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Abstract—k Nearest Neighbors (k-NN) search is a widely used category of algorithms with applications in domains such as computer

vision and machine learning. Despite the desire to process increasing amounts of high-dimensional data within these domains, k-NN

algorithms scale poorly on multicore systems because they hit a memory wall. In this paper, we propose a novel data filtering strategy

for k-NN search algorithms on multicore platforms. By excluding unlikely features during the k-NN search process, this strategy can

reduce the amount of computation required as well as the memory footprint. It is complementary to the data selection strategies used in

other state-of-the-art k-NN algorithms. A Subspace Clustering for Filtering (SCF) method is proposed to implement the data filtering

strategy. Experimental results on four k-NN algorithms show that SCF can significantly improve their performance on three modern

multicore platforms with only a small loss of search precision.

Index Terms—k Nearest neighbors, high-dimensional space, memory wall, multicore systems, scalability, subspace clustering for filtering
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1 INTRODUCTION

SIMILARITY search is very effective in solving statistical
classification tasks from diverse domains such as com-

puter vision [1], bioinformatics [2], data analysis [3], and
handwriting recognition [4]. By finding similar items within
a database of known items, existing knowledge can be used
to predict unknown information. A frequently used class of
algorithms for solving similarity search is k Nearest Neigh-
bors (k-NN) search. Given any query object, the task is to
find k data items within the database that are most similar
to the query object, where the similarity is often measured
in terms of euclidean distance.

With the rapidly increasing amount of data as we are
entering the age of big data [5], efficient parallel algo-
rithms for k-NN search are needed to make best use of
multicore. Consider the vast volume of image data now
available due to widespread digital photography, which
makes computer vision a very interesting and challenging
research field. In 3D reconstruction tasks, for example,
Agarwal et al. [6] estimate that pairwise matching—
which involves similarity search—on a dataset of 100,000
images using 500 processor cores would take 11.5 days.
They avoid computing matches for all image pairs, but
their final solution still spends 13 out of 21 hours comput-
ing feature matches when reconstructing a scene from
150,000 images on a cluster with 498 processor cores.

In many image-processing systems such as those that
match content from different images, features are first
extracted from image files using algorithms like SIFT [7].
Then, similar features between images are sought using
k-NN algorithms to find matched features between different
images. Finally, these matched features can be used to locate
common objects in the images so that they are recognized by
the system.

In general, a feature f can be defined as a D dimensional
vector: f ¼ ½e1; e2; . . . ; eD�. The database X is defined as a set
of N features: X ¼ ff1; f2; . . . ; fNg. We call the feature that
is used to query the database X the “query feature” and the
features inX the “reference features”. Based on these defini-
tions, the k-NN problem can be formally described as: given
a query feature q, find the k reference features in X that
have the shortest (euclidean) distances to q. As image-proc-
essing applications are becoming more and more popular,
the size of typical feature sets X is increasing. The
dimensionality of features is also high: e.g., SIFT features
have 128 dimensions.

Many approximate algorithms [8], [9], [10] have been
proposed to deal with large sets of feature vectors. Instead
of returning the actual k-NN, they return k results that are
highly likely to be the k-NN. Though the precision of k-NN
algorithms is very important, in many domains it is not nec-
essary to be 100 percent accurate. In image processing, for
example, the features themselves are only an approximate
representation of the underlying data. By trading precision
for performance, approximate algorithms can greatly
improve the efficiency of k-NN search.

However, these approximate algorithms do not work
efficiently on multicore systems [11], [12] due to memory
latency and bandwidth issues (also known as the memory
wall). In general, most approximate algorithms need two
types of data structures: one for index data, and another for
feature data. Both of these are frequently visited during k-
NN search. The index structure is used for finding reference
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features—called candidate features—that are most likely to
be within the k-NN. To decide whether a candidate feature
is one of the k-NN features, its distance to the query feature
will be calculated using the feature data.

The index structure in approximate algorithms usually
incurs random memory accesses that lead to many cache
misses. The Randomized kd-tree (RKD) algorithm [10], for
example, often visits different branches within its tree struc-
ture unpredictably during the search process. The data
structure for the reference features is a matrix and can so
requires O(ND) space. When both N and D are very large,
which is often the case of high-dimensional problems, it can
consume quite a lot of memory. For example, this structure
can consume tens or hundreds of megabytes for a single
image in the image matching problem. New algorithms,
such as SONNET [11] and RBC [12], focus on designing
cache-friendly and easy-to-parallelize index structures that
have a more regular memory access pattern than earlier
techniques. Unfortunately, they still require a great deal of
unnecessary computation.

After carefully analyzing existing approximate k-NN
algorithms, we have observed that they all use a data selec-
tion strategy. That is, based on certain characteristics of the
feature space, the algorithms try to find some candidates
that are most likely to be within the k-NN features. These
algorithms work well in low-dimensional spaces. However,
due to the problem that is dubbed the curse of dimensionality
[3], [13], these techniques become rapidly less efficient as
the dimensionality of the problem increases. Therefore, it
takes more time, since they have to search more candidates,
in order to maintain a reasonable search precision.

In this paper, we propose a novel data filtering strategy
for high-dimensional k-NN search. Instead of finding the
likely candidates in the data selection strategy, our data fil-
tering strategy excludes those unlikely features based on
distance estimation. The data filtering strategy has two
advantages. First, it reduces computation and memory
accesses by replacing high-dimensional distance calculation
with less expensive distance estimation. Second, its index
structure for filtering has a very small memory footprint
and thus reduces the effect of the memory wall. Based on
our experimental evaluation on three modern multicore
platforms, we demonstrate that by combining the data filter-
ing and data selection strategy, promising results can be
achieved for k-NN search.

The contributions of this paper are as follows:

� We propose a novel data filtering strategy for k-NN
search algorithms on multicore platforms. Its key
idea is to reduce unnecessary computation and
memory footprint of k-NN algorithms so that they
can scale better on parallel platforms.

� We implement a Subspace Clustering for Filtering
(SCF) algorithm to support efficient data filtering,
which is achieved through accurate distance estima-
tion based on clustering in multiple subspaces. Its
structure is small enough to fit in the last-level cache,
which reduces the effect of memory wall on multi-
core platforms.

� We develop a Reward-and-Penalty method to enable
SCF to maintain a high filtering precision across

different datasets. By adjusting the values of reward
and penalty factors, SCF can help k-NN algorithms
achieve higher performance with a small loss of
search precision.

This paper is organized as follows: Section 2 presents our
SCF method. Section 3 shows the experimental results of
SCF. Section 4 discusses the tradeoff between performance
and precision of SCF. Section 5 discusses the related work.
Finally, Section 6 concludes this paper.

2 DATA FILTERING STRATEGY

In this section, we give the details of our data filtering strat-
egy and how it is implemented. The following squared
euclidean distance (SED) is used to measure the similarity
between two features:

SEDðfi; fjÞ ¼
�
�fi � fj

�
� ¼

XD

m¼1

�

fi½m� � fj½m�
�2
: (1)

The square root in ED is not used in SED, which can reduce
the computation without changing the ranking of results.

2.1 A Case Study: Brute-Force (BF) Search

We use brute-force search to demonstrate how our data fil-
tering strategy works. To find the k-NN of a given query
feature, brute-force search first calculates all the distances
between the query feature and all reference features in the
database. Then, it uses a max-heap of size k to accumulate
the features with the smallest distances. This algorithm is
very computationally intensive, with OðNDÞ cost to calcu-
late the distances and OðN log kÞ cost to find the k-NN. Dis-
tance calculations will dominate the time, as log k is very
small while D can be large for high-dimensional problems.
It also has a large memory footprint, as it needs to scan the
whole database for each query.

Algorithm 1. Brute-Force Search with Data Filtering.

Input:X: reference feature database
Input: q: query feature
Input: k: number of nearest features required
Output: heap: max-heap that contains the k-NN
1 Initialize heapwith size k;
2 heap:max 1;
3 forall the ri 2 X do
4 tmp1  SED Estimationðq; riÞ;
5 if tmp1 < heap:max then
6 tmp2  SEDðq; riÞ;
7 if tmp2 < heap:max then
8 heap:pushðtmp2; iÞ;
9 heap:popMaxðÞ;
10 return heapwith the k nearest features;

Since k is usually much smaller than N (the size of the
database X), many distance calculations are not necessary
as most features will be far away from the query feature. If
we can exclude those features that are unlikely to be within
the k-NN using simple distance estimation, the performance
should be improved. As shown in Algorithm 1, instead of
calculating the SED directly, the data filtering based search
will call the function SED Estimation first (line 4), in order
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to quickly estimate the distance between the query feature
and reference feature. Only when the estimated distance is
smaller than the current maximum distance in the heap will
the algorithm calculate their real SED (line 6). There is an
implicit assumption that the estimation is always an over-
estimation. In this way, many unnecessary calculations and
memory accesses can be avoided, assuming that the
SED Estimation calculation is simple, fast and accurate.

2.2 Distance Estimation through Clustering

The key issue now is how to estimate the distances accu-
rately and efficiently. Clustering is a method that has often
been used to estimate the distances between one query fea-
ture and a group of features. For example, the k-means clus-
tering algorithm in the FLANN library [10] works as
follows: first, it randomly chooses C features from X, that
will be used as group centers. Then, it calculates the distan-
ces between all the other features in X and these group cen-
ters. Finally, each feature will be assigned to its closest
group, as determined by the distances to group centers.
After the first iteration, new group centers can be generated
by calculating the mean value of the features within each
group. Multiple iterations are needed in order to achieve a
good clustering result. In this paper, we use the same
k-means clustering algorithm for our data filtering strategy.
Although better clustering methods could be used, this
would not affect our general approach.

After clustering, the entire feature space is divided into a
number of groups and the center of each group is used to
represent the features within that group. However, when
the dimensionality becomes large, the features will be
sparsely distributed in the space and thus the radius of each
group will also become large. For example, Fig. 1a gives the
average radius of the groups in a randomly generated data-
set. As we can see, the average radius of the groups grows
quickly with the increasing dimensionality. When the
radius is large, traditional clustering-based distance estima-
tion schemes will become less accurate.

Let’s take a simple four-dimensional case as an example,
as illustrated in Fig. 1b. Here, q is the query feature; and A,
B, C and D are four reference features. After clustering on
the reference features, based on the all four dimensions, A
and B are put into the same group with the center g1, and C
and D are put into the other group with the center g2. The

left side of Fig. 1c illustrates the clustering result (we use
circles as a simplified representation of hyperspheres within
the actual four-dimensional space). If we use this clustering
result to estimate distance between the query and the refer-
ence features, then kg1 � qk will represent kA� qk and
kB� qk while kg2 � qk will represent kC � qk and kD� qk.
As kg1 � qk ¼ 21 and kg2 � qk ¼ 26, the order of the refer-
ence features based on the distance estimation is A, B, C, D.
However, their real distances are kA� qk ¼ 52, kB� qk ¼ 8,
kC � qk ¼ 15 and kD� qk ¼ 43, and the correct order is
actually B, C, D, A. If k ¼ 1, the k-NN search based on this
distance estimation will have 0 percent accuracy, while in
the case of k ¼ 2, the accuracy is only 50 percent.

From the above example we can find that traditional clus-
tering within high-dimensional spaces has two key prob-
lems. First, it is so coarse-grained that it is not able to tell the
difference between features within the same group. For
example, it cannot tell that B is much closer to q than A. Sec-
ond, it could easily produce incorrect results: just because a
group center is close to a query vector, does not mean that all
features in that group are close to the query vector. For exam-
ple, though group g1 is closer to q than group g2, feature C in
g2 has a smaller distance to q than A of group g1. The reason
is that the radius of each group could be very large, and thus
this risks obscuring the differences between groups.

To overcome this problem, we apply subspace clustering
to the example, which is shown in the right side of Fig. 1c.
In the subspace clustering approach, the four-dimensional
space is divided into two subspaces based on the first two
dimensions and the last two dimensions respectively.
Within each of the subspaces, we use the same clustering
method to divide the features into two groups. The average
radius of the groups in subspace clustering is only 0:75,
which is much smaller than the average radius in the full-
space clustering, which was 6. Since the radius has reduced
in magnitude, the estimation accuracy using clustering can
be improved. For high-dimensional spaces, subspace clus-
tering can be even more effective, as a larger number of sub-
spaces can be used. We will demonstrate this in Section 4.

2.3 Subspace Clustering for Filtering

Based on the above analysis, we propose the following Sub-
space Clustering for Filtering method. As Fig. 2 shows, the
data structure of SCF is a multi-level cover of the feature

Fig. 1. The challenge of using clustering for distance estimation in high-dimensional spaces. (a) shows the average radius of a randomly generated
dataset after clustering. This dataset contains 10,000 features, which are divided into 32 groups using the k-means clustering algorithm. Each ele-
ment of each of the features is uniformly distributed in the range of [1, 128]. To make it easier to understand, we give a simple four-dimensional exam-
ple, whose features are listed in (b). (c) shows how our subspace clustering method works with this example.
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space. Instead of using all of the dimensions for clustering,
SCF divides the space into S subspaces, each of which has

bDSc dimensions. The remainder of D
S can either be treated as

an additional subspace, or these dimensions can be distrib-
uted to the other subspaces. Then, within each subspace, we
use the aforementioned k-means clusteringmethod to divide
the features into C different groups where each group will

contain N
C features on average. The SCF-based distance esti-

mation depends on two data structures: the SCF index and a
matrix of partial distances for the query feature.

The SCF index is created based on the clustering results
in the subspaces. The detailed algorithm for creating the
SCF index is given in Algorithm 2. b, u and g in the algo-
rithm are three matrices that represent the SCF index. Each

element bij

�

i 2 ½0; NÞ, j 2 ½0; SÞ� represents the group ID of

the ith feature of X within the jth subspace. ujt
�

t 2 ½0; CÞ�
represents the center of the tth group in the jth subspace.
Similarly, gjt is used to represent the radius of the tth group

in the jth subspace.

Algorithm 2. Building the SCF Index.

Input: S: number of subspaces
Input: C: number of groups
Output: b½N �½S�: group IDs of each feature
Output: u½S�½C�: centers of each group
Output: g½S�½C�: radii of each group

1 d bDSc;
2 for i 0 to S � 1 do
3 Based on dimensions ½i� d; ðiþ 1Þ � dÞ, use a clustering

method (e.g., k-means) to divideX into C groups;
4 for j 0 to N � 1 do
5 b½j�½i�  group ID of the jth feature;
6 for j 0 to C � 1 do
7 u½i�½j�  center of the jth group;
8 g½i�½j�  radius of the jth group;
9 return b, u and g;

The matrix of partial distances for the query feature is cre-
ated by Algorithm 3. It is represented by the matrix d in the
algorithm. The Partial SED (PSED) between the query feature
and group centers in each subspace can be defined as

PSEDl;uðfi; fjÞ ¼
Xu

m¼l

�

fi½m� � fj½m�
�2
; (2)

where 1 � l � u � D, and ½l; u� bound the dimensions used
to form a subspace.

Algorithm 3. Calculation of Partial Distances between
the Query Feature and the Group Centers.

Input: q: query feature
Input: u½S�½C�: group centers
Output: d½S�½C�: PSEDs between q and u

1 d bDSc;
2 d½S�½C�  0;
3 for i 0 to S � 1 do
4 for j 0 to C � 1 do
5 l i� d;
6 u ðiþ 1Þ � d� 1;
7 d½i�½j�  PSED½l;u�ðq; u½i�½j�Þ
8 return d;

Algorithm 4 shows the steps for distance estimation. The
PSED between the query and the center of a group is used to
estimate the PSED between the query and reference features
within that group. For each reference feature, the sum of all
estimated PSEDs in every subspace is used as the Estimated
SED (ESED) between the query and the reference feature.

Algorithm 4. SCF Estimationðq; rtÞ
Input: q: query feature
Input: t: the index number of rt inX
Input: d½S�½C�: PSED matrix
Output: ESED: estimated SED

1 ESED 0;
2 for i 0 to S � 1 do
3 ESED ESEDþ d½i�½b½t�½i��;
4 return ESED

Table 1 shows the matrix for the PSEDs of the previous
example, where g11 ¼ ð�3; 2; ; Þ, g12 ¼ ð3;�3; ; Þ,
g21 ¼ ð ; ; 0:5; 0:5Þ, and g22 ¼ ð ; ; 3:5; 3:5Þ. Thus, in the right
side of Fig. 1c, the ESEDs of all reference features are as fol-
lows:

kA� qkesed ¼ kg11 � qkpsed þ kg22 � qkpsed ¼ 37:5

kB� qkesed ¼ kg11 � qkpsed þ kg21 � qkpsed ¼ 13:5

kC � qkesed ¼ kg12 � qkpsed þ kg21 � qkpsed ¼ 18:5

kD� qkesed ¼ kg12 � qkpsed þ kg22 � qkpsed ¼ 42:5:

They result in the estimated order B, C, A, D, which is
closer to the real order of B, C, D, A than that estimated
based on the original full-space clustering.

2.4 Space and Time Complexity Analysis

As shown in the above algorithms, SCF uses small index
structures. Since there are S subspaces and each one has C

Fig. 2. The basic structure for the SCF method, when it is using S sub-
spaces. All features are assigned to C different groups within each
subspace.

TABLE 1
PSEDs between q and Group Centers

in the Example

g11 g12 g21 g22

q 13 18 0.5 24.5
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groups, it takes OðSC D
SÞ ¼ OðCDÞ space to store all the

group centers (u) and OðSCÞ space to store the radius of
each group (g). Then, it takes OðNSÞ space to store group
IDs (b) for all reference features. During runtime, it will cost
OðSCÞ space to store the PSEDs (d) for each query feature.
As the magnitude of N will dominate the other parameters,
the space complexity for SCF can be simplified as OðNSÞ.
Since S is much smaller than D (8 versus 128 in our imple-
mentation for the SIFT dataset), the index structure of SCF
is more likely to fit into the shared cache. For example,
when N ¼ 20;000, the brute-force algorithm needs to access
up to 10 MiB memory (each element of the feature vector is
a 32-bit floating point number) while the SCF structure only
needs around 160 KiB (the group ID is represented by one
byte). Therefore, SCF can better utilize the shared cache and
requires significantly fewer memory accesses compared to
the original brute-force algorithm.

Compared with the brute-force algorithm, SCF can
make time savings by reducing the number of euclidean
distance calculations. As Algorithm 4 shows, in SCF, it
costs OðSC D

SÞ ¼ OðCDÞ time to calculate the PSEDs
between the query and all group centers. Then, SCF takes
OðNSÞ time to estimate the distances for all features.
Finally, for each query, only a few features will be
selected to have their real distances calculated. Suppose c
percent of the features will be selected. It takes
c%�OðNDÞ to find the k-NN. From our experimental
result on SIFT features, SCF only picks c% � 3:13% of the
features. This shows that SCF is very efficient in reducing
unnecessary distance computations.

2.5 Discussion

It is worth noting that the overhead of Algorithm 2 is a one-
off cost, which will be relatively minor when amortized
over many queries. Also note that by adjusting S and C in
the above algorithms, we can change the estimation accu-
racy of SCF. Usually when S and C are increased, the esti-
mation accuracy improves. We will show the correlation
between accuracy, S and C, and discuss how to further
improve estimation accuracy in Section 4.

3 EVALUATION

In this section, we evaluate the performance of our SCF
method when it is applied to four popular k-NN algorithms
on five real-world and synthetic datasets. The performance
improvement that they attain on three multicore platforms
is analyzed.

3.1 Experimental Setup

In this section, we detail the hardware and software config-
urations for our performance evaluation.

3.1.1 Multicore Platforms

Three multicore platforms are used in our evaluation:

1) AMD16: AMD Opteron Processor 8380, 4 cores � 4
sockets @ 2.5 GHz, 6 MiB L3 shared cache, 16 GiB
DDR2 (800 MHz) memory;

2) AMD64: AMD Opteron Processor 6276, 16 cores � 4
sockets @ 2.3 GHz, 16 MiB L3 shared cache, 64 GiB
DDR3 (1,333 MHz) memory;

3) MIC: Intel Xeon Phi Coprocessor 5110P, 60 cores @
1.0 GHz, 30 MiB L2 shared cache, 8 GiB GDDR5 (5.5
GHz) memory.

The multicore machines, AMD16 and AMD64, are two
typical multicore platforms, which are popular and widely
deployed. For example, the Dell R815 (AMD64) is still a
popular server being marketed by Dell. MIC has been in
mass production since 2013. The g++-4.4 compiler is used
on the AMD16 and AMD64 machines while icc-14.0 is used
on the MIC platform.

3.1.2 Algorithms

Four popular algorithms for high-dimensional problems are
used in our evaluation. We give a short introduction of each
of them, here:

1) Brute-force: This algorithm searches the whole data-
base to find the k-NN, as described in previous sec-
tion. It is effective when dealing with problems that
require accurate results.

2) Randomized kd-Trees: This is an efficient variant of
the popular kd-tree algorithm. Multiple kd-trees are
built as its index structure. During searching, it tra-
verses these kd-trees and puts good candidate nodes
in a priority queue for the next round of searching.
In this way, it only searches those most promising
nodes to save time. It is efficient for acquiring
approximate k-NN results.

3) Hierarchical k-means (HKM): This is an efficient var-
iant of the popular k-means clustering algorithm.
Instead of clustering the data only once, it recur-
sively divides large top-level groups into smaller
sub-groups until they are small enough to form a
basic group (e.g., smaller than 32). During searching,
it also uses a priority queue to store candidate
groups. This algorithm is also very efficient for get-
ting approximate results.

4) Random Ball Cover (RBC): This method uses a two-
level clustering to organize its groups. On each level,
it uses BF to do efficient searching. There are two var-
iants: one provides exact and one provides approxi-
mate results. The approximate version is more
efficient for high-dimensional problems and we will
use this version in our experimental evaluation.

The implementations of the first three algorithms (BF,
RKD and HKM) have been taken from the FLANN [10]
library, which is also included in OpenCV [14] to provide
fast approximate k-NN search functionality for computer
vision related tasks. RBC is the state-of-the-art algorithm on
parallel platforms [12] and is well optimized to reduce scal-
ability problems when running on multicore systems.

Two common metrics are used to evaluate their
improved performance:

1) Speedup: Sequential execution time divided by par-
allel execution time:

Tsequential
Tparallel

;
2) Improvement: Original execution time divided by

execution time after applying SCF:
Toriginal
TSCF

.
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3.1.3 Datasets

The datasets listed in Table 2 are used to evaluate the per-
formance of the aforementioned algorithms:

1) “SIFT” contains features generated by SIFT [7] algo-
rithm, which is one of the most widely used algo-
rithms in computer vision and shows great value in
many practical use cases.

2) “Random” is a synthetic dataset, which contains fea-
tures that are randomly generated. Due to its ran-
domness and uniform distribution, this dataset is
challenging for most k-NN algorithms.

3) “Madelon” is an artificial dataset containing data
points grouped in 32 clusters placed on the vertices
of a five dimensional hypercube [15]. It is one of five
datasets used in the NIPS 2003 feature selection
challenge.

4) “HAR” is a real-world dataset previously used in
[16]. It contains the recordings of 30 subjects per-
forming activities of daily living while carrying a
waist-mounted smart phone with embedded inertial
sensors.

5) “Digits” is a real-world dataset [17], which contains
handwritten digits that have been size-normalized
and centered in a fixed-size image (8� 8).

3.2 Sequential Performance Improvement

In this section, we evaluate the sequential performance
improvement after applying SCF to the aforementioned four
algorithms. The results are collected by running them on a
single core of the AMD16 machine. Note that part of the per-
formance improvement comes from a sacrifice of precision.
Please see Section 4 for further discussion regarding preci-
sion; we focus on performance issues in this section.

As shown in Fig. 3, SCF can improve the performance by
up to 8:85� for BF (in the “HAR” case) and up to 5:78� for
RBC (“SIFT”). This can be explained by the exhaustive

search in both algorithms benefiting greatly from SCF. The
performance improvements of RKD and HKM are not as
good as that for BF and RBC. This is because both RKD and
HKM spend a lot of time searching their complex index
structures to get a small number of good candidates. Since
the number of candidates for filtering is small, SCF has less
effect on the two algorithms. However, on average, SCF can
still improve the performance of RKD by 33 percent and
that of HKM by 19 percent.

3.3 Parallel Performance Improvement

In this section, we evaluate the parallel performance
improvement of our method. Here, all algorithms are paral-
lelized by OpenMP and the suffix “_SCF” means that SCF is
applied to the corresponding algorithm.

3.3.1 Performance Improvement of the BF_SCF

Table 3 lists the parallel performance improvement of
BF_SCF on the AMD16, AMD64 and MIC machines. Com-
pared with their sequential performance shown in Fig. 3, the
BF_SCF search has the most improvement. For the case of
the SIFT dataset on AMD16, its improvement is 34:75� (16
cores), which is much better than the 8:11� improvement on
a single core. Fig. 4a explains why the parallel BF_SCF is able
to getmore performance gain than its sequential counterpart.
The speedup curves in the figure show the good scalability of
BF_SCF, while the original BF’s speedup curves become flat
after eight cores. On both the AMD16 and the AMD64
machines, BF hits the memory wall much earlier than when
all cores are used. This result shows that for an embarrass-
ingly parallel algorithm like BF, the memory wall becomes
one of themost serious bottlenecks.

However, after applying SCF, its scalability has been sig-
nificantly improved. For example, the speedup against the
original sequential BF has been improved from 3:0� to
104:59� on the AMD16 and from 12:84� to 199:63� on the
AMD64 when all cores available are used. On the MIC plat-
form, the scalability of the original BF is better because MIC
has much higher memory bandwidth. Moreover, since MIC
has four hardware threads in each core, it can efficiently
hide the memory latency through overlapping computation
and memory access. In this case, the memory wall problem
in the original BF is greatly relieved and it has reasonable
scalability on MIC, as shown in Fig. 4c. However, BF_SCF
still has much better performance than the original BF due
to the reduced computation.

The scalability of the proposed SCF method is always
better than existing k-NN algorithms, but BF_SCF shows
the best scalability. Since the scalability improvement on
other algorithms is much smaller (several times) than

TABLE 2
Overview of the Test Datasets

Name Number of
ref features

Number of
query features

Dimensionality

SIFT 25,271 7,481 128
Random 25,000 7,500 128
Madelon 2,000 1,800 500
HAR 7,352 2,947 560
Digits 3,823 1,797 64

Fig. 3. Sequential performance improvement after applying SCF to each
algorithm on the AMD16 machine.

TABLE 3
Parallel Performance Improvement of BF_SCF over the Original
BF Algorithm on Each Platform and Dataset when Using All of

the Available Cores

Platform SIFT Random Madelon HAR Digits

AMD16 34:75� 12:52� 2:50� 20:91� 3:91�
AMD64 15:54� 5:04� 2:66� 9:43� 4:13�
MIC 3:23� 2:11� 1:43� 2:97� 1:33�
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BF_SCF, we would have to use additional figures in order to
differentiate their scalability clearly. We have omitted the
scalability graphs of SCF applied to other algorithms due to
limited space.

3.3.2 Performance Improvement of Other Algorithms

Figs. 5a, 5b and 5c show the performance improvement of
other k-NN algorithms on parallel platforms. The perfor-
mance improvement of RBC_SCF is very similar to that of
its sequential counterpart (5:77� vs. 5:41� on AMD16 and
5:64� vs. 5:54� on AMD64 in the best cases). Since this algo-
rithm has already been optimized for multicore platforms, it
scales well on parallel platforms and does not suffer from
the memory wall. This shows that SCF is very cache-effi-
cient and has little impact on the performance of those algo-
rithms that already have good cache utilization. On
AMD16, RKD_SCF and HKM_SCF get their best perfor-
mance improvement of 4:66� and 1:87�, which is much bet-
ter than their sequential improvement (2:55� and 1:53�).
Similar results are observed on AMD64.

However, for the “Madelon” and “Digits” datasets, nei-
ther the RKD_SCF nor HKM_SCF algorithms have more of
a performance improvement than their sequential counter-
parts. The reason is that both datasets are quite small (3.8
MiB for “Madelon” and 0.88 MiB for “Digits”) so that they
can fit in the last-level cache and are less likely to hit the
memory wall. Moreover, due to the lower dimensionality,
RKD and HKM perform efficiently on “Digits” anyway.
Thus, fewer features can be filtered by SCF. Nonetheless, in
most cases SCF can significantly improve performance in
these algorithms on AMD16 and AMD64.

Since the MIC platform has a higher memory bandwidth,
the memory wall problem is relieved and the performance
improvement of most algorithms after applying SCF is quite
similar to their sequential counterparts, which means they
scalewell on this newplatform.We note that the current eval-
uation code does not contain low-level optimizations specific
to the architecture, and thus its computing ability may not be
fully utilized.Wewill explore this in our futurework.

3.3.3 Contributors to the Performance Improvement

Figs. 6a, 6b and 6c show the contributions of reduced com-
putation and memory accesses to the performance improve-
ment. As mentioned before, these are the two key factors
that provide a performance improvement. However, since
reduced computation means reduced memory accesses in
SCF, precise separation of these two factors is not easy.
Therefore, these figures only give a rough idea of their con-
tributions to the overall performance improvement.

On both AMD16 and AMD64, memory is a bottleneck
and the reduced memory accesses contribute most of the
performance gain of BF_SCF, RKD_SCF and HKM_SCF as
they are memory-intensive algorithms. However, as RBC is
optimized for multicore platforms by efficiently utilizing
the shared cache, reduced memory accesses contribute less
in this algorithm.

On MIC it is more obvious that most of the performance
gain of RBC_SCF comes from reduced computation.
Although BF requires a large number of memory accesses,
it can efficiently utilize the high memory bandwidth due to
its regular memory access pattern. Therefore, the reduced
computation contributes most to the performance gain in

Fig. 4. Scalability of BF and BF_SCF when running on the three platforms. The y-axis represents the speedup over sequential BF algorithm. Here the
SIFT dataset is used as an example.

Fig. 5. Parallel performance improvement of other algorithms with different dataset on the three platforms.

Fig. 6. The percentage of contributions to the performance improvement on the three platforms with “SIFT”.
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BF_SCF. However, for RKD_SCF and HKM_SCF, as their
index structures have many branches that lead to irregular
memory accesses, the reduced memory accesses are still
crucial to their performance gain.

3.3.4 Statistics of Performance Monitoring Counters

Figs. 7a, 7b and 7c are provided to verify our previous
observations and analyses. In the figures, Cycles Per
Instruction (CPI) is used to evaluate the computing effi-
ciency while Misses Per Instruction (MPI) is used to repre-
sent intensity of the last-level cache misses per instruction.
For both AMD16 and AMD64, the CPIs have a very close
relationship with the MPIs as they grow and drop in the
same pattern. That means the CPIs are mainly affected by
the memory latencies. However, for MIC, CPI is not signifi-
cantly influenced by MPI, which indicates that the Xeon Phi
can provide high memory bandwidth for these algorithms.

4 PERFORMANCE VERSUS PRECISION

Quantifying the acceptable level of precision is a relevant
issue for approximate k-NN algorithms as there is always a
trade-off between search precision and performance.
Although 100 percent precision is not necessary in some
domains, such as many computer vision use cases, very low
precision is definitely not acceptable. In this section, we dis-
cuss a few ways for SCF to best balance performance and
precision.

4.1 Evaluation of SCF Parameters

The number of subspaces, S, and the number of groups in
each subspace, C, are two important parameters within the
SCF method. We use two datasets, “SIFT” and “Random”, to
show the importance of choosing the right (S,C) pair for SCF.
Fourmetrics are used to evaluate the effectiveness of SCF:

1) Estimation Time (ET ) represents the total time used
for distance estimation (in seconds) by SCF. The
smaller ET is, the faster the SCF distance estimation
can be;

2) Average Error (AE) is the average absolute error
between the real distances (SED) and the estimated
distances by SCF. The smaller AE is, the higher
SCF’s estimation accuracy will be;

3) Filtering Rate (FR) represents the percentage of ref-
erence features that can be excluded by SCF. The
higher FR is, the more features are excluded;

4) Lost Precision (LP ) shows the percentages of k-NN
results that are falsely excluded by SCF. The smaller
LP is, the better for our filtering strategy.

Since both the two datasets have a dimensionality of 128,
we choose S within the range of [1, 64] while C is either 8,
16 or 32. Usually C can be up to 255 if one byte is used to
represent the group ID. Although other values for C can be
used in SCF, the three values are sufficient for our discus-
sion, given space limitations. Figs. 8 and 9 show the perfor-
mance and precision of BF_SCF on “SIFT” and “Random”
datasets respectively.

From Figs. 8a and 9a, we can find that the ET is highly
related with the value of S. This result matches our previous
analysis for its time complexity ofOðNSÞ. Since distance esti-
mation takes an important proportion of the search time, we
should pick S to be as small as possible. However, a small S
cannot guarantee a good estimation accuracy. As Figs. 8b
and 9b show, when S is small, the AE is very high for both
datasets. When S is increased, AE decreases, which shows
that the subspace clustering can really improve estimation
accuracy. Note that a larger value forC will also reduceAE.

For the “SIFT” dataset, a poor estimation accuracy (high
AE) leads to SCF having poor search precision, as we can
find in Figs. 8c and 8d. When S is small, FR is kept above 95
percent, which means most distant features can be excluded
by SCF. However, the LP can be up to 80 percent, which
means many true k-NN features are excluded. With an
increased S, FR increases and LP decreases, which shows a
reduced AE could lead to better precision. Of course, this
sacrifices performance since ET will increase in this case.

For the “Random” dataset, if the estimation accuracy
of SCF is poor, this will lead to poor performance, as

Fig. 7. Statistics of hardware performance monitoring counters on the three platforms with “SIFT”.

Fig. 8. The performance and precision of the SCF-based brute-force search algorithm using different numbers of sub-spaces (S) and clustering
groups (C) on the “SIFT” dataset. The brute-force search time is 40.16 s.
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demonstrated in Figs. 9c and 9d. Although LP can be as
small as 0 percent when S is small, which means no preci-
sion is lost, FR is also very low, which means no features
are actually excluded. In this case, BF_SCF will have a
worse performance than BF since all features will be
searched. When S is increased, FR will increase so that SCF
can filter more features. However, the precision will be sac-
rificed as LP will also increase in this case.

Based on the above analysis, we can find that a high
value of AE for “SIFT” shows most estimated distances are
larger than their real values (worst case: larger than k-NN),
which causes false filtering. However for “Random”, a high
value of AE means most estimated distances are smaller
than their real values (worst case: smaller than k-NN),
which leads to poor filtering efficiency. Thus, a careful selec-
tion of S and C is necessary to keep a good balance between
performance and precision for the SCF method.

4.2 Selection of SSS and CCC

For BF_SCF, the search time (ST ) contains two parts: the
total time for distance estimation (ET ) and the time for
searching the un-excluded features. Suppose the original BF
search time is STBF , we have

STBF SCF ¼ ET þ ð1� FRÞ � STBF : (3)

The performance improvement can be expressed as
STBF

STBF SCF
. To model the balance between performance and

precision, we use a new metric named efficiency (�) to evalu-
ate SCF, which is the product of performance improvement
and precision

� ¼ STBF

STBF SCF
� ð1� LP Þ ¼ STBF � ð1� LP Þ

ET þ ð1� FRÞ � STBF
: (4)

In this case, neither poor performance improvement nor
poor precision would lead to good efficiency since good
performance with poor precision is unacceptable while
poor performance with good precision is meaningless for
SCF. We use the data collected in Figs. 8 and 9 to fill (4) and
the results are given in Fig. 10. Thus, by picking the parame-
ters when the highest values of � are achieved, we have the
best (S, C) pair (8, 16) for the “SIFT” dataset and (16, 32) for
the “Random” dataset.

4.3 Reward-and-Penalty Strategy

Although selecting the best (S, C) pair is important, the pro-
cess has some limitations. First, it is time-consuming to
search all possible (S, C) pairs. Second, even if the best (S,
C) pair is found, the precision may still not be good enough.
For example, even if the best (S, C) pair is chosen for “SIFT”,
its LP is still as high as 38:4 percent.

To solve the above problem so that the FR is kept high
and LP is kept low, we propose a Reward-and-Penalty
strategy. This strategy is based on the rationale that, if two
features are allocated to the same group by the clustering
method, they are more likely to be nearest neighbors; other-
wise, they are less likely to be nearest neighbors. Therefore,
during distance estimation, we will reward those features
that are in the close group to the query feature and punish
those features in distant groups.

The Reward-and-Penalty strategy is implemented as
shown in Algorithm 5. In each subspace, we use d½i�½j�

g½i�½j� (line 3)
to tell whether the query is in the corresponding group
(line 5). Then, we can update PSEDs by multiplying it by c

(line 9). The value of c is decided by ’r and ’p (line 6 or

line 8) so that we can control how much we want to reward

or punish. It is also related to the value of ðd½i�½j�
g½i�½j� � 1Þ so that

closer groups will be rewarded more while more distant
groups will be punished more. We call ’r and ’p as the

reward and penalty factors respectively.

Algorithm 5. Reward-and-Penalty Strategy

Input: g½S�½C�: radius for each group
Input: d½S�½C�: PSEDS
Input: ’r: reward factor
Input: ’p: penalty factor
Output: d½S�½C�: updated PSEDs

1 for i 0 to S � 1 do
2 for j 0 to C � 1 do
3 v d½i�½j�

g½i�½j�;
4 c 0;
5 if v � 1 then
6 c ¼ 1þ ’r � ðv� 1Þ;
7 else
8 c ¼ 1þ ’p � ðv� 1Þ;
9 d½i�½j�  d½i�½j� � c

10 returnd

Fig. 11 gives the results after applying this strategy on the
two datasets. For the “SIFT” dataset, when ’r is increased,

Fig. 10. Efficiency of SCF with different S and C.

Fig. 9. The performance and precision of the SCF-based brute-force search algorithm using different numbers of sub-spaces (S) and clustering
groups (C) on the “Random” dataset. The brute-force search time is 39.4 s.
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the search precision (SP ¼ 1� LP ) also increases from 66 to
98 percent (when ’r ¼ 0:8) while FR is still kept above 95
percent. For the “Random” dataset, when the ’p is increased,

its FR increases significantly with little effect on the preci-
sion. In this way, the best values for ’r and ’p can be decided

through this training processing on the sample data.
In summary, the performance and precision of SCF is

related to four parameters: the number of subspaces S, the
number of clustered groups C, the reward factor ’r and the
penalty factor ’p. Based on the steps described above, we

find their optimal values for each dataset, as listed in Table 4.
These values can keep the LP within 5 percent, so that the SP
of the target algorithms will not be significantly affected.
Additionally, it is worth noting that the above selection pro-
cess of the optimal values is not part of the k-NN algorithms
and they are only used by SCF once decided, so it is not an
extra overhead of SCFwhen usedwith the k-NN algorithms.

5 RELATED WORK

In this paper, we focus on accelerating high-dimensional
k-NN search on multicore platforms. Our proposed SCF
method is able to estimate the distance of high-dimensional
features with a cache-friendly structure. This paper is an
extended version of [18], and contains further details and
more experimental results, including introduction of the
Reward-and-Penalty strategy, which can greatly improve
the precision. As far as we know, this is the first effort on
optimization of approximate k-NN algorithms on multicore
systems that addresses both performance and precision.
Our notion of data filtering based on SCF is inspired by sev-
eral previous research works.

5.1 Speeding up kkk-NN on Multicore Systems

Designing multicore-friendly approximate algorithms has
been a recent trend for accelerating k-NN search [11], [12].
Good performance is observed with these algorithms on
parallel platforms. As more advanced hardware will be
deployed in the future, these algorithms have the potential
to get a “free ride” for improving performance. Our pro-
posed technique focuses on reducing the accesses to the fea-
ture data through filtering. It is general and can be
combined with existing algorithms with good precision.

The Xeon Phi is a new coprocessor that uses the Intel
Many Integrated Core (MIC) architecture. Currently, many
researchers are exploring this new architecture. For exam-
ple, Heinecke et al. have implemented the famous Linpack
Benchmark on it, Liu et al. have designed efficient sparse
matrix-vector multiplication on this new architecture [20],
and Ramos and Hoefler have studied the communication

model for its cache-coherent protocol [21]. As far as we
know, our work is the first effort evaluating the perfor-
mance of k-NN algorithms on Xeon Phi.

5.2 Latency Optimization and Data Representation

Cong and Makarychev [22] find that hardware threads on
several multicore platforms are not sufficient to mask the
memory latency of graph algorithms. Perron et al. [23] show
that even for an embarrassingly parallel algorithm—seismic
imaging—data movement costs can dominate the execution
time. Tang et al. [24] show that some popular k-NN algo-
rithms may hit the memory wall due to a poor utilization of
the last-level cache. These works highlight potential mem-
ory latency issues when dealing with multicore platforms.

Vector Approximation (VA) [25] and Vector Quantization
(VQ) [26] share a similar idea of using small structures to rep-
resent data. For example, image databases are usually so
large that they have to be stored on disk. To reduce the I/O
overhead, these algorithms propose a compressed structure
to represent the data so that it can be put in memory. In our
case, it is more challenging to improve cache utilization as its
capacity is much smaller than that of main memory. Reduc-
ing time complexity is also very important as memory
latency is much smaller than disk latency. While VA uses
one dimension and VQ uses full dimensions to build the
index, our method can choose any number of dimensions to
better balance time complexity and estimation accuracy.

5.3 Dimension Reduction and Distance Estimation

Many datasets that appear to be high dimensional are actu-
ally governed by a small number of sub-dimensions. Based
on this fact, methods for reducing dimensionality are pro-
posed to discover the dominant sub-dimensions and use
them to accelerate the search. Several works and surveys on
this topic are available [27], [28], [29], [30]. However, it is
often not easy to find the dominant dimensions in high-
dimensional spaces and the performance can vary from
dataset to dataset. For our SCF approach, we do not need to
find these dominant dimensions. Instead, we divide the
whole high-dimensional space into several smaller subspa-
ces. Although within each subspace it is not possible to clus-
ter the whole dataset accurately, we can achieve good
results with a higher match probability by combining the
results from different subspaces.

Location Sensitive Hashing (LSH) is a popular category
of algorithms for data mining [31], [32]. By designing special
hash functions so that features that are close to each other
will get the same hash value, searching can be finished
within sub-linear time. However, LSH’s precision may not
be high enough as it is highly dependent on the hash

TABLE 4
Reward-and-Penalty Strategy Parameter Selection

Name S C ’r ’p

SIFT 8 16 0.7 0.3
Random 16 32 0 0
Madelon 8 16 0 1
HAR 8 16 0.3 0.7
Digits 4 16 1 0

Fig. 11. The influence of Reward-and-Penalty strategy on the FR and
SP . Here, S ¼ 16 and C ¼ 8.
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function. Also, developing an appropriate hash function for
the LSH algorithm can be a very complex undertaking [12].

6 CONCLUSIONS

Many k-NN algorithms run into serious bottlenecks caused
by the memory wall on multicore systems. In this paper, we
propose a data filtering strategy that tries to reduce the
number of computation-intensive and memory-intensive
distance calculations so that existing algorithms can scale
better on multicore platforms. A novel Subspace Clustering
for Filtering method is proposed to accurately estimate simi-
larity, i.e., Squared euclidean Distance, between features in
high-dimensional spaces. Experimental results show that
SCF is general enough to significantly benefit several k-NN
algorithms on multicore platforms.
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