, a column
access and a data burst transfer, respectively. tRCD, tCL, and
tRP are around 15 ns in DDR3, even at low memory frequen-
cies. tBURST is four bus cycles (i.e., 4 � tCK), which increases
linearly as the memory frequency decreases. The arrival
rate of memory requests � is presented as in the average

number of memory requests per 103 CPU cycles. The energy
consumption is normalized to that of the baseline DFS-
demotion configuration (i.e., at the memory frequency f0

and power-down timeouts ~Dbaseline). We present the results
for a single memory rank.

Workload characteristics. We first study the impact of
the arrival rate of memory requests (�). In this study, we
set f ¼ 1:0, and D ¼ 10%, and use n ¼ 6 power states
and m ¼ 6 frequencies for DRAM. For each �, we search
the optimal DFS-demotion configuration exhaustively.
Table 5 shows the best DFS-demotion configuration for
different values of �. 1 means that DRAM devices will

TABLE 4
The Number of Power States Used (n) and the Number

of Frequencies Used (m)

n Power States

1 ACT
2 ACT, PRE_PDN_FAST
3 ACT, PRE_PDN_FAST, SR_FAST
6 ACT, ACT_PDN, PRE_PDN_FAST, PRE_PDN_SLOW,

SR_FAST, SR_SLOW

m Frequencies

1 1,333 MHz
2 1,333, 800 MHz
3 1,333, 800, 533 MHz
6 1,333, 1,066, 800, 667, 533, 267 MHz

TABLE 5
The Impact of � (Accesses per 103 Cycles)

�
Optimal DFS-demotion configuration

Freq.
(MHz)

Power-down
timeouts (cycles)

Normalized energy
consumption

0.1 267 0, 0, 0,1,1 0.098
1.0 667 12, 16, 16,1,1 0.317
2.5 667 0, 1,214, 1,591,1,1 0.614
4.0 800 37,1,1,1,1 0.830
5.5 1,066 16,1,1,1,1 0.987
7.0 1,333 1,1,1,1,1 1.000

2372 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

not be demoted to such power-down state. We have the
two key observations.

First, the optimal DFS-demotion configuration varieswith
the workloads. As � increases, the normalized energy con-
sumption also increases. Since the background energy
consumption becomes less significant in the total energy con-
sumption, the frequency increases and the opportunities for
demotions decrease in the optimal configuration.

Second, both DFS and demotion contribute to the total
energy saving. For some cases (e.g., � ¼ 1:0 and 2.5), they
have the same frequency in the optimal DFS-demotion con-
figuration, while their demotion schemes are different. For
some cases (e.g., � ¼ 4:0 and 5.5), they have similar demo-
tion schemes in the optimal DFS-demotion configuration,
while their memory frequencies are different.

DRAM architectures.Next, we study the impact of different
DRAMarchitecture features as shown in Fig. 2. We search the
optimal DFS-demotion configuration in the space of n power
states andm frequencies for eachDRAMarchitecture exhaus-
tively.Wemake the following observations from Fig. 2.

First, making use of all the available power states and
memory frequencies (i.e., n ¼ 6 and m ¼ 6) always has the
lowest energy consumption across different workloads and
performance penalty budgets. The energy consumption
decreases with increasing numbers of power states and
memory frequencies used. This implies that, both DFS and
demotion contribute to the energy saving, which shows the
synergy between DFS and demotion.

Second, it is quite costly to find the lowest energy con-
sumption by exhaustive search. Since the lowest energy
consumption usually exists when making use of all the
available power states and memory frequencies (i.e., n ¼ 6
and m ¼ 6), the search space of DFS-demotion configura-
tions is large. Thus, the cost of an exhaustive search for the
optimal configuration is high.

Third, when the number of frequencies is large (i.e.,
m ¼ 6), adding more low-power states does not have much
improvement for the two workloads (i.e., � ¼ 1:0 and 2.5),
and vice versa. This is because both DFS and demotion can
contribute the total energy saving. When the number of fre-
quencies or low-power states is large, the optimization
space of DFS-demotion may be large enough to pick a suit-
able DFS-demotion configuration for these specific work-
loads. However, it is not appropriate to conclude that a
small number of low-power states (i.e., n ¼ 3) are enough
for all scenarios. In modern server workloads, the average
memory access rate can be quite different for different
workloads and change dynamically within one application.

System configurations. We study the impact of the perfor-
mance penalty budget. Fig. 3 shows the normalized energy

consumption of the optimal DFS-demotion configuration
for three schemes when D varies from 5 to 20 percent. We
search the optimal DFS-demotion configuration at each pen-
alty budget exhaustively for the following three schemes: 1)
demotion-only (with frequency at 1,333 MHz only), 2) DFS-
only (with the active state only), and 3) the combined DFS-
demotion scheme. The combined DFS-demotion scheme
has the highest energy saving at all the performance penalty
budgets. The energy saving becomes larger as the perfor-
mance penalty budget increases. The memory frequencies
of the optimal DFS-demotion configurations for the com-
bined DFS-demotion scheme are 1,066, 667, 533, 800 MHz
for D ¼ 5%; 10%; 15%; 20%, respectively. Interestingly, the
best memory frequency is higher at D ¼ 20% compared
with that at D ¼ 15%. This again shows the synergy
between DFS and demotion techniques. Though DFS alone
brings less energy saving at D ¼ 20%, combining it with a
more aggressive demotion scheme achieves more signifi-
cant energy saving.

Summary. From the numerical studies, we observe the sig-
nificant synergy between DFS and demotion. A combination
of DFS and demotion can lead to much large energy savings
than individual techniques. However, the optimal DFS-
demotion configuration varies with the workloads, system
configurations and DRAM architectures. Thus, an adaptive
approach of combining DFS and demotion techniques is
desirable. Furthermore, finding the optimal DFS-demotion
configuration is a challenging task at the runtime, due to the
large solution space. This motivates us to develop efficient
heuristics for finding suitable DFS-demotion configurations.

4 ADAPTIVE DFS-DEMOTION OPTIMIZATIONS

this section, we develop adaptive DRAM power manage-
ment that dynamically selects the suitable DFS-demotion
configuration at the runtime. With the analytical models on

Fig. 2. The impact of DRAM architecture features on energy consumption of optimal DFS-demotion configurations.

Fig. 3. The impact of penalty budget on energy consumption of optimal
DFS-demotion configurations (� = 2.5).

LU ET AL.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND... 2373

performance and energy consumption developed in Section
3, we are able to optimize DRAM power management with
respect to an arbitrary performance-energy optimization
goal. In this section, we focus on minimizing the total mem-
ory energy consumption within a pre-defined budget of
program performance degradation, while our method is
also applicable to other optimization goals.

4.1 Overview

The workflow of the DRAM power management is given in
Algorithm 1. We periodically adjust the memory frequency
and each rank’s power-down timeouts based on a control
algorithm. The adjustment period is called an epoch. An
epoch is defined to consist of a pre-defined number of mem-
ory requests to the DRAM. At the beginning of each epoch,
we determine a suitable DFS-demotion configuration for
the epoch and use it for the entire new epoch.

Algorithm 1.Workflow of Proposed DRAM Power Man-
agement Mechanism

Condition:
Any memory reference to rank r occurs.

Algorithm:
1: if rank r is in the lower-power state then
2: Set r to be ACT;
3: Serve the memory request;
4: Maintain performance counters; /*Section 4.2*/

Condition:
The length of the current idle period of rank r is updated.

Algorithm:
1: Perform demotions (if necessary) according to the demo-

tion configuration for rank r;

Condition:
The processed number of memory requests equals the
epoch size.

Algorithm:
1: Start a new epoch;
2: Estimate the maximum performance Tmin of the new epoch;

/*Section 4.2*/
3: Set the performance target Ttarget according to the control

algorithm; /*Section 4.3*/
4: for each possible DFS-demotion configuration do
5: Estimate the total memory energy consumption and pro-

gram performance; /*Section 4.2*/
6: Determine the suitable DFS-demotion configuration for the

new epoch; /*Sections 4.3 and 4.4*/
7: Adjust the memory frequency and each memory rank’s

power-down timeouts for the new epoch;
8: Reset performance counters;

During an epoch, we maintain the performance informa-
tion via a set of hardware performance counters (more
details can be found in Section 4.2). These counters can be
read by the operating system as inputs for estimating mem-
ory energy and program performance of the next epoch
under different DFS-demotion configurations, or trigger spe-
cific hardware interruptions. They are reset at the beginning
of each epoch. For each idle period in the epoch, demotions
may be triggered according to the DFS-demotion configura-
tion. At the beginning of each epoch, based on performance
counters gathered in the previous epoch, the system

estimates the maximum program performance Tmin for the
new epoch (Section 4.2). Tmin is the program execution time
when the memory system runs at the highest memory fre-
quency and without any demotions. Then, the performance
target Ttarget is set by the control algorithm. Next, the control
algorithm tries to search all possible DFS-demotion configu-
rations and picks up an optimal configuration that has amin-
imum estimated memory energy consumption, while
maintaining the estimated program performance within the
performance target Ttarget (details are presented in Section
4.3). Due to the huge search space, we explore heuristics to
efficiently figure out a suitable DFS-demotion configuration
that is close to the global optimum (Section 4.4). After the
suitable DFS-demotion configuration is determined, we
adjust the memory system with the new selected frequency,
and set different power-down timeouts for differentmemory
ranks according to the DFS-demotion configuration, and use
this configuration for each rank for the entire epoch.

Let us briefly discuss some system implementation
issues. Our adaptive scheme can be implemented with
modest hardware and software supports. On the hardware
side, we require the memory sub-system to have the ability
of changing memory frequency (as proposed in previous
studies [11], [12]) and demoting individual memory ranks
to low-power states (already supported in current DRAM
architectures) dynamically. Our design also relies on hard-
ware performance counters in processors and memory con-
trollers like previous studies [12], [22]. These counters can
be read by the operating system as inputs for estimating
memory energy and program performance of the next
epoch. For example, a hardware interruption is triggered
when the counter L equals the epoch size, which causes the
operating system to estimate the suitable DFS-demotion
configuration of a new start epoch. The amount of on-chip
storage for these performance counters (about 132 bytes) is
small compared to the multi-MByte shared LLC. On the
software side, we offload some functionalities including
new APIs for hardware performance counters and the pre-
diction of DFS-demotion configurations to the operating
system (like previous studies [10], [12], [31]). The operating
system runs the prediction model and updates the DFS-
demotion configuration for the memory controller (via set-
ting corresponding registers) at the beginning of each
epoch. We note that the structure complexity and storage
overhead of our proposed design are similar to the previous
proposals [10], [12], [16], [32].

We describe the implementation details of key compo-
nents in the following sections.

4.2 Extended Performance-Energy Model

The analytical model in Section 3 is mainly for a single
memory rank. In this section, we extend this model to esti-
mate the total energy consumption of all memory ranks and
to estimate the program execution time given a DFS-demo-
tion configuration.

In each epoch, the system maintains a set of hardware
performance counters. We list these performance counters
in Table 6. An epoch ends when L reaches the pre-defined
epoch size. With these counters, we leverage the analytic
model developed in Section 3 and historical information in
the previous epoch to predict the energy consumption of the

2374 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

memory system and the program performance for the new
epoch. In particular, with the analytical model in Section 3,
we model the expected energy consumption E½E�ðfj;~DÞ and
the expected response time E½R�ðfj;~DÞ for a memory
request. First, we need to calculate the average memory
access rate �r for each memory rank r at the memory fre-
quency f0 in the previous epoch, and use it as the predicted
�r for the new epoch. Given performance counters in Table 6
and the DFS-demotion configuration in the previous epoch,

we set E½R�ðfj;~DÞ to the actual average memory response
time (CMRTr) in the previous epoch, and get �r for each
rank r by solving Eq. (4). This calculation is performed to all
memory ranks. We denote the number of memory ranks as

K, and ~Dr (r ¼ 0; . . . ; K � 1) as power-down timeouts for
memory rank r. Then, we can calculate the expected energy

consumption E½E�ðfj;~DrÞ and the expected response time

E½R�ðfj;~DrÞ for a memory request in memory rank r at mem-

ory frequency fj and power-down timeouts ~Dr. Following
the analytical model, the total memory energy consumption

of all memory ranksEtotalðfj;~D0; . . . ;~DK�1Þ is given by

Erankðr; fj;~DrÞ ¼ Lr � E½E�ðfj;~DrÞ

Etotalðfj;~D0; . . . ;~DK�1Þ ¼
XK�1

r¼0

Erankðr; fj;~DrÞ;
(10)

where Lr is the number of memory requests to memory

rank r in the previous epoch (i.e., L =
PK�1

r¼1 Lr). Given a cer-

tain memory frequency fj, Erankðr; fj;~DrÞ calculates the total
energy consumption at memory frequency fj and with

power-down timeouts ~Dr for each memory rank r. Thus,
the predicted total memory energy consumption of all ranks

for the new epoch is given in Etotalðfj;~D1; . . . ; ~DK�1Þ by sum-
ming up each memory rank’s energy.

Next, we decompose the program execution time to the
total time of computation phases Tcpu and the total time of
memory phases. Tcpu is insensitive to changes in DFS-demo-
tion configurations, while the total time of memory phases
varies with memory frequencies as well as power-down
timeouts. The estimated program performance Ttotalðfj;
~D1; . . . ; ~DK�1Þ is given by

Tcpu ¼ Tactual �maxfLr � CMRTrg
Ttotalðfj;~D1; . . . ; ~DK�1Þ ¼ Tcpu þmaxfLr � E½R�ðfj;~DrÞg:

(11)

We record the actual epoch execution time Tactual at the end
of each epoch. At the beginning of each epoch, we compute
Tcpu by subtracting the maximum total time of memory
phases of each memory rank (i.e., Lr � CMRTr that recorded
in performance counters) from Tactual of the previous epoch,
and use it as the predicted total time of computation phases
Tcpu for the new epoch. Then, we estimate the total length of
memory phases in the new epoch as the maximum of Lr�
E½R�ðfj;~DrÞ (r ¼ 0; . . . ; K � 1). Combining them together,
we obtain the estimated program performance Ttotalðfj;
~D1; . . . ; ~DK�1Þ at memory frequency fj and power-down

timeouts ~Dr (r ¼ 0; . . . ; K � 1).

4.3 Slack-Aware Control Algorithm

In order to ensure that a pre-defined performance target can
be met over program execution, we use an adaptive control
approach to perform adjustment on the performance budget
at the beginning of each epoch. Following Deng et al. [12],
we use slack to quantify the performance degradation. The
slack is defined as the distance between the program’s actual
performance and the estimated performance as in Eq. (12).

Ttarget ¼ Tmin � ð1þDÞ
Tslack ¼ Ttarget � Tactual:

(12)

Ttarget is the target program performance for the new epoch.
It has a pre-defined performance slowdown D (e.g., 10 per-
cent performance loss) relative to the maximum program
performance without any power management Tmin. With
the analytical model developed in Section 4.2, Tmin equals

Tðf0;~D1; . . . ; ~DK�1Þ, where ~Dr ¼ 0;1; . . . ;1), r ¼ 1; . . . ; K � 1.
That is, Tmin is the program execution time at the highest
memory frequency (f0) and without any demotions on all
memory ranks. The target performance Ttarget is calculated
based on Tmin. Tactual is the recorded actual program execu-
tion time of the previous epoch. Then, we get the perfor-
mance slack using Eq. (12). The slack helps make
performance adjustments among epochs. The accumulated
slack is applied to the performance penalty budget of the
new epoch. If it is larger than zero, we have a larger perfor-
mance penalty budget. Thus, the control algorithm’s optimi-
zation goal is defined as, finding the optimal DFS-demotion
configuration that minimizes the estimated total memory energy

consumption Etotalðfj;~D1; . . . ;~DK�1Þ, and keeps the predicted

program performance Tðfj;~D1; . . . ;~DK�1Þ within the target per-
formance Ttarget given the accumulated slack from previous epochs
in the new epoch.

Etotalðfj;~D1; . . . ; ~DK�1Þ is minimized if and only if each

memory rank r’s energy consumption Erankðr; fj;~DrÞ
(r ¼ 1; . . . ; K � 1) is minimized. Tðfj;~D1; . . . ; ~DK�1Þ is satis-
fied if and only if each memory rank’s extra latency is
within the performance penalty budget.

4.4 Heuristics-Based Search

Searching the optimal DFS-demotion configuration can be
very costly. Even though the search process can be parallel-
ized at the rank level, it is still a challenging task, particularly
at the runtime. An exhaustive search is not feasible. The
complexity of an exhaustive search for a memory rank is

TABLE 6
Performance Counters

Performance
Counters

Description

Lr The number of memory requests to memory
rank r.

CNRRr The number of read requests to memory rank
r.

CMRTr The average response time for a memory
request in memory rank r.

CMLPr The maximal length of idle periods in mem-
ory rank r.

L The total number of memory requests to all
memory ranks.

LU ET AL.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND... 2375

OðM � TN�1Þ steps (each step estimates the memory energy
consumption and program performance for a DFS-demotion
configuration), with M being the number of available fre-
quencies,N being the number of available power states, and
T being the number of possible values for a power-down
timeout (e.g., the time length of an epoch). Thus, we need to
explore heuristics to reduce the search time. In the follow-
ing, we describe heuristics for DFS and demotion.

DFS heuristic. In Section 3.2, we have observed that the
memory frequency in the optimal DFS-demotion configura-
tion generally increases with the memory access rate. This
motivates us to conduct the search along the dimension of
memory frequency using a binary search with the hill-
climbing optimization [33]. Specifically, the search starts at
a mid-point memory frequency f (i.e., f ¼ fi, i ¼ bM=2c),
and looks for the suitable power-down timeouts under f .
Denote by " the optimal energy consumption under fre-
quency f . Then, another frequency f 0 that half-way between
the current frequency and either of the endpoints is chosen,
and the process is repeated. If the optimal energy consump-
tion "0 for that f 0 is better, the binary search continues on
that side, and the other side is disregarded. Otherwise, the
algorithm switches to the other side (disregarding further
attempts on the first side). When neither side is better, or we
run out of choices, the search ends.

Demotion heuristic. An orthogonal way to reduce the
search effort is the demotion dimension. Since low-power
state transitions are nonzero cost processes, the break-even
time Bi;j denotes the minimum length of idle periods, which
justifies a state transition to state Si at memory frequency fj,
during which keeping the DRAM device in active state con-
sumes the same amount of energy as transiting to state Si

and back to active state. In other words, Bi;j characterizes
the minimum idle length for energy-efficient state transi-
tions. Bi;j is given by

Bi;j ¼ Ri;j � P0;j

P0;j � Pi;j
: (13)

Pi;j and Ri;j are the power consumption and resynchroniza-
tion time of state Si at memory frequency fj, respectively. We
keep a performance counter CMLPr for each rank r to record
the maximum idle period in the rank during an epoch, and
useCMLPr to predict the largest idle period length in the next
epoch. Thus, state Si can be disregarded directly if Bi;j is
larger thanCMLPr at frequency fj formemory rank r.

Combining these two heuristics, we develop an efficient
greedy algorithm with the branch-bound optimization to
find the suitable demotion configuration for a memory rank
in Algorithm 2. Given a certain frequency fj, we first remove
the low-power states, whose break-even times are larger than
CMLPr for rank r, from the set of available low-power states.

The remaining eligible low-power states are kept in ~Seligible.

Based on ~Seligible, we choose the best low-power state and its
power-down timeout which leads to the smallest estimated

Erankðr; fj;~DrÞ, while keeping the program performance
within the budget. When finding the power-down timeout, it
tries all possible values from the highest (CMLPr) to the low-
est (0) until the program performance is not satisfied. Next,
we keep the estimated power-down timeout of the selected
low-power state unchanged, and select a new low-power

state and its power-down timeout from the rest eligible low-
power states, which results in the smallest estimated

Erankðr; fj;~DrÞwhen two low-power states are applied. We
repeat this process to add one more new low-power state
into the previous selected subset of low-power states together
with its power-down timeout in each step. Finally, we get the
suitable power-down timeouts for all eligible low-power
states. To further improve the prediction speed, we use an

exponential search approach by iterating in the form of 2i

(0 � i � log2 CMLPr) for each power-down timeout.

Algorithm 2. Greedy Algorithm to Find the Demotion
Configuration ~Dr for Rank r

Input:
The memory frequency fj, all low-power states set
~S ¼ ðS1; . . . ; SN�1Þ, with associated power consumptions

set ~P ¼ ðP1;j; . . . ; PN�1;jÞ, and break-even times set ~B ¼
ðB1;j; . . . ; BN�1;jÞ;

Initialization:
~Dk ¼ F, ~Sselect ¼ F, ~Seligible ¼ F;
1: for all Si 2 ~S do
2: if Bi;j � CMLPr then
3: Add Si into ~Seligible;
4: W ¼ j~Seligiblej;
5: while j~Sselectj 6¼ W do
6: for all Si 2 ~Seligible do
7: Add Si into ~Sselect;
8: for each possible Di (from CMLPr to 0) value do
9: Calculate Erankðr; fj;~DrÞ using Eq. (10) with selected

low-power states subset ~Sselect;
10: if the program performance is violated then
11: break;
12: Find the suitable Di that has the best Erankðr; fj;~DrÞ;
13: Remove Si from ~Sselect;
14: Find the low-power state Sp that has a best Erankðr; fj;~DrÞ;
15: Add Dp into ~Dr;
16: Remove Sp from ~Seligible;
17: Add Sp into ~Sselect;
18: for all Si =2 ~Sselect do
19: Di ¼ 1;
20: Add Di into ~Dr;
Output:
Demotion times set ~Dr at fj frequency for rank r.

The complexity of the algorithm is Oðlog2M �W 2�
log2CMLPrÞ steps, which represents a significant
improvement over the exhaustive search. W is the num-
ber of eligible low-power states, which should be much
smaller than N in most cases. Thus, intuitively, the heu-
ristic-based search should converge quickly to a good
DFS-demotion configuration.

5 EVALUATION

In this section, we present the quantitative evaluation of our
proposed DRAM power management mechanism.

5.1 Methodology

We use a cycle-accurate simulator–PTLSim [34] to collect
memory access traces (last-level cache misses and write-
backs) from a variety of workloads, and replay the traces

2376 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

using our detailed memory system simulator. Our simula-
tion models all the relevant aspects of the operating system,
memory controller, and DRAM devices, including page
placements, memory channel, bank contention, row buffer
management, DRAM device power, and timing. The main
architectural characteristics of the simulated machine are
listed in Table 7. We evaluate our techniques with the
DDR3 memory architecture, and simulate a 8GB memory
system with eight memory ranks.

Our settings for demotion and DFS are consistent with
the previous studies [10], [11], [12]. By default, we consider
the six power states supported in the current DDR3 archi-
tecture (DDR3 DRx4 R-DIMM) as shown in Table 1, and a
wide range of memory frequencies: 1,333, 1,200, 1,066, 934,
800, 667, 533, 400, 267, and 133 MHz. The default memory
frequency is 1,333 MHz. The timing and power parameters
of DRAM chips at the default frequency are obtained from
manufacturers’ datasheet [18]. The background powers at
the default frequency are obtained from the calculation by
David et al. [11]. Parameters at other frequencies are scaled
according to the previous study [11], [12].

Workloads. We have used 19 applications from SPEC
2006. These workloads have widely different memory
access rates, footprints, and localities. To assess our algo-
rithm under the context of multi-core CPUs, we study
various mixed workloads of four different applications
from SPEC 2006 (Table 8). The four applications start at
the same time. The mixed workloads form multi-
programmed executions on a four-core CPU, ordered by
the average number of memory accesses (Mean). The
standard deviation and mean values are calculated based

on memory access statistics per 5� 108 CPU cycles. For

each workload, we select the simulation period of 1010

CPU cycles in the original PTLSim simulation (at the

default memory frequency and no demotions), which rep-
resents a stable and sufficiently long execution behavior.

We use the optimization goal of minimizing the total
memory energy consumption while keeping the perfor-
mance penalty within a predefined budget in this section.
Due to space limitations, we do not present the results for
all single applications. Instead, we report their geometric
mean (GM), and also five representative applications:
omnetpp, zeusmp, cactusADM, libquantum, and mcf
(denoted as S1, S2, S3, S4, and S5, respectively). They cover
a wide range of memory accesses intensiveness (0.1, 0.9, 1.0,
4.7, 8.0 millions accesses on average per 5� 108 CPU cycles,
respectively).

Comparisons.We compare ourDRAMpowermanagement
mechanism (denoted as Hybrid) with a number of baseline
and state-of-the-art DRAM power management schemes.
Here are the details about the schemes in comparison:

� No power management (BASE). The memory fre-
quency is fixed at the default 1,333 MHz and mem-
ory ranks are always kept active even when they
are idle.

� RAMZzz. RAMZzz is one of the state-of-the-art
approaches using demotion [10]. For fair compari-
son, we disable page migrations in RAMZzz (as
explained in Section 2). RAMZzz only considers two
pre-selected low-power states on DDR3 (PRE_-
PDN_FAST and SR_FAST).

� RAMZzz+. RAMZzz+ is an enhanced version of
RAMZzz, which explores state transitions among all
available power-down states on DDR3.

� MemScale. MemScale is one of the state-of-the-art
approaches using DFS [12].

� MemScale+SFD. MemScale+SFD is a policy that com-
bines DFS with a static demotion scheme. A memory
rank immediately demotes to PRE_PDN_FAST
when it is idle. This approach was adopted in the
previous study [12].

� MemScale+DFD. MemScale+DFD is similar to Mem-
Scale+SFD, except that MemScale+DFD chooses
the power-down timeout according to our control
algorithm. MemScale+DFD is different from Hybrid,
where it only uses a pre-selected low-power state for
demotions.

� Hybrid. Hybrid is the power management approach
developed in this paper.

We allow users to specify the epoch sizes and penalty
budgets. By default, the epoch size is set to 106 memory
requests, and penalty budget is set to 10 percent.

TABLE 7
Architectural Characteristics of the Simulated Machine

Component Features

CPU 4 in-order core running at 2.667 GHz
TLB 64 entries
L1 I/D cache (per core) 48 KB
L2/L3 cache (shared) 256 KB/4 MB
Cache line/OS page size 64 B/4 KB

DRAM DDR3 DRx4 R-DIMM at 1,333 MHz [18]
ranks 8
capacity (GB) 8
power states see Table 1
memory frequencies 10 frequencies (1,333–133 MHz)

TABLE 8
Mixed Workloads: Memory Footprint (FP), Memory Accesses Statistics per 5� 108 Cycles (Mean and Stdev

Mean)

Name FP (MB) MeanMean (106) StdevStdev
MeanMean Applications

M1 661.3 0.6 1.02 gromacs, gobmk, hmmer, bzip
M2 1477.4 1.7 1.11 bzip, soplex, sjeng, cactusADM
M3 626.6 2.9 0.59 soplex, sjeng, gcc, zeusmp
M4 537.8 3.5 0.47 zeusmp, gcc, leslie3d, omnetpp
M5 1082.9 4.4 0.71 gcc, leslie3d, calculix, gemsFDTD
M6 1250.5 8.7 0.40 libquantum, xalan, gemsFDTD, zeusmp

LU ET AL.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND... 2377

Wefirst compare the behavior ofHybrid, BASE,MemScale
+SFD, and MemScale+DFD to show the adaptivity of Hybrid
under different workloads (Section 5.2.1). Then, we compare
Hybrid with MemScale, RAMZzz, and RAMZzz+ in order to
evaluate the impact of individual techniques, and the synergy
between DFS and demotion (Section 5.2.2). Third, we investi-
gate the effectiveness of the proposed search heuristics (Sec-
tion 5.3). We also study the impact of Hybrid on full system
energy savings, and present some additional results for the
optimization goal of ED2 (memory subsystem energy � pro-

gram execution time2). Due to the space limitation, we put
these results in Appendix A and B of the supplementary
file, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TC.2014.2360534.All the results are normalized by those of BASE.

5.2 Results on Energy Optimizations

5.2.1 Overall Comparison

Fig. 4 shows the normalized total memory energy consump-
tion of Hybrid in comparison with MemScale+SFD, and
MemScale+DFD when the penalty budget is set at 10 per-
cent. The comparison with MemScale+SFD and MemScale
+DFD shows the effectiveness of the adaptive feature of our
proposed method. If the normalized energy consumption of
an approach is smaller than 1.0, the approach is more
energy efficient than BASE.

Thanks to the adaptive combination of DFS and demo-
tion techniques, Hybrid is significantly more energy-effi-
cient than BASE, with an average reduction of 67 percent in
total energy consumption. The reduction is more significant
for the workloads with less intensive memory accesses
(such as S1, S2, and M1). This is because idle periods are
generally longer for less memory-intensive workloads, and
lower memory frequencies are feasible for those workloads
for saving more background power.

Comparing to the static scheme of DFS and demotion,
Hybrid outperforms MemScale+SFD for all workloads,
with an average reduction of 38 percent in total energy con-
sumption. The fixed power-down timeouts in MemScale
+SFD cannot adapt to different workloads when the mem-
ory frequency is changing. Furthermore, the gap between
MemScale+SFD and Hybrid becomes larger for more mem-
ory-intensive workloads (such as S5 and M6). The aggres-
sive demotion of MemScale+SFD can hurt energy efficiency
because of the high latency and energy penalty of demo-
tions on short idle periods. This penalty is even larger on
memory-intensive workloads. We make a further study to
compare MemScale+DFD with MemScale+SFD. MemScale
+DFD is more energy-efficient than MemScale+SFD, which

demonstrates that adaptively choosing the suitable DFS-
demotion configuration yields significant improvement
over static DFS-demotion schemes.

Hybrid also has larger energy savings compared with
MemScale+DFD, with an average reduction of 26 percent in
total energy consumption. Though MemScale+DFD chooses
the power-down timeout according to our control algorithm,
it only considers a single pre-selected low-power state (i.e.,
PRE_PDN_FAST). However, Hybrid explores five available
low-power states in DDR3 architectures. Also, the demotion
schemes are different for MemScale+DFD and Hybrid. Add-
ing more low-power states brings a larger search space of
DFS-demotion configurations formaximizing energy savings.

We also perform detailed studies on our analytical
model. Figs. 5a and 5b show the ratios of estimated energy/
performance (predicted by our analytical model at the
beginning of an epoch) and measured energy/performance
(measured at the end of the corresponding epoch) for differ-
ent epochs of M4. Our estimations are very close to real
measurements at different DFS-demotion settings. We
observe similar results for different workloads.

We study the performance delay in more details. Fig. 6
shows the breakdown of the performance delay. We divide
the delay penalty into two parts, resynchronization delay
(caused by state transitions) and frequency scaling delay
(caused by DFS, including memory access delay and fre-
quency switching penalty). Though Hybrid and MemScale
+DFD show different breakdowns of the performance delay
due to different demotion schemes, the delays of Hybrid
and MemScale+DFD are well controlled under the pre-
defined penalty budget (i.e., 10 percent in this experiment).
On the other hand, MemScale+SFD cannot limit the delay
within the penalty budget for workloads S5 and M6. This
demonstrates the effectiveness of our control algorithm.
Additionally, the resynchronization delay and frequency
scaling delay vary significantly across different workloads
in our Hybrid scheme. For example, the resynchronization
delay is much higher than the frequency scaling delay for
workload S5, which indicates that state transitions are more

Fig. 4. Overall comparisons on energy consumptions.

Fig. 5. Comparing estimated energy/performance with measurements of
Hybrid on M4.

2378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

often for saving the DRAM power. These observations dem-
onstrate the effectiveness of adaptive DFS-demotion config-
urations for different workloads.

One might think that Hybrid could have even higher
energy savings, if it could keep the frequency lower and
power-down timeouts smaller and approximate the perfor-
mance penalty budget more closely. However, approximat-
ing the performance penalty budget more closely could also
increase the DRAM energy consumption (by increasing the
memory read/write energy and the resynchronization
energy significantly). Thus, our policy degrades the perfor-
mance only up (and sets the DFS-demotion configuration)
to the point that results in the minimized total memory sys-
tem energy.

Fig. 7 illustrates the normalized energy consumption of
Hybrid for different performance penalty budgets on S3
and M4. The normalized energy consumption is decreased
when varying the penalty budget from 0.1 to 20 percent. A
small penalty budget limits the potential for energy savings.

5.2.2 Individual Impacts

We now evaluate the individual impacts of DFS and demo-
tion in Hybrid.

Impact of demotion. We study the impact of demotion
by comparing Hybrid, MemScale (no demotion), and Mem-
Scale+SFD (a static demotion scheme), as shown in Fig. 8.

Hybrid has much lower energy consumption than Mem-
Scale, with a range of 20-66 percent reduction in total energy
consumption.

We further have the following two major observations.
First, compared with MemScale, Hybrid can save more
background power by considering low-power states. The
reduction is also encouraging for memory-intensive work-
loads (such as S4, S5, M5, and M6). Even though idle peri-
ods are shortened after applying DFS on those workloads,
Hybrid can still use those lower-power states with short
resynchronization times. Second, applying a static demotion
scheme with DFS shows only marginal improvement on the
energy efficiency. The normalized energy consumption of
MemScale+SFD is rather close to that of MemScale. This is
consistent with the previous study [12].

Impact of DFS. Fig. 9 shows the energy consumption
results for Hybrid, RAMZzz, and RAMZzz+. Comparing to
RAMZzz, Hybrid decreases the energy consumption by 31
percent on average. Though lowering the memory fre-
quency may shorten the idle periods of ranks, Hybrid can
still achieve significant improvement by adaptively choos-
ing the optimal DFS-demotion configuration.

RAMZzz+ is comparable to Hybrid for memory-inten-
sive workloads (such as S5, M5, and M6). Lower memory
frequencies are not suitable for those workloads, due to the
cost of increased operational energy and memory access

Fig. 6. The breakdown of performance delay.

Fig. 7. Energy consumption of Hybrid on S3 and M4.

Fig. 8. Energy consumption of Hybrid, MemScale and MemScale+SFD.

Fig. 9. Energy consumption of Hybrid, RAMZzz and RAMZzz+.

Fig. 10. Energy consumption of Hybrid and Exhaustive.

LU ET AL.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND... 2379

time. Thus, demotions play a more significant role for sav-
ing the energy consumption of DRAM. On the other hand,
Hybrid can exploit much lower memory frequencies for
workloads with less memory access intensiveness. Overall,
Hybrid has a lower energy consumption than RAMZzz+,
with an average energy reduction of 21 percent.

Compared with RAMZzz, RAMZzz+ further decreases
the energy consumption, which justifies the necessity of
involving more low-power states for demotions. RAMZzz
only uses two pre-selected low-power states, and loses the
opportunity of adapting to different workloads.

5.3 Effectiveness of Search Heuristics

To study the effectiveness of our search heuristics, we simu-
late a variant of Hybrid, denoted as Exhaustive, which finds
the optimal DFS-demotion configuration by searching the
entire optimization space. Still, Exhaustive adopts branch-
bound optimizations to reduce unnecessary search efforts.
That is, at a certain frequency, the search of power-down
timeouts starts from high to low until the target perfor-
mance is violated. As shown in Fig. 10, Hybrid achieves a
very close energy consumption to Exhaustive for all work-
loads. This indicates that our proposed heuristics achieve
near-optimal energy savings with reduced search space.

We further perform a detailed analysis on the effective-
ness of these optimization heuristics for a selected workload
M1. We compare the average computational time and nor-
malized energy consumption for the Hybrid and Exhaustive
approaches in Table 9 for different numbers of power states
(denoted as n) and memory frequencies used (denoted as
m). For a given n, we consider S0 (active state) and other
low-power states Si (1 � i < n). Similarly, for a given m, we
consider the highest memory frequency 1,333 MHz and
other frequencies fi ¼ 1;333� 133� iMHz (1 � i < m). The
average computational time is the average simulation time
of finding the DFS-demotion configuration for an epoch.
We show the speedup of the average computational time
for Hybrid over Exhaustive.

As the number of power states and frequencies used
increases, the normalized energy consumption becomes
lower for both Hybrid and Exhaustive (from left to right, and
top to bottom in Table 9). This further shows the benefits of
the self-adapting feature brought by our proposed adaptive
DFS-demotion configurations. Hybrid has a slightly higher
energy consumption than Exhaustive in all cases, within the
range of 3-8 percent. The average computational time of
Hybrid is improved significantly over that of Exhaustive,
which significantly reduces the runtime overhead.

6 CONCLUSIONS

Effectively exploiting power management techniques is crit-
ical for reducing DRAM energy consumption. In this paper,

we propose a novel DRAM power management design by
adaptively combining DFS and demotion. An analytical
model is developed to understand the synergy between
DFS and demotion. Based on the analytical model, we
develop optimization techniques to efficiently search for
good DFS-demotion configurations at the runtime. We fur-
ther develop simple and effective heuristics to reduce the
computational complexity of optimization. We evaluate our
proposed models and optimizations with SPEC 2006 in
comparison with baseline and state-of-the-art power saving
techniques. Our simulation results demonstrate significant
improvement of our mechanism in energy consumption
over other power saving techniques.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their insightful comments. This work was supported by a
MoE AcRF Tier 2 Grant (MOE2012-T2-1-126) in Singapore.
This work was also partly supported by the National Basic
Research Program of China (973 Project Grant No.
2015CB352400), Program for Changjiang Scholars and Inno-
vative Research Team in University (IRT1158, PCSIRT)
China, NSFC (Grant No. 61272099), and Scientific Innova-
tion Act of STCSM (No. 13511504200). The work of Yanchao
Lu was done when he was a visiting student in Nanyang
Technological University, Singapore. Bingsheng He is the
corresponding author.

REFERENCES

[1] F. F€arber, S. K. Cha, J. Primsch, C. Bornh€ovd, S. Sigg, and W. Leh-
ner, “SAP HANA database: Data management for modern busi-
ness applications,” SIGMOD Rec., vol. 40, no. 4, pp. 45–51, 2012.

[2] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazi�eres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for RAM-
Clouds: Scalable high-performance storage entirely in DRAM,”
SIGOPS Oper. Syst. Rev., vol. 43, no. 4, pp. 92–105, 2010.

[3] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T.
W. Keller, “Energy management for commercial servers,” IEEE
Comput., vol. 36, no. 12, pp. 39–48, Dec. 2003.

[4] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed. San
Rafael, CA, USA: Morgan and Claypool Publishers, 2009.

[5] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminat-
ing server idle power,” in Proc. 14th Int. Conf. Archit. Support
Program. Lang. Oper. Syst., 2009, pp. 205–216.

[6] M. S. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Raw-
son, and J. B. Carter, “Architecting for power management: The
IBM POWER7 approach,” in Proc. IEEE 16th Int. Symp. High
Perform. Comput. Archit., 2010, pp. 1–11.

[7] X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for
DRAM power management,” in Proc. Int. Symp. Low Power Elec-
tron. Des., 2001, pp. 129–134.

[8] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijayk-
rishnan, and M. J. Irwin, “Scheduler-based DRAM energy
management,” in Proc. 39th Annu. Des. Autom. Conf., 2002,
pp. 697–702.

TABLE 9
Speedup (Speedup) and Normalized Energy Consumption (E) of Hybrid (HB) and Exhaustive (EX) on M1

m ¼ 3 m ¼ 6 m ¼ 10

n E (HB) E (EX) Speedup E (HB) E (EX) Speedup E (HB) E (EX) Speedup

3 0.51 0.49 72 0.39 0.37 92 0.30 0.29 145
4 0.36 0.35 1,275 0.30 0.29 1,586 0.27 0.25 2,475
6 0.30 0.28 2,3027 0.26 0.25 35,922 0.24 0.23 45,824

2380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015

[9] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation
of power-aware virtual memory,” in Proc. Annu. Conf. USENIX
Annu. Tech. Conf., 2003, pp. 57–70.

[10] D. Wu, B. He, X. Tang, J. Xu, and M. Guo, “RAMZzz: Rank-aware
DRAM power management with dynamic migrations and
demotions,” in Proc. Int. Conf. High Perform. Comput., Netw., Stor-
age Anal., 2012, pp. 32:1–32:11.

[11] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency
scaling,” in Proc. 8th ACM Int. Conf. Autonomic Comput., 2011,
pp. 31–40.

[12] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“MemScale: Active low-power modes for main memory,” in Proc.
16th Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2011,
pp. 225–238.

[13] I. Hur and C. Lin, “A comprehensive approach to DRAM power
management,” in Proc. IEEE 14th Int. Symp. High Perform. Comput.
Archit., 2008, pp. 305–316.

[14] B. Diniz, D. Guedes, W. Meira, Jr, and R. Bianchini, “Limiting the
power consumption of main memory,” in Proc. 34th Annu. Int.
Symp. Comput. Archit., 2007, pp. 290–301.

[15] K. Sudan, K. Rajamani, W. Huang, and J. Carter, “Tiered memory:
An iso-power memory architecture to address the memory power
wall,” IEEE Trans. Comput., vol. 61, no. 12, pp. 1697–1710, Dec.
2012.

[16] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving
energy efficiency by making DRAM less randomly accessed,” in
Proc. Int. Symp. Low Power Electron. Des., 2005, pp. 393–398.

[17] H. Zheng and Z. Zhu, “Power and performance trade-offs in con-
temporary DRAM system designs for multicore processors,” IEEE
Trans. Comput., vol. 59, no. 8, pp. 1033–1046, Aug. 2010.

[18] Micron Tech. Inc.,MT41J256M4JP-15E Datasheet, 2010.
[19] Micron Tech. Inc.,MT42L128M32D1LF-25WT Datasheet, 2011.
[20] Micron Tech. Inc. (2012). System power calculator [Online]. Avail-

able: http://www.micron.com/products/support/power-calc
[21] Y. Lu, D. Wu, B. He, X. Tang, J. Xu, and M. Guo, “Rank-aware

dynamic migrations and adaptive demotions for DRAM power
management,” CoRR, vol. abs/1409.5567, 2014, http://arxiv.org/
abs/1409.5567

[22] Q. Deng, D. Meisner, A. Bhattacharjee, T. Wenisch, and R. Bian-
chini, “CoScale: Coordinating CPU and memory system DVFS in
server systems,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Micro-
archit., 2012, pp. 143–154.

[23] B. He, Q. Luo, and B. Choi, “Cache-conscious automata for XML
filtering,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 12, pp. 1629–
1644, Dec. 2006.

[24] B. He and Q. Luo, “Cache-oblivious databases: Limitations
and opportunities,” ACM Trans. Database Syst., vol. 33, no. 2,
pp. 8:1–8:42, 2008.

[25] H. Liu, H. Jin, X. Liao, W. Deng, B. He, and C.-Z. Xu, “Hotplug or
ballooning: A comparative study on dynamic memory manage-
ment techniques for virtual machines,” IEEE Trans. Parallel Distrib.
Syst., 2014, DOI: 10.1109/TPDS.2014.2320915

[26] F. Kong, Y. Wang, Q. Deng, and W. Yi, “Minimizing multi-
resource energy for real-time systems with discrete operation
modes,” in Proc. 22nd Euromicro Conf. Real-Time Syst., 2010, pp.
113–122.

[27] V. Devadas and H. Aydin, “On the interplay of voltage/frequency
scaling and device power management for frame-based real-time
embedded applications,” IEEE Trans. Comput., vol. 61, no. 1,
pp. 31–44, Jan. 2012.

[28] M. E. T. Gerards and J. Kuper, “Optimal DPM and DVFS for
frame-based real-time systems,” ACM Trans. Archit. Code Optim.,
vol. 9, no. 4, pp. 41:1–41:23, 2013.

[29] P. D. Welch, “On a generalized m/g/1 queuing process in which
the first customer of each busy period receives exceptional serv-
ice,” Oper. Res., vol. 12, no. 1, pp. 736–752, 1964.

[30] Micron Tech. Inc., TN-41-01: Calculating Memory System Power for
DDR3, 2007.

[31] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in
hybrid memory systems,” in Proc. Int. Conf. Supercomput., 2011,
pp. 85–95.

[32] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramo-
nian, and A. Davis, “Micro-pages: Increasing DRAM efficiency
with locality-aware data placement,” in Proc. 15th Archit. Support
Program. Lang. Oper. Syst., 2010, pp. 219–230.

[33] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. Englewood Cliffs, NJ, USA: Prentice-Hall, 2003.

[34] M. T. Yourst, “PTLsim: A cycle accurate full system x86-64 micro-
architectural simulator,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2007, pp. 23–34.

Yanchao Lu received the BS degree in computer
science and technology from the Beijing Institute
of Technology, China, in 2010. He is currently
working toward the PhD degree at the Depart-
ment of Computer Science and Engineering,
Shanghai Jiao Tong University, China. His
research interests include low-power system
design, GPGPU, and parallel and distributed
systems.

Bingsheng He received the bachelor’s degree
from Shanghai Jiao Tong University and the PhD
degree from the Hong Kong University of Science
and Technology in 2003 and 2008, respectively,
both in computer science. He is currently an
assistant professor in Division of Networks and
Distributed Systems, School of Computer Engi-
neering of Nanyang Technological University,
Singapore. His research interests include high
performance computing, distributed and parallel
systems, and database systems.

Xueyan Tang received the BEng degree in com-
puter science and engineering from Shanghai
Jiao Tong University and the PhD degree in com-
puter science from the Hong Kong University of
Science and Technology in 1998 and 2003,
respectively. He is currently an associate profes-
sor in the School of Computer Engineering at
Nanyang Technological University, Singapore.
He has served as an associate editor of the IEEE
Transactions on Parallel and Distributed Sys-
tems. His research interests include distributed

systems, mobile and pervasive computing, and wireless sensor net-
works. He is a senior member of the IEEE.

Minyi Guo received the BS and ME degrees in
computer science from Nanjing University, China,
in 1982 and 1986, respectively, and the PhD
degree in information science from the University
of Tsukuba, Japan, in 1998. From 1998 to 2000,
he had been a research associate of NEC Soft,
Ltd. Japan. He was a visiting professor at the
Department of Computer Science, Georgia Insti-
tute of Technology. He was a full professor at the
University of Aizu, Japan, and is the head of the
Department of Computer Science and Engineer-

ing at Shanghai Jiao Tong University, China. He has published more
than 150 papers in well-known conferences and journals. He has served
as an associate editor of the IEEE Transactions on Computers and the
IEEE Transactions on Parallel and Distributed Systems. His research
interests include automatic parallelization and data-parallel languages,
bioinformatics, compiler optimization, high-performance computing, and
pervasive computing. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LU ET AL.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND... 2381

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

